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Abstract

While 3D object representations are being revived in the
context of multi-view object class detection and scene un-
derstanding, they have not yet attained wide-spread use
in fine-grained categorization. State-of-the-art approaches
achieve remarkable performance when training data is
plentiful, but they are typically tied to flat, 2D represen-
tations that model objects as a collection of unconnected
views, limiting their ability to generalize across viewpoints.
In this paper, we therefore lift two state-of-the-art 2D object
representations to 3D, on the level of both local feature ap-
pearance and location. In extensive experiments on existing
and newly proposed datasets, we show our 3D object rep-
resentations outperform their state-of-the-art 2D counter-
parts for fine-grained categorization and demonstrate their
efficacy for estimating 3D geometry from images via ultra-
wide baseline matching and 3D reconstruction.

1. Introduction
Three-dimensional representations of objects and scenes

have been deemed the holy grail since the early days of

computer vision due to their potential to provide more faith-

ful and compact depictions of the visual world than view-

based representations. Recently, 3D methods have been

revived in the context of multi-view object class detec-

tion [26, 18, 24] and scene-understanding [14, 11]. For

these applications, 3D representations exhibit favorable per-

formance due to their ability to link object parts across mul-

tiple views. Surprisingly, these strengths have hardly been

exploited in fine-grained recognition, one of the most active

areas in computer vision today. There, most state-of-the-

art approaches still rely entirely on “flat” image represen-

tations that model both the appearance of individual fea-

tures and their location in the 2D image plane. The former

typically takes the form of densely sampled local appear-

ance features such as SIFT [20], often followed by a non-

linear coding step [30]. For the latter, various spatial pool-

ing strategies have proven successful, ranging from global

Figure 1: Corresponding patches may have vastly different image

coordinates and appearances. Our 3D representations make their

positions and appearances directly comparable.

histograms [22] over spatial pyramids [17] to local search

regions [8]. While these approaches have delivered remark-

able performance in fine-grained categorization tasks that

are difficult even for humans [9, 29, 36], they are still lim-

ited by the need to observe a relatively dense viewpoint

sampling for each category in order to learn reliable models.

In this paper, we therefore take a different route, and

follow the intuition that the distinctive features of a fine-

grained category, such as the characteristic grille of the car

in Fig. 1, are most naturally represented in 3D object space,

not in the 2D image plane – this comprises both the appear-

ance of the features (appearance varies with viewpoint, so

a viewpoint-independent appearance representation is de-

sired) and their location with respect to an object (the grille

appears in a specific region of the 3D car surface, not nec-

essarily in a particular image position). We establish the

notion of 3D object space by first obtaining an estimate of

the 3D geometry of an object, then representing features rel-

ative to this geometry. Specifically, the geometry estimate

allows rectification of an image patch with respect to the es-

timated surface normal at its center point and characterizes

its location as coordinates on the 3D object surface.

The basis of our implementation is given by two state-of-

the-art 2D object representations. The first, spatial pyramid

matching [17], specifically using locality constrained lin-

ear coding (LLC [30]), has attained wide-spread use due to
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its consistently high performance on various image catego-

rization benchmarks, combining local feature coding with

a spatial pyramid representation. The second representa-

tion, BubbleBank (BB [8]), has recently been shown to out-

perform prior work in fine-grained categorization. It relies

on extracting discriminative patches from training images,

convolving them in local regions within a test image, and

using the responses as features.

Our paper makes the following contributions: First, we

lift two state-of-the-art 2D object representations to 3D

w.r.t. both the appearance and location of local features.

We demonstrate the resulting 3D object representations out-

perform both their respective 2D counterparts and state-of-

the-art baselines in fine-grained categorization. Second, we

introduce a new dataset of 207 fine-grained categories that

will be made publicly available upon publication, separated

into two subsets: a small-scale, but ultra-fine-grained set of

10 BMW models, and a large-scale set of 197 car types.

Third, we demonstrate the usefulness of our 3D object rep-

resentation for estimating 3D geometry from test images in

the form of ultra-wide baseline matching [37]. Fourth, we

provide first experimental results on the challenging task of

3D reconstruction of fine-grained categories, which, to our

knowledge, has not been attempted in the literature before.

