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Abstract

A recent trend in saliency algorithm development is

large-scale benchmarking and algorithm ranking with

ground truth provided by datasets of human fixations. In

order to accommodate the strong bias humans have toward

central fixations, it is common to replace traditional ROC

metrics with a shuffled ROC metric which uses randomly

sampled fixations from other images in the database as the

negative set. However, the shuffled ROC introduces a num-

ber of problematic elements, including a fundamental as-

sumption that it is possible to separate visual salience and

image spatial arrangement.

We argue that it is more informative to directly mea-

sure the effect of spatial bias on algorithm performance

rather than try to correct for it. To capture and quantify

these known sources of bias, we propose a novel metric

for measuring saliency algorithm performance: the spa-

tially binned ROC (spROC). This metric provides direct in-

sight into the spatial biases of a saliency algorithm without

sacrificing the intuitive raw performance evaluation of tra-

ditional ROC measurements. By quantitatively measuring

the bias in saliency algorithms, researchers will be better

equipped to select and optimize the most appropriate al-

gorithm for a given task. We use a baseline measure of

inherent algorithm bias to show that Adaptive Whitening

Saliency (AWS) [14], Attention by Information Maximiza-

tion (AIM) [8], and Dynamic Visual Attention (DVA) [20]

provide the least spatially biased results, suiting them for

tasks in which there is no information about the underly-

ing spatial bias of the stimuli, whereas algorithms such as

Graph Based Visual Saliency (GBVS) [18] and Context-

Aware Saliency (CAS) [15] have a significant inherent cen-

tral bias.

1. Introduction

Saliency map algorithms are a popular class of algo-

rithm originally designed to provide bottom-up attentional

gating based on Koch and Ullman’s architecture for atten-

tion selection [27], and heavily influenced by Treisman and

Gelade’s Feature Integration Theory [46]. One of the earli-

est and most popular saliency map models, referred to here

as IKN, was developed by Itti et al. [21]. Since then an

enormous variety of saliency map models have been de-

veloped and refined; the unifying feature of these disparate

algorithms is the assignment of a conspicuity value to ev-

ery location within a visual scene. A visual element which

has a higher conspicuity value is something which can be

considered interesting or important, and indicates a visual

location which is worthy of allocating further processing

resources. Examples of subsequently developed saliency

algorithms include those based on information theory and

sparse coding [8, 20], Bayesian reasoning over learned fea-

tures [52], graph-based approaches [18], spectral analysis

[19, 42], and machine learning techniques combined with

pre-chosen object detectors (such as face detection) to cre-

ate a salience classifier [25].

In addition to a rapidly expanding set of approaches, the

concept of saliency has grown beyond just attentional gat-

ing and has been applied to a number of additional areas.

The broadest category of models are largely still focused

on understanding how humans allocate fixations when free-

viewing scenes (e.g. [8, 18]). More recently, some algo-

rithms forgo any modeling of the underlying computational

structure of overt human attention and instead focus solely

on predicting where in an image humans will fixate with

the greatest possible accuracy (e.g. [25, 22]). Although po-

tentially less informative to neuroscientists and psycholo-

gists interested in attentional eye movements, the focus on

performance is motivated by potential commercial appli-

cations such as fixation-guided heterogeneous image com-

pression [17]. Additionally, a third avenue of saliency re-

search seeks to develop a system useful for prioritizing at-

tentional resources (irrespective of human performance) for

tasks such as mobile robot navigation [39, 10] and robotic

visual search [37].

A continuing challenge in saliency modeling is the for-

mulation of fair and informative metrics with which to eval-

uate and compare different saliency algorithms. Over the
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years a number of metrics have been adapted from signal

analysis or developed for measuring saliency performance.

Several of the most common include Normalized-Scanpath

Salience [36], Earth-Mover’s Distance [40], Kullback-

Liebler (KL) Divergence [28], and Receiver Operating

Characteristic (ROC) curves [16]. Several recent bench-

marking studies have provided summaries of these metrics

and their role in evaluating saliency algorithms [4, 38]. Both

Borji et al. [4] and Riche et al. [38] conclude that a robust

evaluation of model performance is best obtained by com-

bining complementary metrics, with the ROC class of met-

rics as a frequent focal point of algorithm analysis. Never-

theless, the central bias in human fixations remains a persis-

tent issue in human fixation-based metrics, and in ROC met-

rics in particular. Both previously mentioned benchmarking

efforts seek to correct for this spatial bias by advocating for

the use of the shuffled area under the ROC curve (sAUC).

