Spatially Binned ROC: A Comprehensive Saliency Metric

Calden Wloka, John Tsotsos; The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 525-534


A recent trend in saliency algorithm development is large-scale benchmarking and algorithm ranking with ground truth provided by datasets of human fixations. In order to accommodate the strong bias humans have toward central fixations, it is common to replace traditional ROC metrics with a shuffled ROC metric which uses randomly sampled fixations from other images in the database as the negative set. However, the shuffled ROC introduces a number of problematic elements, including a fundamental assumption that it is possible to separate visual salience and image spatial arrangement. We argue that it is more informative to directly measure the effect of spatial bias on algorithm performance rather than try to correct for it. To capture and quantify these known sources of bias, we propose a novel metric for measuring saliency algorithm performance: the spatially binned ROC (spROC). This metric provides direct insight into the spatial biases of a saliency algorithm without sacrificing the intuitive raw performance evaluation of traditional ROC measurements. By quantitatively measuring the bias in saliency algorithms, researchers will be better equipped to select and optimize the most appropriate algorithm for a given task. We use a baseline measure of inherent algorithm bias to show that Adaptive Whitening Saliency (AWS) [14], Attention by Information Maximization (AIM) [8], and Dynamic Visual Attention (DVA) [20] provide the least spatially biased results, suiting them for tasks in which there is no information about the underlying spatial bias of the stimuli, whereas algorithms such as Graph Based Visual Saliency (GBVS) [18] and Context-Aware Saliency (CAS) [15] have a significant inherent central bias.

Related Material

author = {Wloka, Calden and Tsotsos, John},
title = {Spatially Binned ROC: A Comprehensive Saliency Metric},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2016}