2. Related Work

Fine-grained recognition is a growing subfield of com-

puter vision. Driven by real-life applications, the focus has

so far mostly been on distinguishing animate categories,

such as flowers [22], leaves [16], dog breeds [19, 23], and

birds [9, 29, 36]. For these categories, the challenge con-

sists in capturing subtle appearance differences (such as a

differently colored beak of a bird) despite variations in artic-

ulated pose, which are most reliably handled by collecting

and memorizing discriminative, local appearance features

from each available object view [34, 8].

The role of object parts. It has been realized that spatial

information typically aids categorization, either for provid-

ing a frame of reference in which appearance features are

computed (spatial pooling [17, 30, 9, 29, 36, 8]), or as a

feature in itself [2, 27]. For both, object part detectors have

proven to provide reliable spatial information, as constel-

lations [2], deformable parts [29, 27], and poselets [4, 36].

While these models successfully leverage spatial informa-

tion, they are still “flat”, i.e., built on independent views.

A remarkable exception to this trend is the recent work

by Farrell et al. [9], which implements local appearance fea-

tures and spatial pooling relative to a volumetric 3D bird

model. While our work is similar in spirit, it goes be-

yond [9] in several important directions. First, in contrast

to [9], our work does not rely on extensive annotation of

training data. Instead, we leverage existing 3D CAD models

for the basic-level object class of interest, without the need

for any manual intervention. Second, we explicitly design

our methods to be robust against errors in the estimation of

rough 3D geometry by pooling over multiple predictions of

coarse category and viewpoint instead of relying on a single

prediction. Third, instead of focusing on a single represen-

tation for spatial pooling (two 3D ellipsoids for a bird’s head

and body for [9]), we compare and extend into 3D two dif-

ferent, state-of-the-art 2D methods for spatial pooling (SPM

and BB), demonstrating improved performance.

3D representations for recognition. We draw inspira-

tion from approaches in multi-view object class recogni-

tion that leverage 3D representations to establish corre-

spondences across different viewpoints [37, 24, 12, 25].

While these prior approaches establish correspondences on

a fixed, small set of object parts, our 3D variant of BB

yields hundreds of correspondences on the level of individ-

ual local features, making them applicable to challenging

tasks such as 3D reconstruction from a fine-grained cate-

gory (Sect. 5.3). Similar to prior works in multi-view de-

tection, we leverage 3D CAD models to generate synthetic

training data [18, 37, 32, 24].

3. 3D Object Representations
In the following, we describe the design of our 3D ob-

ject representations for fine-grained categorization. Both

are based on estimating the 3D geometry of an object under

consideration (Sect. 3.2), and represent both the appearance

of individual local features (Sect. 3.3) and their locations

(Sect. 3.4) in 3D object space. While our representations

are based on state-of-the-art 2D representations that have

proven to be effective for recognition (SPM [30], BB [8]),

we effectively lift them to 3D by exchanging the underlying

parameterization of feature extraction and spatial pooling,

leading to improved performance (Sect. 5).

3.1. 2D Base Representations

We start with a brief review of our 2D base representa-

tions, spatial pyramids (SPM) and bubble bank (BB). The

spatial pyramid (SPM) representation [17, 30] is an ex-

tension of the bag-of-visual-words paradigm [6], enriching

local appearance features with spatial information by pool-

ing them with respect to spatial grids of varying resolution,

concatenating the result into a large feature vector. We con-

sider SPM in combination with locality-constrained linear

coding (LLC [30]), which is considered state-of-the-art for

a wide variety of image classification benchmarks.

The BubbleBank (BB) [8] representation is based on the

notion of “bubbles”: feature templates that are convolved

with an image in local search regions, where the regions are

determined by the template’s image location during train-

ing. These responses are max-pooled over the region to
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Figure 2: An overview of how we estimate 3D geometry and lift SPM and BB to 3D. See text for details.

produce a single feature. The final representation consists

of pooling responses of a large bank of bubbles over their re-

spective search regions. In [8], bubbles were defined manu-

ally via crowdsourcing, but also deliver state-of-the-art per-

formance even when randomly sampled from training data,

in a manner similar to [33].

3.2. 3D Geometry Estimation

The basis of our 3D object representations is given by

estimating the 3D geometry of an object, providing a frame

of reference for both our 3D appearance representation

(Sect. 3.3) and our 3D spatial pooling (Sect. 3.4). Since

we are focusing on rigid objects (cars), we can model rough

3D object geometry by a discrete set of exemplar 3D CAD

models, which are readily available. The first stage in

our fine-grained categorization pipeline (Fig. 2) consists of

identifying one (or multiple) CAD model(s) that best fit the

image. The matching between a 3D CAD model and a 2D

image is implemented by a set of classifiers that have been

trained to distinguish among CAD models and viewpoints.