However, in Section 2 we argue that sAUC fails to satis-

factorily correct for a central bias, and further that what is

referred to as center bias is better understood as an intrinsic

aspect of active foveal vision.

Rather than attempting to separate the visual content of

fixated locations from its spatial context, we propose in

Section 3 a novel evaluation metric. This metric analyzes

saliency algorithm prediction of human fixations within the

context of their spatial distribution over the dataset. We

do this by spatially binning the ground-truth fixation points

and then deriving an ROC curve for each bin indepen-

dently. The main contributions of our work are: First, we

demonstrate that the current sAUC metric is problematic

and may not provide the information implicitly assumed by

its users (Section 2). Second, we provide an alternative met-

ric which allows the explicit detection of algorithmic spatial

bias while still providing the direct predictive power of tra-

ditional ROC methods (Section 3). Examples of metric ap-

plication and discussion of its use are presented in Section

4.

2. Center Bias

2.1. Center Bias and Shuffled ROC

Early in the study of saliency it was noticed that stim-

ulus location had a strong effect on the likelihood of fix-

ation, with regions closer to the image center being more

commonly fixated than those near the image edge [34].

This topic was revisited by Zhang et al. [52], who dis-

cussed in detail the confounding effect center bias can have

on saliency algorithm evaluation. As they pointed out, a

saliency map consisting solely of a centered Gaussian (the

cG model) outperforms many of the leading saliency mod-

els in predicting human fixations despite being independent

of the actual image content. Likewise, particularly given

the small image sizes being tested, differences in the thick-

ness of the border region left undefined by filter convolu-

tion had a tendency to reward models with a greater unde-

fined border due to a concentration of saliency values to-

ward the image center. While acknowledging that photog-

rapher bias (the tendency to center pictures on interesting

objects) might mean that the image centers are genuinely

more likely to be salient than peripheral locations, they nev-

ertheless advocated the use of shuffled metrics based on the

work of Parkhurst and Neibur [35] and Tatler et al. [44]

to rectify these two issues. Despite the fact that shuffling

may reduce the raw numerical performance measured for

each algorithm, they argue that the relative performance of

algorithms should be unaffected, and thus shuffled metrics

provide a fairer assessment. Although eliminating the ef-

fect of differing boundary region sizes could arguably have

been accomplished in an alternative fashion by simply en-

larging the undefined border (zeroing all saliency values)

of all models to an equivalent size (as was done in [29]),

such an approach would not penalize static maps (e.g. the

cG model) which are independent of the underlying image.

Of course, while it is perhaps disappointing to have a

static Gaussian center prior outperform one’s algorithm in

predicting fixation locations using traditional metrics, this

does not necessarily mean that such metrics are wrong.

Much of the debate over metrics seems to rest with an un-

clear definition of their goals [9]. If the motivation of a

model is in producing the best possible predictor of hu-

man fixation locations in an image (e.g. for use in image

compression), then it does not particularly matter whether

a correct pixel label is based on a positional prior or the

visual content of the image. This approach is exempli-

fied in the benchmarking work of Judd et al. [23], whose

saliency model is based on a machine learning classifier

trained to label pixels in saliency space regardless of bio-

logical plausibility in the calculation [25]. As their focus

is on producing the best prediction of human gaze location

for applications in areas like human-computer interaction,

they use a classical ROC metric and optimize a central prior

and post-processing smoothing kernel for every algorithm.

The argument follows that, since every algorithm has had

these parameters optimized, the test is made fair. By con-

trast, shuffled metrics which penalize static contributions to

fixation prediction (and which have dominated most recent

benchmarking studies, e.g. [3, 38]) seek to rate a saliency

algorithm’s predictive ability solely on its interpretation of

visual stimuli in isolation from any confounding factors in-

troduced by spatial position.

