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Abstract

For some computer vision tasks, such as location recog-
nition on mobile devices or Structure from Motion (SfM)
computation from Internet photo collections, one wants to
reduce a large set of images to a compact, representative
subset, sometimes called “keyframes” or “skeletal set”. We
examine the problem of selecting a minimum set of such
keyframes from the point of view of discrete optimization, as
the search for a minimum connected dominating set (CDS)
of the graph of pairwise connections between the database
images. Even the simple minimum dominating set (DS)
problem is known to be NP-hard, and the constraint that the
dominating set should be connected makes it even harder.
We show how the minimum DS can nevertheless be solved
to global optimality efficiently in practice, by formulating it
as an integer linear program (ILP). Furthermore, we show
how to upgrade the solution to a connected dominating
set with a second ILP if necessary, although the complete
method is no longer globally optimal. We also compare the
proposed method to a previous greedy heuristic. Experi-
ments with several image sets show that the greedy solu-
tion already performs remarkably well, and that the optimal
solution achieves roughly 5% smaller keyframe sets which
perform equally well in location recognition and SfM tasks.

1. Introduction

Location recognition from an image taken by the user is
a useful application of computer vision, even more so now
that practically all mobile phones and tablets are equipped
with cameras. The state-of-the-art methods to build such a
service [10, 4] rely on the “big data” paradigm—large pre-
computed image databases which reside on computer clus-
ters, to which user images must be submitted via Internet or
cellular networks to query for the location. With increasing
computational power and storage capacity of the mobile de-
vices, it becomes possible to run such an application even
locally, without network access.

For the described mobile application of location recogni-
tion, the compactness of the pre-computed database is cru-
cial, but the need for a compact, yet meaningful subset of
big image data is not restricted to this particular use case.
Mobile robotic SLAM [6] and short- or wide-baseline se-
quential visual odometry methods [22, 29] often rely on
a set of keyframes to robustify the computation and/or to
overcome the drift of the estimated camera poses over time,
by performing loop-closing. Compactness of the keyframe
set is important for the efficiency of loop-closing, which
must share limited processing power with the actual per-
frame SLAM computation. Note that the image selection
procedure is even more complicated in the SLAM case be-
cause of the on-line nature of the computation.

The contribution of this paper is twofold. First, we ex-
plore optimal methods for reducing a large, redundant in-
put image set by selecting the most relevant representatives
via solving the same graph problem as [14]. Secondly, we
compare the selections made by the proposed near-optimal
selection algorithm with the output of the existing subopti-
mal greedy algorithm used by [14] and show that the pro-
posed method gives more compact image subsets while the
performance of the location recognition task remains un-
changed. We also show that the difference between the
sizes of the subsets obtained using suboptimal and optimal
methods is rather small: while the proposed approach is
arguably more principled, our results vindicate the widely
used greedy heuristic, but have a slight edge for applica-
tions with strict storage constraints.

The bulk of visual location recognition techniques re-
lies on image retrieval based on visual words [27]. Fur-
ther advances using either a more compact data represen-
tation [5] or achieving higher efficiency thanks to vocab-
ulary trees [23] allow for location recognition from city-
scale databases [26]. Recently, methods have appeared
which offer precise positioning of a given query image [15,
25]. These methods provide the camera pose w.r.t. a pre-
computed 3D point cloud, instead of just an approximate
localization. Once the point cloud is geo-referenced, a pre-
cise location on the Earth can be obtained [19, 12].
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Figure 1. Unconnected dominating set denoted by black vertices.

We use location recognition as a benchmark for reduc-
ing big image databases to representative subsets. Our aim
here is to decrease the size of the keyframe set by revisit-
ing the problem of selecting relevant representatives from a
large image collection. To our best knowledge, no system-
atic attempts have been made so far to select such image
subsets optimally, by formally minimizing the size of the
subset that has the required properties. Note however, in
other contexts the formulation of the minimum dominating
set problem as an integer linear program has been known
for several years [16].