Synthetic training data. In line with recent work in

multi-view recognition [18, 24], we leverage 3D CAD mod-

els as a cheap and reliable source of synthetic training data.

Crucially, this gives precise 3D coordinates that we can use

to anchor our appearance and location representation and

is entirely free of human intervention (in contrast to ap-

proaches relying on part annotations [9, 36, 19]). In our ex-

periments (Sect. 5), our 3D geometry classifiers are trained

from 41 CAD models of cars (Fig. 2(a)), rendered at 36

azimuths, 4 elevations, and against 10 random background

variations, for a total of 59,040 synthetic images.

3D Geometry classifiers. In order to match 3D CAD

models to 2D images, we train a massive bank of clas-

sifiers for nearly the entire cross product of CAD mod-

els and viewpoints. In practice, we found it sufficient to

group CAD models belonging to the same coarse category

together (for cars, we define sedan, SUV, coupe, convert-

ible, pickup, hatchback, and station wagon as coarse cate-

gories), and train a bank of viewpoint-dependent classifiers

for all of them, resulting in 1,008 possible combinations of

viewpoints and coarse categories. All classifiers are based

on HOG [7] features in connection with a one-vs-all linear

SVM. Empirically, we found that exemplar SVMs [21] did

not result in a significant improvement but where computa-

tionally much more demanding.

Multiple hypotheses. An incorrect estimation of 3D ge-

ometry leads to errors in later stages of the fine-grained cat-

egorization pipeline that are hard to recover from. Thus,

rather than commit to a single viewpoint and coarse cate-

gory, we maintain a list of the top N estimates, and max-

pool features across all of them. Fig. 4(a) verifies the posi-

tive effect on performance.

3.3. 3D Appearance Representation

The goal of our 3D appearance representation is to en-

sure that a discriminative local feature is represented only

once, as opposed to requiring multiple representations in

different viewpoints. Making these connections across

viewpoints is important in order to generalize to test cases

that have been observed from viewpoints not present in the

training data. We achieve this through an appearance repre-

sentation that is (to an extent) viewpoint invariant, by trans-

forming local image patches into a unified frame of refer-

ence prior to feature computation.

Patch sampling. The basis of our 3D appearance repre-

sentation is given by a dense sampling of image patches that

we extract from a given training or test image. In contrast

to existing 2D representations, we sample patches directly

from the 3D surface of the object of interest relative to its

estimated 3D geometry (Sect. 3.2). In particular, we pre-

compute thousands of uniformly spaced patch locations on

the surface of our CAD models by dart throwing [5]. Each

patch location comes with an associated surface normal and

upward direction, determining its 3D orientation, and a flat,

planar rectangle, determining its support region (Fig. 2(b)).

For feature extraction, we project all patches visible from

the estimated viewpoint into the image, resulting in a set of

perspectively distorted quadrilaterals.

Patch rectification and descriptors. Prior to feature

computation, we rectify the projected quadrilaterals to a

common reference rectangle, effectively compensating for

perspective projection. While this applies only to locally

planar surfaces in theory, it typically results in correctly rec-

tified patches also for curved surfaces, such as the car grille

in Fig. 1 and the patches in Fig. 2(c). We densely sample

RootSIFT [1, 20] descriptors on each rectified patch.
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3.4. 3D Spatial Pooling

The goal of our 3D spatial pooling is to characterize the

position of local features with respect to the 3D geometry

of an object. Like 3D appearance (Sect. 3.3), we utilize our

3D geometry estimate (Sect. 3.2) as the basis.

3D Spatial Pyramid (SPM-3D). After patch extraction

we have a set of rectified patches with corresponding 3D lo-

cations. As in the case of 2D SPM, we can extract descrip-

tors from each of these patches and quantize them using

a trained codebook. However, unlike a standard 2D SPM,

which only considers the 2D location of each patch, our rep-

resentation includes the location of each patch in 3D object

coordinates, allowing us to pool over a more relevant space.

Specifically, we partition the surface of the object based

on azimuth and elevation relative to the center of the CAD

model, i.e. we partition the space S = [0, 2π]× [−π
2 ,

π
2 ], as

visualized in Fig. 2(d), and pool quantized descriptors ac-

cordingly. As in 2D SPM, we use multiple scales, i.e. we

pool over 1× 1, 2× 2, and 4× 4 partitions of S.