In both the shuffled and classical ROC, the true positive

rate is the percentage of human fixation points which are

above a saliency threshold. However, whereas the false pos-

itive rate in the classical ROC is taken as the proportion of

total image pixels which are above threshold (the proportion

of non-fixated locations which are marked as salient), in the
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shuffled ROC the false positive rate is calculated based on

the number of fixation points, randomly sampled from other

images in the same data set, which are above threshold. In

this way regions of the image towards which viewers are

spatially biased will more likely yield randomly sampled

fixations when forming the false positive set, negating the

benefits of a spatial bias prior.

However, the shuffled ROC also makes a fundamental

assumption that it is actually possible to isolate the intrin-

sic salience of visual stimuli from its spatial context. We

posit that this assumption is not valid, and that completely

separating the visual and spatial properties of stimuli when

seeking to predict human fixations is not possible (see Sec-

tion 2.2). Furthermore, Bruce et al. [7] have recently shown

that, through the discounting of centrally predicted fixa-

tions, shuffled metrics end up favoring algorithms with pe-

ripherally biased raw scores.

One final aspect to note regarding the sAUC metric is

the lack of a clear physical interpretation of sAUC score.

In classical ROC methods, the performance curve can be

understood as a direct measure of the likelihood of suc-

cessfully predicting a human fixation point at a given cut-

off threshold. The ROC curve generated when calculat-

ing sAUC, however, does not explicitly notify the user how

many fixations were discounted as false positives by overlap

with the shuffled set. While this does not affect the utlity of

sAUC in a relative comparison of algorithm performance, it

does make it difficult to interpret the actual meaning of the

numerical results.

2.2. The Persistence of Center Bias

While some center bias may be created by photographer

bias toward centering objects of interest in a frame, this

should have very little effect on algorithm performance in

classical metrics once image border effects are controlled

for (if the most interesting visual stimuli consistently appear

near the image center a high performing saliency algorithm

should likewise consistently detect the image center as most

salient). However, we argue that compositional bias is not

the only source of center bias, but rather that there exists an

inherent central bias to eye movements which is indepen-

dent of the stimuli. In fact, [45] have previously demon-

strated the robustness of the underlying fixation biases in-

herent to human gaze patterns, showing that a model based

on oculomotor patterns of movement (independent of the

image itself) was more predictive of human gaze data than

the IKN saliency model. Here, we concentrate specifically

on the central bias aspect of human gaze, using eye tracking

data from two different data sets: the Database Of Visual

Eye MovementS (DOVES) produced by [31], and the MIT

dataset of human eye-tracking produced by [25].

It is important to note that eye fixations in both the MIT

and DOVES datasets were captured during free-viewing. It

has long been established that task can have a profound ef-

fect on fixation patterns; this was first suggested by the sem-

inal work of Yarbus [51] and recently explored more sys-

tematically by Borji and Itti [2]. Although some saliency

work has attempted to incorporate task bias [12, 26], the

majority of saliency modeling is nevertheless done under

the assumption of free-viewing. For a set of recently devel-

oped task-controlled eye-tracking datasets see [32, 49], as

well as [33] which characterizes the spatiotemporal order-

ing of human fixations under two different tasks. Given that

the present work is specific to free-viewing scenarios, fur-

ther discussion or comparison with datasets based on task

bias would be inappropriate.

Statistical properties of the free-viewing fixation patterns

for human observers of these datasets are presented in Ta-

ble 1. All values have been normalized with respect to the

image dimensions, and therefore, although the proportional

variance of the DOVES fixations is nearly identical in both

the x- and y-directions (0.14 and 0.13, respectively), the

fixations along the x-direction actually do have a greater

spread in terms of raw pixel distances. The MIT dataset,

available at [24], is composed of 1003 images sampled from

Flickr creative commons and LabelMe [41] with eye track-

ing data for fifteen observers. Although it is never possible

to have a completely representative dataset of images, the

MIT set provides a decent attempt to capture a cross-section

of the types of photographs people take and share with oth-

ers (e.g. Figure 1). Human fixations over this dataset are

strongly biased toward the image center; at least a portion

of this bias likely arises due to photographic composition.

In order to compile distribution statistics shown in Table 1

for the MIT dataset, which includes images of different di-

mensions, we limited those included in our analysis to only

those 463 which were 1024×768 pixels (landscape) and

123 which were 768×1024 pixels (portrait) in size (the most

common sizes in the set).