Most techniques for reducing an image set rely on the
same idea, namely to first compute pairwise distances
within the database, and then prune it such that for ev-
ery image there is a sufficiently near representative in the
keyframe set (or equivalently, a representative for each clus-
ter of images). The differences lie mostly in the proxy used
to estimate the distance. One possibility is to employ global
image descriptors, e.g. GIST [24]. Although this approach
was successfully used to speed-up Structure from Motion
(SfM) computation [17, 8], we believe that methods based
on visual words are more suitable for the location recogni-
tion task. On the other extreme, one could estimate similar-
ity through the number of keypoint matches or even through
the relative pose, however such approaches in most cases
defy the purpose, as matching and pose estimation are com-
putationally too expensive.

We use a technique based on visual words, similar to
the one of [14]. Note however, our approach is generic
and applies to any distance/similarity matrix. We show that
thanks to modern integer linear program (ILP) solvers, it
is possible to solve this graph problem optimally even for
rather large image sets, and that there is a noticeable gap
between the sizes of the optimal and greedy solutions. It is
worth mentioning that also the widely used large-scale SfM

pipeline based on skeletal image sets [28, 1] greedily solves
the same graph problem, so our results apply to city-scale
SfM, too.

2. Method

Let us assume for the moment that a connected graph is
available whose vertices are the input images, and in which
an edge exists between two vertices if and only if the two
corresponding images share a significant part of the view-
field, i.e. are co-located. Then, to make a compact selection
covering all views present in the image set one needs to se-
lect a minimum subset of vertices, in such a way that (i) all
the vertices in the graph are either in the subset or connected
to it by an edge (meaning that every database image is co-
located with at least one keyframe), and (ii) the subgraph
induced by the selected subset is connected. In graph theory
a subset that fulfills (i) is known as the minimum dominat-
ing set (DS) of the graph, see Figure 1, while (ii) is called
the minimum connected dominating set (CDS). Searching a
CDS avoids database fragmentation, but makes the problem
considerably harder. In some applications, such as finding a
skeletal set for SfM, connectedness is mandatory, while in
others it might be dropped or only encouraged rather than
enforced.

Following [11], the minimum CDS problem is defined as
follows. Given a graph G = (V , E), find a minimum size
subset of vertices S ⊂ V , such that the subgraph induced
by S is connected and S forms a dominating set in G. In
a graph with a dominating set D ⊂ V , each vertex V ∈ V
is either in the dominating set or adjacent to some vertex in
the dominating set, V ∈ D ∨ ∃V ′ ∈ D : (V, V ′) ∈ E . We
say that V is covered by V ′ in the latter case. The problem
of finding the minimum CDS is known to be NP-hard [9].

2.1. Minimum CDS formulated as ILP

By definition, to find the optimal solution to an NP-hard
problem one has to evaluate an exponential number of can-
didates in the worst case. Nevertheless, a large class of
NP-hard problems can be formulated as integer linear pro-
grams (ILPs); and for many instances of such ILPs, modern
solvers can find the optimum quickly. The general ILP for-
mulation reads:

minimize cTx
subject to Ax ≥ b

lj ≤ xj ≤ uj, xj ∈ Z

(1)

The high efficiency of ILP solvers is achieved thanks to the
following strategy: (i) obtain a lower bound of the objec-
tive function in low polynomial time by solving the relaxed
LP problem, where the integer constraint is dropped; and
(ii) use the lower bound in branch-and-bound type meth-
ods to quickly rule out large portions of the search space.
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Figure 2. Four components of the subgraph of G induced by D
denoted by color ellipses are connected by adding two yellow ver-
tices into S . These two vertices form the solution of Program 3 for
a 3× 5 matrix D (the union of the sets C and C′ for the three gray
edges of the corresponding maximum spanning tree of the con-
structed weighted graph contains four 1-vertex and one 2-vertex
bridges), see text.

Although this can in the worst case still lead to an exponen-
tial number of candidates, the actual convergence times are
quite short for our ILPs as will be shown in Section 3.4.