3D BubbleBank (BB-3D). Similar to our lifting of 2D

SPM to 3D, we lift 2D BubbleBank (BB) to 3D by con-

verting pooling regions from 2D to 3D. After extracting de-

scriptors for each of the rectified patches, we convolve the

descriptors with a set of bubbles obtained randomly over the

training set. Crucially, each of the patches and bubbles has

an associated 3D location, so we can pool over all patches

within a 3D region of the bubble, illustrated in Fig. 2(e). By

pooling over regions of sufficient size, additional robustness

w.r.t. 3D geometry estimation is obtained. Our approach

contrasts with the 2D equivalent [8] in that we do not rely

on a feature appearing in the same 2D location within an

image during both training and test, but rather at the same

location with respect to 3D object geometry.

3.5. Classification with 3D Representations

We combine our 3D object representations (SPM-3D,

BB-3D) with linear SVM classifiers that we train in a one-

vs-all fashion for fine-grained categorization, in analogy to

their 2D counterparts (SPM, BB), allowing us to pinpoint

performance differences to the respective representations.

4. Novel Fine-Grained Dataset
In order to provide a suitable test bed for our 3D rep-

resentations, we have collected a challenging, large-scale

dataset of car models, to be made available upon publica-

tion. It consists of BMW-10, a small, ultra-fine-grained set

of 10 BMW sedans (512 images) hand-collected by the au-

thors, plus car-197, a large set of 197 car models (16,185

images) covering sedans, SUVs, coupes, convertibles, pick-

ups, hatchbacks, and station wagons. Since dataset collec-

tion proved non-trivial, we give the most important chal-

lenges and insights.

Identifying visually distinct classes. Since cars are man-

made objects whose class list changes on a yearly basis, and

models of cars do not have a different appearance from year

to year, no simple list of visually distinct cars exists which

we can use as a base. We thus first crawl a popular car

website for a list of all types of cars made since 1990. We

then apply an aggressive deduplication procedure, based on

perceptual hashing [35], to a limited number of provided

example images for these classes, determining a subset of

visually distinct classes, from which we sample 197 (see

supplementary material for a complete list).

Finding candidate images. Candidate images for each

class were collected from Flickr, Google, and Bing. To re-

duce annotation cost and ensure diversity in the data, the

candidate images for each class were deduplicated using the

same perceptual hash algorithm [35], leaving a set of sev-

eral thousand candidate images for each of the 197 target

classes. These images were then put on Amazon Mechani-

cal Turk (AMT) in order to determine whether they belong

to their respective target classes.

Training annotators. The main challenge in crowdsourc-

ing the collection of a fine-grained dataset is that workers

are typically non-experts. To compensate, we implemented

a qualification task (a set of particularly hard examples of

the actual annotation task) and provide a set of positive and

negative example images for the car class a worker is anno-

tating, drawing the negative examples from classes known

a priori to be similar to the target class.

Modeling annotator reliability. Even after training,

workers differ in quality by large margins. To tackle this

problem, we use the Get Another Label (GAL) system [15],

which simultaneously estimates the probability a candidate

image belongs to its target class and determines a quality

level for each worker. Candidate images whose probability

of belonging to the target class exceeds a specified thresh-

old are then added to the set of images for that category.

After obtaining images for each of the 197 target classes,

we collect a bounding box for each image via AMT, us-

ing a quality-controlled system provided to us by the au-

thors of [28]. Finally, an additional stage of deduplication

is performed on the images when cropped to their bounding

boxes. Fig. 3 shows example dataset images.

5. Experiments

In the following, we carefully analyze the performance

of our 3D object representations for a variety of different

tasks, highlighting both their discriminative power for cate-

gorization and their unique ability to provide precise, point-

wise correspondences between largely different views of the

same object or even different instances of the same fine-

grained category. First, we consider the task of fine-grained
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Figure 3: One image each of 196 of the 197 classes in car-197 and each of the 10 classes in BMW-10.

categorization of cars on various datasets (Sect. 5.1), re-

porting superior performance of our 3D object representa-

tions (SPM-3D, BB-3D) in comparison to both their respec-

tive 2D counterparts (SPM, BB) and state-of-the-art base-

lines [7, 3, 27, 30, 8]. Second, we successfully estimate the

change in camera pose between multiple views of the same

object (ultra-wide baseline matching, Sect. 5.2). And third,

we give first promising results on reconstructing partial 3D

models from fine-grained category instances (Sect. 5.3).