The DOVES dataset, available at [30], consists of 101

grayscale images cropped from the dataset originally cre-

ated by [48]. All images in the DOVES set are of landscape

orientation with dimensions 1024×768 pixels. In contrast

to the MIT dataset, the DOVES dataset provides a strong

attempt to mitigate any bias inherent in photographic com-

position; most images in the dataset have no clearly framed

central object or creature (e.g. Figure 2). Despite this lack

of compositional bias in the image stimuli, aggregate fixa-

tion statistics over the dataset shown in Table 1 display that

human fixations remain distinctly biased toward the image

center (albeit to a lesser extent than in the MIT dataset).

Given the lack of strong central objects, this centrally bi-

ased distribution pattern most likely corresponds to factors

independent of the visual qualities of the stimulus.

We can formulate a spatial prior for eye fixations in the

following manner: At the most basic level of abstraction we
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Figure 1: Typical image in the MIT dataset [25]. As with

many of the images, there is a strong central subject with

little peripheral content.

Figure 2: Typical image in the DOVES dataset [31]. Most

images have no central object of interest.

(a) MIT Landscape (b) DOVES

Figure 3: Fixation cloud images formed by smoothing over

all human fixations in the dataset. On the left is shown

the fixation cloud for landscape-oriented images in the MIT

dataset, and on the right the fixation cloud for the DOVES

dataset.

consider eye fixation data over a visual field as a sequence

of points constrained to the 2D plane of the image. With-

out any knowledge of the underlying visual stimulus (given

that we are formulating a prior), an initial best guess for a

fixation will be a drawn from a random distribution p(x, y),
where p is the probability distribution and (x, y) are the cur-

rent pixel coordinates of gaze. Each subsequent fixation is

dependent only on the previous location in the chain (for

now ignoring, for the sake of simplicity, inhibition of re-

Mean Variance

DOVES Database
x 0.00 0.14

y 0.00 0.13

MIT Database Portrait
x 0.00 0.027

y 0.00 0.040

MIT Database Landscape
x 0.00 0.035

y 0.00 0.028

Table 1: Distribution statistics over all human fixations col-

lected in psychophysical eye-tracking datasets. Values are

normalized with respect to image dimensions, and show that

fixations consistently cluster around the center of the image

(0 mean) rather than off-center, but range in variance. Thus,

while degree of bias varies, the bias itself remains consis-

tent.
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Random Walk

Gaussian

Figure 4: A comparison of the approximate distribution

curve for fixations produced by a random walk plotted

against a Gaussian of identical variance.

turn), and thus the t-th fixation takes the form

(xt, yt) ∼ p(xt−1, yt−1) (1)

which is the definition of a random walk.

Each specific image in a dataset corresponds to a single

independent sampling of the random walk. As one would

expect by the Central Limit Theorem, it can be shown that

the distribution of the point conglomerate produced by this

process will tend toward that of a Gaussian distribution

[5]. Empirically, we demonstrate this in one dimension by

generating random walk trials with sequences of five fixa-

tions over a uniform subinterval of the normalized domain

[−1, 1]. The approximate distribution for this fixation set

is formed from the smoothed histogram of the fixation loca-

tions. Figure 4 shows how after 1000 trials this approximate

probability distribution very closely matches a Normal dis-

tribution of identical variance.

Thus, we see that the Gaussian central prior, which is

prevalent in improving saliency model scores with tradi-

tional ROC metrics, can be derived by a simple translat-

ing saccadic model [50]. Additional efforts to model the
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dynamic process of saccadic eye movements with a ran-

dom walk includes both Brockman and Geisel’s [6] and

Boccignone and Ferraro’s [1] work showing that saccadic

movements can be well captured as stochastic sequences

over a saliency field which correspond well to Levy flight

random walks. Therefore, we suggest that rather than a

confounding artifact which must be corrected for, the cen-

ter bias of human fixations can be seen to derive, at least

in part, from the mechanics of how people look. Likewise,

the improvement in fixation prediction seen by the addition

of a Gaussian center prior is due to the fact that a Gaussian

functions as a first-order approximation to the actual spatial

biases which are introduced through active gaze mechanics.

As a result, a model of saliency should inherently account

for these effects rather than view their manifestation as a

nuisance which must be separately corrected for.