We believe that, unfortunately, it is not possible to for-
mulate the search for the minimum CDS as an ILP, because
of the comprehensiveness of the connectivity constraint. On
the contrary, the ILP formulation of finding a (possibly dis-
connected) minimum DS is straightforward [16]. We thus
resort to the same strategy also used by the greedy formula-
tion (see Section 2.2), namely first find the minimum domi-
nating set D. If the subgraph induced by D is connected,D
is at the same time the minimum connected dominating set
of G. Otherwise, we need to include additional vertices in
S ⊃ D. While one can also select these “connecting” ver-
tices in a one-shot optimization, the total CDS is no longer
guaranteed to be the globally most compact one.

To prevent excessive fragmentation of the found mini-
mum dominating setD, and thereby increase the chance that
the subgraph induced byD is already connected, we require
even the selected vertices to be covered, so the minimum
possible size of a component is 2 and not 1. The connectiv-
ity of D can be further improved by requiring each vertex
to be covered by more than one vertex. We call the num-
ber of covering vertices of a keyframe set its cover number
(CN).1 This changes the minimum component size to 3 or
even more, and often directly yields a minimum CDS, at the
cost of obtaining larger keyframe sets, see Section 3.

1Note the relation to the k-nearest neighbor strategy: a cover number of
Q guarantees that at least Q useful neighbors are available for localization,
respectively pose estimation.

To formulate the search for the minimum dominating set
as an ILP, we construct an n × n matrix A where n is the
number of vertices of G and Aij = 1 ⇐⇒ (Vi, Vj) ∈ E
with the remaining elements of A being zero. By zeroing the
diagonal of A, we require the selected vertices to be covered
also. Our program then reads:

minimize 1Tx
subject to Ax ≥ b

0 ≤ xj ≤ 1, xj ∈ Z

(2)

The desired cover number can be set through parameter vec-
tor b. The solution of the program is a Boolean vector x of
length n, indicating the membership of vertices in the set
D. The minimized objective value is the number of vertices
in the DS.

If the subgraph induced byD consists of multiple, say m
(disconnected) components, then for every such component
there exists another one to which it can be connected by
adding at most two additional vertices, thanks to the prop-
erties of the dominating set [11]. We examine all pairs
of components to find vertices which would form such 1-
vertex or 2-vertex bridges, and then try to find the smallest
subset of vertices that need to be added to D to obtain a
connected graph.

First, to simplify the task, the (m − 1) pairs of compo-
nents which are going to be connected are pre-selected. For
each pair of components i and j, the set of feasible 1-vertex
bridges Cij and the set of feasible 2-vertex bridges C′ij are
found. Second, a weighted graph is constructed whose ver-
tices are the individual components, and whose edges are
the potential connections, weighted according to numbers
of feasible bridges: the weight of a given edge is either the
size of C′ij (if Cij is empty) or the size of Cij plus the size of
the largest C′ in the entire graph otherwise. By selecting the
(m − 1) pairs forming the maximum spanning tree of this
graph, the pairs of components which can be connected us-
ing a 1-vertex bridge are preferred. The secondary criteria
then is the number of feasible 1-vertex (or 2-vertex) bridges,
because this increases the chance that some of these bridges
could potentially connect other component pairs, too. Then,
a second ILP is constructed:

minimize cTy
subject to Dy ≥ 1

0 ≤ yj ≤ 1, yj ∈ Z

(3)

where D is a (m−1)×k matrix, k is the size of the union of
sets C and C′ of the pre-selected component pairs, and c is a
vector of length k which is 1 for 1-vertex bridges and 2 for
2-vertex bridges. The minimized objective function then
represents the number of added vertices. The entries of D
are Dij = 1 if the i-th component pair would be connected
by the j-th bridge, and zero otherwise. The constraints en-
sure that all (m − 1) components pairs will be connected,
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(a)

(b)

Figure 3. (a) Illustration of the computation of Algorithm 1
(Step II.). Two black vertices have been added to D so far, the
gray vertices are already covered. Note that three more vertices
need to be added to construct the dominating set whereas the opti-
mal solution (b) consist of three vertices in total.

resulting in a subgraph of G with a single component, i.e. a
CDS, see Figure 2.