Implementation Details. We present the most important

implementation details here, leaving the remainder for sup-

plementary material. Cropped images are used, as is stan-

dard in fine-grained classification, and are scaled such that

the maximum dimension is 300 pixels. KDES [3] uses only

grayscale kernel descriptors SPM uses codebook size 4096

and 3 layers of SPM (1x1, 2x2, and 4x4). BB uses 10k and

20k bubbles for small-scale and large-scale experiments, re-

spectively, and a pooling region of 50% of the image height

and the entire image width. For our 3D object representa-

tions, we use 3 viewpoint/coarse category hypotheses and

extract patches corresponding to 3 CAD models for each

such hypothesis. On BMW-10 and BMW-10 (flipped), only

sedan CAD models are used. For SPM-3D, we use a code-

book of size 4096. For BB-3D, we use 10k bubbles at small-

scale and 20k bubbles at large scale. Features for BB and

BB-3D use a power-scaling [8] parameter of 16. BB-3D-G

refers to pooling bubble responses globally, and BB-3D-L

pools across the width and length of the car, but only 25% of

its height. SPM-3D-L uses 1x1, 2x2, and 4x4 partitions of

azimuth-elevation space, with SPM-3D-G using only a 1x1

partition. In all cases we train one-vs-all L2-regularized L2-

loss SVMs, selecting a regularization parameter C from the

range 10−6, 10−5, . . . , 1010 by 25-fold cross-validation for

small-scale experiments and use a constant C value 1010 for

large-scale experiments.

5.1. Fine-Grained Categorization

We commence our evaluation by comparing the perfor-

mance of our 3D object representations, their respective 2D

counterparts, and state-of-the-art baselines for the task of

fine-grained categorization. To that end, we consider three

different datasets of varying granularity. i) We use the exist-

ing car-types dataset [27], consisting of 14 car classes from

a variety of coarse categories (sedans, hatchbacks, sedans,

SUVs, convertibles), to establish that our methods outper-

form the previous state-of-the-art in car classification. ii)

We provide an in-depth analysis of our methods in compar-

ison to their respective 2D counterparts on BMW-10, our

ultra-fine-grained set of 10 BMW sedans. iii) We demon-

strate the ability of our methods to scale up to hundreds of

fine-grained classes on our large-scale dataset (see Sect. 4).

i) Car-types. Tab. 1(a) gives classification accuracy for

our methods SPM-3D, BB-3D-G, and prior work. Curi-

ously, the performance on this dataset seems to have almost

saturated, with the weakest prior method (a simple HOG

template) achieving 77.5% and the strongest (structDPM,

a multi-class DPM [10]) achieving 93.5% accuracy. We

believe this high level of performance to indicate a rather

coarse granularity of this dataset, which is reinforced by the

two strongest prior methods (PB(mvDPM), 85.3%, struct-

DPM, 93.5%) being based on part-layout information rather

than discriminative local features (such as SPM, 84.5%).

In comparison, our method BB-3D-G (94.5%) outperforms

the best reported prior result of structDPM (93.5%) by 1%.

In addition, unlike structDPM, it scales effortlessly to large-

scale datasets such as car-197, since it does not rely on

joint regularization across all classes. Comparing 3D to 2D,

BB-3D-G outperforms BB (92.6%) by 1.9%, and SPM-3D

(85.7%) beats SPM by 1.2%.

ii) BMW-10. Tab. 1(b) gives the results for our ultra-

fine-grained dataset of 10 BMW sedans, focusing on dif-

ferent variants of our methods SPM-3D and BB-3D and

their respective 2D counterparts, and adding KDES [3] to

the state-of-the-art baselines. We make the following ob-

servations: first, the general level of performance is signif-

icantly lower than for car-types (HOG achieves an accu-

racy of 28.3%, PB(mvDPM) 29.1%), which indicates that

our dataset is significantly more fine-grained. Second, as

a result, methods relying on discriminative local features

rather than a global feature template (HOG) or part layout

(PB(mvDPM)) perform much better (KDES 46.5%, SPM

52.8%, BB 58.7%). Third, our 3D object representations

improve significantly over their respective 2D counterparts:

SPM-3D-L (58.7%) improves over SPM by 5.9% and BB-

3D-G (66.1%) improves over BB by 7.4%.