Nevertheless, we still seek a fair method of evaluating

human fixation prediction for algorithms with varying de-

grees of spatial bias representation, and would like this met-

ric to represent algorithm performance across the entire im-

age rather than have the measure of performance be over-

whelmed by the central signal. Our solution is to construct

a spatially binned ROC (spROC) metric, presented in Sec-

tion 3.

3. Spatially Binned ROC

The spROC metric seeks to preserve a useful degree of

spatial information while still yielding a clear evaluation of

saliency algorithm performance. The metric is constructed

in the following manner:

1. Partition the image into a set of non-overlapping spa-

tial regions (bins). Each bin is an annulus (except the

central bin, which is an ellipse, and the final outer bin)

centered on the image center. Because of the tendency

for human fixations to vary in proportion to the height

and width of the image, bin dimensions are determined

by the aspect ratio of the image (see Figure 5 for ex-

amples)

2. For a given image, determine into which bin each

ground-truth human fixation falls

3. Calculate a traditional ROC curve for each bin

The selection of the most appropriate size and number of

the spatial bins may be application specific. We elected to

use ten bins and allocate the bins such that each bin had an

equal portion of the total set of human fixations (see Figure

5). To ease comparison among methods, such a configura-

tion might be considered as the ’standard’ one. However, it

is possible for some specific applications that one may wish

to investigate the performance of an algorithm according to

an alternative distribution of bins which is independent of

Figure 5: Example showing bins distributed on a 4:3 aspect

ratio image proportional to the number of fixations from the

MIT dataset falling into each bin. Each band of color rep-

resents a different spatial bin.

fixational set, such as one which is determined by relative

image area.

One of the advantages of the spROC method is that al-

gorithm performance can be analyzed at a number of levels.

The traditional ROC curve can be straightforwardly calcu-

lated by taking the weighted sum of the individual spatial

bins according to the equation:

PRj =

n∑

i=1

ciPRij (2)

where PRj is the positive rate at threshold j, ci is the count

of fixations falling into bin i, and PRij is the positive rate

in the ith bin at threshold j. Likewise, the traditional AUC

score can be calculated by finding the area under this curve.

When using a proportional distribution of bins Equation 2

simplifies to the average across all bins.

Alternatively, however, one can also examine a spatial

profile of the algorithm performance by plotting the AUC

score for each individual spatial bin (see Figure 6). Al-

gorithms with a spatial bias will exhibit deviations from a

horizontal line, and the degree of deviation can be used to

quantify the extent of bias. An unbiased algorithm will form

a flat line (every bin will have the same AUC score), while

a well-performing algorithm will have the best combined

score across all bins. It depends on the application which is

more important; although a highly biased algorithm might

end up giving the best overall score, the spatial bias exhib-

ited suggests that at least part of its performance is based

on an overemphasis (either implicitly or explicitly) on the

spatial tendencies of human fixations (the ability to predict

less frequent peripheral fixation is sacrificed to improve the

chances of predicting central fixations). Adjustment or ‘cor-

rection’ for the center bias of human fixations can be per-

formed through a re-weighting of the ROC points or AUC
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score between the bins. This will have an effect similar in

outcome to shuffled ROC, but with the added transparency

of knowing precisely how fixations have been re-weighted

rather than relying on a hidden stochastic process. An ex-

ample of this type of analysis is shown in the comparison of

Tables 2 and 3, where Table 2 shows results using classical

AUC, and Table 3 displays instead AUC scores weighted by

the image area covered by each bin.

4. Results

Here we present the quantitative clarity achieved by us-

ing spROC for a selection of algorithms which have pub-

licly available MATLAB code. All algorithms have been

run without the application of post-processing smoothing

(also referred to as blurring). Although smoothing is a stan-

dard practice and is well-known to have a strong effect on

the performance of an algorithm’s fixation prediction, con-

volution will introduce an additional bias against peripheral

saliency values proportional to the size of the Gaussian ker-

nel used to perform the smoothing. Since algorithms will

frequently exhibit different optimal sizes of smoothing ker-

nel (e.g. see [23]), we felt it was useful to look at the in-

herent degrees of algorithm spatial bias which exists prior

to applying any post-processing smoothing. Note, however,

that while post-processing smoothing was removed, some

algorithms still implicitly smooth their output through im-

age resizing. This step is required for efficient processing

speed (e.g. GBVS) and thus was retained, but does gen-

erally lead to improved scores for these algorithms versus

those which have no built-in smoothing. Therefore, it is im-

portant to reiterate that the scores presented here are not an

optimized benchmark (as in [23, 4, 38]), but rather serve as

a baseline characterization of the inherent spatial bias for

each algorithm.