2.2. Greedy Algorithm

A (suboptimal) greedy solution to the minimum CDS
problem is given in [11], see Algorithm 1. Being greedy,
the algorithm inherently has polynomial time complex-
ity. Moreover, its approximation ratio is in the worst case
ln�+ 3, with� the maximum vertex degree in the graph.

The greedy algorithm selects one vertex at a time, pick-
ing the one that covers the largest number cV of uncovered
vertices, see Figure 3(a). Note that this strategy is subopti-
mal, Figure 3(b). If the desired cover number is greater than
one, the algorithm can be extended by introducing fractional
coverage. Each not fully covered vertex contributes as many
times to the value of cV as it needs to be further covered.
Thereby, the selection prefers vertices whose neighbors re-
ceived less coverage from the previously selected vertices.
In our experience this works better than counting all not yet
fully covered vertices equally, as proposed originally.

Once the greedy selection has found a DS, it is connected
to a CDS with another greedy search procedure. For all
component pairs, one checks whether a connection by a 1-
vertex bridge or 2-vertex bridge is possible. Then one itera-
tively selects the bridge which connects the highest number
of components. For a graph consisting of m components,
at most (m − 1) iterations are needed to obtain the final
D. This can be rather slow for highly fragmented graphs
because graph components need to be updated after each
iteration.

Algorithm 1 Approximate min CDS computation [11]

Input G = (V , E) Unweighted undirected graph.
Output S Vertices of the min CDS of G.

I. Label all vertices V ∈ V white.

II. SetD := {} and repeat until no white vertices are left:

1: For all black vertices V ∈ V set cV := 0.
2: For all gray and white vertices V set cV := num-

ber of white neighbors of V .
3: Set V ∗ := argmax

V
cV .

4: Label V ∗ black and add it into D.
5: Label all neighbors of V ∗ gray.

III. Set S := D and connect components of the subgraph
induced by D, by adding at most 2 vertices per com-
ponent into S.

IV. Return S.

2.3. Constructing the Graph

Until now, we have assumed that the graph G represent-
ing the co-located images is available. In fact, constructing
such a graph properly, i.e. by matching all image pairs and
verifying pairwise geometries, is rather costly. We use a
standard image indexing technique instead to obtain a proxy
more efficiently [27]. Images are resampled to 3Mpix res-
olution, and a visual vocabulary of 200,000 visual words
trained on images of city landmarks is used to quantize
SURF [2] features detected in the database images. The en-
tries of the similarity matrix are dot products of the images’
tf-idf vectors, and the edges of graph G can be obtained by
thresholding the similarity matrix.

Special care must be taken to ensure there is a solution:
if the graph G is not connected, no CDS exists. Moreover,
already the DS is infeasible if G has small isolated com-
ponents whose vertex count is lower than the desired cover
number. To bypass this issue, we pre-process the graph and
recursively remove uncoverable vertices until the problem
is solvable. Note, this step can already significantly deci-
mate the database size if a high similarity threshold is used.

3. Experiments

Three landmark image sets, each consisting of roughly
4,000 images, were downloaded from Flickr [32] as re-
sults for queries “di Trevi”, “duomo milano”, and “old town
square prague”. The variability of the image sets increases
as DITREVI represents a single wall, DUOMO represents a
single building, while OLDTOWN represents a larger area
with multiple buildings. Only images which were available
in at least 0.75Mpix resolution were used.
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(a)

(b)

(c)

Figure 4. Sample images from the three datasets downloaded from
Flickr [32]: (a) DITREVI, (b) DUOMO, (c) OLDTOWN.