In Tab. 1(b), we also investigate the impact of enrich-

ing the original set of training images by flipped versions of

each image, effectively doubling the amount of training data

and increasing the density with which different object view-

points are represented. Performance improves significantly
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(a)
HOG [7] PB(mvDPM) [27] structDPM [27] SPM [30] SPM-3D-L (ours) BB [8] BB-3D-G (ours)

car-types 77.5 85.3 93.5 84.5 85.7 92.6 94.5

(b)
HOG [7] PB(mvDPM) [27] KDES [3] SPM [30] SPM-3D-G (ours) SPM-3D-L (ours) BB [8] BB-3D-G (ours) BB-3D-L (ours)

BMW-10 28.3 29.1 46.5 52.8 58.3 58.7 58.7 66.1 64.7

BMW-10 (flipped) - - - 66.1 - 67.3 69.3 76.0 -

Table 1: (a) Comparison to state-of-the-art on car-types [27]. (b) In-depth analysis on our BMW-10 dataset.

for all methods, by 8.6% (SPM-3D-L), 9.9% (BB-3D-G),

10.6% (BB), and 13.3% (SPM). Notice that while the 2D

methods benefit more from adding training data, the rela-

tive ordering of results between different methods is consis-

tent with BMW-10 without flipping: SPM-3D-L (67.3%)

outperforms SPM by 1.2%, and BB-3D-G (76.0%) outper-

forms BB by 6.7%. Fig. 5(a) visualizes the discriminative

power of each of the 10k bubbles of BB-3D-G on BMW-

10 (flipped). Each point is a 3D bubble location, with its

size and hue proportional to
∑10

j=1 |wi,j |5, where wi,j is the

SVM weight on feature i for class j. This indicates that dis-

criminative features are primarily at the front and back of

cars, which is both correct and human-interpretable.

Global vs. local pooling. In Tab. 1(b), we further exam-

ine the impact of the size of the 3D pooling region on perfor-

mance, distinguishing global pooling (SPM-3D-G, BB-3D-

G) and local pooling (SPM-3D-L, BB-3D-L). For SPM-3D,

local pooling improves performance slightly by 0.4%. For

BB-3D, global pooling is 1.4% better, beating the next best

result by 6%. We believe this counterintuitive superiority of

BB-3D-G over BB-3D-L to be due to 1) mispredictions in

viewpoint, and 2) the strong left-right symmetry of cars: it

can help to look on the right side of a car for a bubble origi-

nally found on the left side. On the basis of these results all

other experiments have used SPM-3D-L and BB-3D-G.

Amount of training data. Fig. 4(b) plots classification

accuracy (y-axis) of the two best performing 2D and 3D

methods of Tab. 1(b) versus the number of training images,

which we vary from 1 to 16 in powers of two (we also add

the results on all of BMW-10 and BMW-10 (flipped) as the

two right-most points for reference). For each experiment,

we randomly sample training images and fix them for both

methods. We observe the 3D representation to outperform

its 2D counterpart consistently for all numbers of training

images. The difference is most pronounced for 16 training

images (9.8%) and decreases for larger numbers (to 7.4%
and 6.7%, respectively), indicating that the 3D representa-

tion can utilize training data more effectively.

iii) Car-197. Tab. 2(top) gives the results for our large-

scale dataset of 197 fine-grained car categories, again com-

paring SPM-3D-L and BB-3D-G to SPM and BB. Surpris-

ingly, SPM performs remarkably well with the increased

data (69.5%), beating our best 3D representation BB-3D-G

(67.6%) by 1.9%. Similarly to on the car-types, BMW-10,

and BMW-10 (flipped) datasets, BB-3D-G outperforms the
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Figure 4: (a) Viewpoint/coarse category acc. over top-N predic-

tions. (b) Accuracy vs. number of training images.

2D version BB (63.6%) by 4%, and SPM-3D-L (65.6%) by

2%. Analyzing these results, we believe our 3D represen-

tations to suffer from certain coarse categories (e.g., large

pickup trucks) being underrepresented in our 3D CAD mod-

els, which is a shortcoming of this particular experimental

setup, not a limitation of our methods. Stacking the four

methods together naturally results in the best performance,

75.5%, indicating that our 3D representations encode in-

formation that is complementary to their 2D counterparts,

despite using the same base descriptors.