We demonstrate the spROC metric using the following

algorithms:

• Attention by Information Maximization (AIM) [8]

• Adaptive Whitening Saliency (AWS) [14]

• Context Aware Saliency (CAS) [15]

• A centered Gaussian prior (cG)

• Covariance-based Saliency (CVS) [11]

• Dynamic Visual Attention (DVA) [20]

• Graph-Based Visual Saliency (GBVS) [18]

• The Itti-Koch-Niebur Saliency Model (IKN) [21]

• Quaternion-Based Spectral Saliency (QSS) [42]

• Saliency Detection by Self-Resemblance (SSR) [43]

• Saliency Using Natural statistics (SUN) [52]

which we ran on two widely used benchmarking datasets:

the MIT dataset already discussed in Section 2.2, and the

ImgSal dataset [29], which was the basis of the benchmark-

ing work by Riche et al. [38]. Note that we used the imple-

mentation of CAS created by Tsai and Chang [47] to ensure

control over post-processing, as the original study authors

released only a binary implementation.

(a) MIT

(b) ImgSal

Figure 6: AUC Scores by bin number for a selection of

algorithms. (a) presents results over the MIT dataset, and

(b) presents results over the ImgSal dataset. All algorithm

saliency maps were unsmoothed

As expected, the most extreme spatial bias is exhibited

by the cG model (this is, after all, a prediction based solely

on a spatial location), with an AUC very close to 1 for the

central bins which then rapidly falls off to nearly zero in the

more peripheral bins. Of the models tested, GBVS exhibits

the strongest degree of spatial bias. Surprisingly, although

identified in [7] to have a peripheral bias in terms of raw

saliency scores, in terms of predictive performance AWS is

actually one of the least biased models.

Figure 7 shows the bin by bin ROC curves for GBVS

(7a), AWS (7b), and a Gaussian center prior (7c) for the

MIT dataset. These figures show a more detailed view of the

nature of the spatial bias in these various models, and these
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(a) GBVS

(b) AWS

(c) cG

Figure 7: ROC scores by bin for GBVS, AWS, and a Gaus-

sian center prior on the MIT dataset. GBVS is the most spa-

tially biased model tested, while AWS represents the most

spatially consistent model tested

MIT ImgSal

Model AUC σ Model AUC σ

GBVS 0.82 0.093 GBVS 0.74 0.098

cG 0.81 0.188 CAS 0.71 0.057

CAS 0.78 0.049 cG 0.71 0.163

IKN 0.74 0.026 IKN 0.69 0.045

AWS 0.74 0.007 SSR 0.67 0.025

AIM 0.72 0.007 AWS 0.66 0.018

SSR 0.72 0.013 AIM 0.63 0.014

DVA 0.70 0.007 CVS 0.62 0.078

SUN 0.68 0.013 DVA 0.60 0.011

CVS 0.64 0.067 SUN 0.59 0.011

QSS 0.56 0.011 QSS 0.51 0.011

Table 2: Algorithms ranked by AUC score for the MIT and

ImgSal datasets, presented along with the standard devia-

tion calculated over bin scores representing the degree of

inherent spatial bias. High performance on both data sets

appears to be correlated with spatial bias

specific models were chosen for presentation in Figure 7 as

they represent the most biased (GBVS) and most consistent

(AWS) performance of the algorithms tested, as well as a

representation of performance for a model which is only

based on spatial location (cG).

As mentioned in Section 3, one can calculate tradi-

tional AUC scores in a straightforward manner from the

binned ROC results. We present the ordered ranking of un-

smoothed algorithm performance over the MIT dataset in

Table 2, along with the standard deviation of their binned

AUC scores as a measure of the inherent spatial bias in each

model. This provides a user with a direct performance mea-

sure (AUC score) which gives them a clear sense of algo-

rithm performance operating over natural scenes, which is

useful for any application in which choice of algorithm is

solely dependent on its ability to predict human fixations

in these environments. At the same time, we also have a

quantifiable measure of how much of this performance is

likely based on simple spatial bias versus an ability to iden-

tify salient visual stimuli, which is important for future sci-

entific pursuits into saliency and saliency algorithm design.