To evaluate location recognition using the selected sub-
sets of images, 300 images from each image set were ran-
domly set aside as query images and the rest of the images
form the datasets of sizes 3,110, 3,104, and 3,255 images
respectively, see Figure 4.

Two application scenarios were explored with the held-
out query images. First, location recognition based on im-
age retrieval and subsequent geometric verification, using
the selected keyframe sets. And second, pose estimation of
the query images w.r.t. 3D models reconstructed from the
keyframe sets.

3.1. CDS Computation

Connected dominating sets were computed for the three
datasets independently, using both the ILP solver and the
greedy algorithm. The corresponding graphs G were ob-
tained using the method described in Section 2.3 for three
different thresholds of the image similarity, namely 0.075,
0.1, and 0.15. Cover numbers (parameter vector b in ILP)
of 1, 2, and 3 were tested. The sizes of the returned min-
imum DS and CDS of G are displayed in Figure 5. It can
be seen that more images are required for the most complex
scene OLDTOWN than for the other two datasets.

As both methods first search for the dominating set, it is
also interesting to see how many vertices had to be added to
connect the DS into a CDS, “Con” in Figure 5. We observe
that, as expected, the fragmentation of the dominating set
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Figure 5. Sizes of the connected dominating sets obtained by the
greedy algorithm and by solving the ILP, with different thresh-
olds for image similarity and different cover numbers. Datasets
(a) DITREVI, (b) DUOMO, and (c) OLDTOWN.

is smaller when the similarity threshold is lower (and hence
the graph is denser), and also when a higher cover number
is chosen. In some cases the optimal DS was already con-
nected, in which case it is also the globally optimal CDS.
In the remaining cases, and always for the greedy solutions,
no optimality guarantee can be given. We also observe that
the greedy DS often needs fewer additional vertices to turn
it into a CDS; the DS returned by ILP are ≈ 5% smaller
than those of the greedy method. That difference slightly
decreases for the respective CDS solutions. Apparently the
redundancy in the greedy solution means that it is closer to
a CDS, and fewer vertices have to be added.
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Image Retrieval - correctly localized images (of 300)

DITREVI Greedy ILP
Thr / CN 1 2 3 1 2 3
0.075 140 151 160 137 144 156
0.100 153 165 160 156 156 163
0.150 171 169 169 169 174 172

DUOMO Greedy ILP
Thr / CN 1 2 3 1 2 3
0.075 35 62 57 25 59 69
0.100 68 81 83 67 78 79
0.150 75 86 91 78 87 90

OLDTOWN Greedy ILP
Thr / CN 1 2 3 1 2 3
0.075 82 102 113 81 94 107
0.100 119 111 123 112 121 123
0.150 121 123 131 124 124 135

Table 1. Evaluation of location recognition using image retrieval
with geometric verification, with different thresholds for image
similarity and different cover numbers.

3.2. Image Retrieval

Following the same procedure as for the dataset images,
we extract SURF [2] features from the query images (re-
sampled to 3Mpix resolution), quantize them with a pre-
trained visual vocabulary, and represent images by tf-idf
vectors [27]. Our database is formed by the union of the
minimum CDS of all three image collections (DITREVI,
DUOMO, and OLDTOWN). Similarity between each query
image and all database images is computed as the scalar
product of their tf-idf scores. The five database images hav-
ing the highest score are passed to geometric verification
with a homography [13]. The original SURF descriptors are
matched with approximate NN-search [30] and the homog-
raphy is then computed with RANSAC [7], with an error
threshold of 4 pixels. Among those candidates for which
the fit has at least 100 inliers and an inlier ratio better than
10%, the one with the highest inlier ratio is selected. The
localization is considered correct if the selected candidate is
from the same collection (i.e. the same landmark).

Results summarized in Table 1 show that, over all cover
numbers and image similarity thresholds, the numbers of
correctly localized images are roughly the same for the
keyframe sets obtained with the greedy algorithm and those
from the ILP solution, although the latter are more compact.
The numbers of incorrectly localized images were around 8
for DITREVI and around 11 for DUOMO and OLDTOWN.