Summary. We conclude that lifting 2D object representa-

tions to 3D is in fact beneficial for all except one case for

both SPM and BB, leading to significant improvements in

classification performance over state-of-the-art on existing

(car-types) and ultra-fine-grained (BMW-10) datasets.

5.2. Ultra-Wide Baseline Matching

Characterizing the relation between different views of

the same visual scene is one of the most important tasks in

computer vision, providing the basis for 3D reconstruction

using structure-from-motion techniques [13]. For known

intrinsic camera parameters, it can be phrased as estimating

the fundamental matrix, based on putative point-to-point

correspondences between the views. Ultra-wide baseline

matching has been suggested [37] as a way to quantify the

ability of a method to localize corresponding 3D points

across viewpoints, specifically for wide baselines between

45◦ and 180◦ for which pure local feature-based methods

such as SIFT [20] typically fail.

Methodology. We follow the protocol of [37] and per-

form ultra-wide baseline matching on 134 image pairs of

the 3D Object Classes dataset [26]. We modify BB-3D-

L to find putative correspondences for pairs of images as

follows: for a given pair, each patch in the first image de-

fines a bubble in the second image, and is convolved with
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all patches of the second image that fall into the bubble’s 3D

pooling region (0.1 of the object surface). For each bubble,

the maximally responding patch is memorized, and possi-

bly kept as a putative correspondence after thresholding. A

fundamental matrix relating both images is then computed

using standard multi-view geometry [13] and RANSAC.

Fig. 5(b) visualizes the results for 3 image pairs using BB-

3D-L by depicting a random selection of epipolar lines

and corresponding feature matches. Please note, although

this method uses rough 3D geometry information to boot-

strap patch rectification and local pooling (Sect. 3.2), it still

mainly relies on the local evidence of the test image pair to

establish feature-level correspondences (like SIFT). It can

not be expected to deliver results for baselines larger than

135◦ (denoted “-” in Tab. 2), since no local evidence is

shared between the views.

Results. Tab. 2 gives ultra-wide baseline matching re-

sults, where performance is measured as the fraction of fun-

damental matrices for which the Sampson error [13] w.r.t.

ground truth correspondences falls under a threshold (20

pixels as in [37]). Rows of Tab. 2 correspond to different

baselines (difference in azimuth angle between two views

of the same object). The last two rows give averages over all

baselines (Av.1, imputing zero accuracy for “-”), and over

only the first two baselines that can be delivered by all meth-

ods (Av.2). Columns of Tab. 2 compare two variants of our

BB-3D-L, BB-3D-S (using only a single coarse category

and viewpoint prediction) and BB-3D-M (using multiple),

with comparable local feature-based methods, SIFT [20]

and the multi-view local part detectors of [37]. Although

we can not expect to compete with the full-blown 3D shape

model of [37] and the multi-view incarnation of DPM [10],

3D2PM [24], that leverage global shape and have been ex-

plicitly designed and trained for viewpoint prediction on

that dataset, we include their results as reference.

From the four left-most columns of Tab. 2, we ob-

serve that our 3D object representations outperform all lo-

cal feature-based methods by a significant margin even for

Av.1: SIFT fails catastrophically (0.5%), and local part

detectors [37] (22%) are outperformed by both BB-3D-S

(24.6%) and BB-3D-M (25.8%). This difference is even

more pronounced when considering individual baselines

(for 45◦, BB-3D-M (71.1%) outperforms parts by 44.7%,

for 90◦, BB-3D-S (40%) outperforms parts by 13%) or Av.2

(BB-3D-M (51.6%) outperforms parts by 24.6%). While

being not quite on par with the state-of-the-art results ob-

tained by 3D2PM (67.8%) overall, for 45◦ baseline, BB-

3D-M in fact beats 3D2PM by 13.2%, and typically pro-

vides hundreds of densely spaced inlier features as opposed

to a sparse set of 20 object parts, which we will exploit

for 3D reconstruction in Sect. 5.3. Using multiple coarse

category models (BB-3D-M) improves over the single case

(BB-3D-S) by 1.2% (Av.1) and 2.3% (Av.2), respectively,

SPM [30] SPM-3D-L (ours) BB [8] BB-3D-G (ours) Stacked

car-197 69.5 65.6 63.6 67.6 75.5

Bl. SIFT [20]Parts [37]BB-3D-S BB-3D-M 3D Shape [37] 3D2PM [24]

45◦ 2% 27% 58.5% 71.7% 55% 58.5%
90◦ 0% 27% 40% 31.4% 60% 77.1%

135◦ - 10% - - 52% 58.6%
180◦ - 24% - - 41% 70.6%
Av.1 0.5% 22% 24.6% 25.8% 52% 66.4%
Av.2 1% 27% 49.3% 51.6% 57.5% 67.8%

Table 2: Top: Results on car-197. Bottom: Ultra-wide baseline

matching results on 3D Object Classes [26].

in step with the increased robustness shown in Fig. 4(a).