We also present in Table 3 the AUC scores from the MIT

dataset which have been weighted according to the relative

image area occupied by each bin. The intention here is to

provide a reasonable form of spatial correction, but which

is transparent and deterministic in its source.

One such example of exploration into aspects of saliency

algorithm performance is in the effect of smoothing kernel

size. To explore this issue, we focused our efforts on the

AIM algorithm as it has previously been shown to typically

achieve maximum performance at relatively large smooth-

ing kernel sizes [23, 19]. However, as kernel size increases
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MIT ImgSal

Model wAUC Model wAUC

GBVS 0.78 GBVS 0.70

CAS 0.76 CAS 0.69

cG 0.74 IKN 0.67

AWS 0.74 SSR 0.66

IKN 0.73 cG 0.65

SSR 0.71 AWS 0.65

AIM 0.71 AIM 0.63

DVA 0.70 DVA 0.60

SUN 0.67 CVS 0.59

CVS 0.61 SUN 0.59

QSS 0.56 QSS 0.51

Table 3: Algorithms ranked by AUC score weighted by rel-

ative bin area for the MIT and ImgSal datasets. For models

with low spatial bias (like AWS and AIM), there is little

change in AUC score, while there is a significant drop in

score for highly biased models (such as GBVS and CAS)

the numerical effects of border padding likewise increase,

suggesting that at least some of these gains are due to the in-

troduction of an implicit center bias [13]. The exact degree

to which improvements are due to the direct act of smooth-

ing versus the introduction of spatial bias have previously

not been quantified. Using spROC, however, we can di-

rectly explore this issue. Figure 8 displays the AUC scores

by bin number for a range of different smoothing kernels

acting on the AIM algorithm.

Figure 8: AUC score by bin for different degrees of smooth-

ing applied to the AIM algorithm applied to the MIT

dataset. Kernel properties are reported as (size, σ). Initial

smoothing boosts performance overall without appreciable

increases in bias, but very large smoothing kernels sacrifice

peripheral performance for central gains

At the smallest smoothing kernel tested, algorithm per-

formance is almost uniformly boosted across all bins, in-

cluding in the periphery. Subsequent smoothing initially

boosts central scores without affecting peripheral perfor-

mance, but a trade-off quickly develops thereafter between

central gains and peripheral losses. Thus, we are able to

begin to quantify the complex interactions smoothing has

on the saliency signal, which opens the doors to further re-

search into generally optimized post-processing techniques.

Although we have concentrated here on one particular

form of spatial binning, it should be straightforward to ex-

tend this methodology to explore other interesting aspects

of saliency model performance. Of particular interest may

be temporal binning, in which fixation points are binned by

temporal order rather than spatial location.

5. Conclusion

Saliency algorithms are applied to a steadily increas-

ing range of problems, and the pertinent aspects of perfor-

mance will often change with the specific requirements of

an application area. A primary difficulty in evaluating al-

gorithm performance differences is the complicated inter-

action which visual appearance and spatial location have

on salience. While it is true that traditional ROC metrics

have a hard time fairly evaluating an algorithm’s ability to

identify visually distinct image elements given the some-

times overwhelming spatial component of the ground-truth

set, discounting the role of spatial location in saliency can

likewise lead to misleading conclusions regarding relative

algorithm performance. This is particularly true for applica-

tions (such as image compression) in which gross predictive

performance is more important than the underlying reason

for why an element is salient.

We have presented here a novel evaluative method which

provides insight into the impact of spatial location on al-

gorithm performance. The method is flexible enough to

be tailored for analyzing a wide range of aspects of algo-

rithm performance, but can nevertheless be easily collapsed

back into a straightforward measure of performance. We

demonstrated a similar rank-ordering as found in the bench-

mark work of Judd et al. [23], but with added information

specifying the spatial bias inherent to the tested algorithms.

Further, we were able to directly explore the role of Gaus-

sian smoothing on the spatial bias of an algorithm’s perfor-

mance. This provides us with the ability to begin quantify-

ing how rather than simply how much smoothing modulates

the saliency signal, which opens up a novel avenue of re-

search into saliency algorithm optimization.
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