Regarding storage, the footprint of the database is ≈
70kB per image for the zipped tf-idf vectors, plus ≈ 500kB
per image to store the image itself (for efficient on-the-fly
extraction of SURF features). The size of the visual vocab-
ulary, independent of the dataset size, is 108MB.

Pose Estimation - correctly localized images (of 300)

DITREVI Greedy ILP
Thr / CN 1 2 3 1 2 3
0.075 188 206 199 176 210 218
0.100 213 226 230 221 224 230
0.150 222 229 230 235 230 234

DUOMO Greedy ILP
Thr / CN 1 2 3 1 2 3
0.075 66 73 80 62 63 78
0.100 74 90 84 75 86 82
0.150 85 97 93 94 94 92

OLDTOWN Greedy ILP
Thr / CN 1 2 3 1 2 3
0.075 65 84 85 63 64 76
0.100 85 122 151 85 n/a 148
0.150 134 154 152 133 153 134

Table 2. Evaluation of location recognition using pose estimation
w.r.t. the 3D point cloud of the largest partial model, with different
thresholds for image similarity and different cover numbers.

3.3. Pose Estimation

VisualSFM [31] was used to create 3D models of the
selected keyframe sets. The sizes of the largest recon-
structed partial models are small for low similarity thresh-
olds, because with such strict thresholds the image collec-
tions disintegrate into many small, unconnected fragments.
We note however that with one exception (OLDTOWN, im-
age similarity 0.1, cover number 2) all 3D models are visu-
ally correct, albeit incomplete—they capture only the most
prominent part of the scene. Dataset DUOMO seems to
be the most challenging one because several separate clus-
ters of images exist, e.g. the frontal view, the building in-
terior, and the view from the roof. Consequently, only the
largest cluster—the frontal view—is reconstructed. The re-
construction of OLDTOWN becomes quite complete when
a sufficiently high threshold for image similarity is used.

We used VisualSFM “resume” feature to test whether
it is possible to connect a given query image to the con-
structed landmark models. The numbers of correctly local-
ized images summarized in Table 2 show that the results are
again roughly the same for the keyframe sets obtained us-
ing the greedy algorithm and those from the ILP solution.
In these experiments, not a single image was wrongly lo-
calized (i.e. connected to the wrong landmark model). One
can also see that for the easy DITREVI dataset, the results
of localization using pose estimation are better than those
obtained from localization using image retrieval. On the
other hand, localization using image retrieval works better
than via pose estimation for the most complex dataset OLD-
TOWN, because of the difficulties of building 3D models of
complicated scenes from reduced, overly sparse image sets.
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Figure 6. Sizes of the connected dominating sets obtained by the
greedy algorithm and by solving the ILP, with different thresh-
olds for image similarity and different cover numbers for dataset
DUBROVNIK.

Regarding storage, the most salient SIFT features ex-
tracted by VisualSFM occupy ≈ 1MB per image. The size
of the reconstructed 3D model is dependent on the scene
type and the spatial distribution of cameras; for our datasets
it was approximately 30kB per reconstructed image.

3.4. DUBROVNIK Dataset

Finally, the performance and scalability of the proposed
selection method was tested using the publicly available
DUBROVNIK dataset [18] which comprises 6,044 database
and 800 query images, with known ground truth poses w.r.t.
the 3D point cloud constructed from the database images.
As only SIFT [20] descriptors are provided and not the orig-
inal images, we trained a 200,000 word vocabulary from the
database image descriptors. The sizes of the obtained mini-
mum DS and CDS are shown in Figure 6.

Notice that (i) the graph is similar to the one of the OLD-
TOWN dataset but the overall portion of selected images is
nearly twice as large due to the even more complex layout
of DUBROVNIK; and (ii) lower thresholds for image sim-
ilarity were used because for higher thresholds the removal
of uncoverable vertices during pre-processing already elim-
inated the majority of the images.

Run times are reported for the minimum DS search of
our multi-threaded MATLAB implementation of the greedy
algorithm and MOSEK [21] ILP solver. Times were mea-
sured on a single Intel(R) Core(TM) i7-3930K workstation
with Linux 64bit operating system, see Table 3.

We point out that the run times of the greedy algorithm
and the ILP solver are similar but there is a much higher
variance in the run times of the ILP solver. Also, in general
the greedy algorithm gets slower with higher cover number,
whereas the time needed to solve the ILP stays the same or
even decreases.2

2This need not be the case for other problems: when applying the pro-
posed method to very sparse graphs we observed much longer run times of
the ILP solver.

Greedy
Thr / CN 1 2 3
0.050 7.43 s 11.71 s 13.98 s
0.075 10.07 s 13.10 s 11.87 s
0.100 4.79 s 5.21 s 3.84 s

ILP
Thr / CN 1 2 3
0.050 48.24 s 4.20 s 8.63 s
0.075 5.96 s 15.30 s 0.83 s
0.100 0.26 s 0.21 s 0.25 s

Table 3. Run times (in seconds) of the search for the minimum DS
of DUBROVNIK; multi-threaded MATLAB implementations of
the greedy algorithm and MOSEK [21] ILP solver.

Pose Estimation - registered images (of 800)

DUBROVNIK Greedy ILP
Thr / CN 1 2 3 1 2 3
0.050 679 724 729 669 705 731
0.075 719 737 734 717 736 732
0.100 644 687 680 650 658 677

Table 4. Evaluation of location recognition using pose estimation
w.r.t. the 3D point cloud of the respective submodel, with different
thresholds for image similarity and different cover numbers.

For each of the obtained subsets of images, a submodel
was created by removing from the 3D model the unselected
cameras, as well as 3D points which were left with less
than two projections. Then, average SIFT descriptors of the
3D points in the submodel were computed using the remain-
ing projections, and tentative 3D-to-2D matches between
the submodel and each of the 800 query images were cre-
ated with approximate NN-search. The poses of all query
images with more than 20 tentative matches were estimated
using P4Pfk (P3P with unknown focal length, [3]) in a
RANSAC loop, with reprojection error threshold of 2 pixels
and the maximum number of iterations limited to 200.

We use the same methodology as [18] and report the
number of query images which attained at least twelve in-
liers supporting the recovered pose, see Table 4. The num-
bers of registered images are again roughly the same for
the keyframe sets obtained using the greedy algorithm and
those from the ILP solution, and also similar to the results
presented in [18]. Notice that larger subsets do not always
yield better registration performance.

Regarding localization accuracy, the median camera po-
sition error is around 0.9m with quartiles 0.25m and 4.5m,
independent of both the threshold for image similarity and
the cover number; an exception being the smallest subset
(image similarity 0.05, cover number 1) where localization
is less accurate. Similar to [18], there are around 100 cam-
eras which have position errors larger than 20m.
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4. Conclusions

We have shown that the search for the minimum dom-
inating set of a graph—the problem which needs to be
solved when selecting a compact, yet meaningful subset of a
large image collection—can be formulated as an integer lin-
ear program, and solved efficiently by current ILP solvers.
When comparing the sizes of keyframe sets obtained by the
proposed method with those obtained with the state-of-the-
art greedy algorithm, we found a gap of about 5%. This
result empirically vindicates the greedy method, which per-
forms surprisingly close to optimal, and much better than
what could be expected from the theoretical guarantees.
Apparently the structure of visual databases is favorable for
greedy keyframe selection. Still, the optimal solution deliv-
ers consistently smaller keyframe sets, which could be sig-
nificant for application scenarios with strict memory limita-
tions. As an application example, we have shown that there
is no perceptible difference between the greedy and optimal
keyframe sets in location recognition problems, both for lo-
cation recognition based on image retrieval with geometric
verification, and for pose estimation w.r.t. a pre-computed
3D point cloud.
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