5.3. 3D Fine-Grained Category Reconstruction

Having verified the ability of our BB-3D representation

to establish accurate feature correspondences across differ-

ent views of the same object (Sect. 5.2), we now move on to

the even more challenging task of finding correspondences

between examples of the same fine-grained category (but

not the same instance). Note that this is feasible for cars:

their 3D geometry is almost uniquely determined by fine-

grained category affiliation, and our features are invariant to

the remaining variation (such as color). At the same time,

this task is very challenging, since the background varies

drastically between different views, and can hence not pro-

vide any evidence for correspondence. To our knowledge,

reconstruction of a fine-grained category has not been re-

ported in the literature before.

Methodology. We run BB-3D-L for all pairs of images

of a category to obtain putative correspondences, and feed

feature locations and correspondences into VisualSFM, a

front-end for multi-core bundle adjustment [31]. We run

their SFM pipeline as a black box, using standard parame-

ter settings except for increasing the number of iterations.

Results. Fig. 5(c) depicts qualitative results for the recon-

struction of a fine-grained class of our BMW-10 dataset

(2012 BMW ActiveHybrid 7 Sedan), rendered from differ-

ent viewpoints. Please note that we have not applied any

dense, pixelwise refinement of the sparse reconstruction.

The point density is due to the high number of inlier corre-

spondences generated by BB-3D-L. Clearly, the reconstruc-

tion is incomplete and contains spurious points, in particular

for textureless regions (e.g., the hood) – however, the local

3D pooling of BB-3D-L successfully bounds the degree to

which correspondences can “drift away” on the 3D geom-

etry. The resulting reconstruction has a sedan shape, and

shows the characteristic grille, headlight, and rear light fea-

tures of a BMW. We believe this result to be highly promis-

ing, opening a vast array of future research directions, such

as high-fidelity reconstruction from fine-grained categories,

or using the reconstructed model for recognition.
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Figure 5: (a) Discriminative bubbles for BB-3D-G on BMW-10 (flipped). (b) Ultra-wide baseline matching on 3D Object Classes [26]

(green: epipolar lines, colored circles: corresponding inlier features). (c) Fully automatic 3D reconstruction from 46 images of a fine-

grained category from BMW-10.

6. Conclusion
We have demonstrated that 3D object representations can

be beneficial for fine-grained categorization of rigid classes,

specifically cars. By lifting two state-of-the-art 2D object

representations to 3D (SPM and BB), we obtained state-

of-the-art performance on both existing (car-types) and our

new datasets (BMW-10, car-197). In addition, we leveraged

our BB-3D-L representation for ultra-wide baseline match-

ing, and showed first promising results for the automatic

reconstruction of 3D models from fine-grained category in-

stances.

References
[1] R. Arandjelovic and A. Zisserman. Three things everyone should

know to improve object retrieval. In CVPR, 2012. 3

[2] A. Bar-Hillel and D. Weinshall. Subordinate class recognition using

relational object models. In NIPS, 2006. 2

[3] L. Bo, X. Ren, and D. Fox. Kernel descriptors for visual recognition.

NIPS, 2010. 5, 6

[4] L. Bourdev and J. Malik. Poselets: Body part detectors trained using

3d human pose annotations. In ICCV, 2009. 2

[5] D. Cline, S. Jeschke, K. White, A. Razdan, and P. Wonka. Dart

throwing on surfaces. In Eurographics, 2009. 3

[6] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray. Visual

categorization with bags of keypoints. In ECCV, 2004. 2

[7] N. Dalal and B. Triggs. Histograms of oriented gradients for human

detection. In CVPR, 2005. 3, 5, 6

[8] J. Deng, J. Krause, and L. Fei-Fei. Fine-grained crowdsourcing for

fine-grained recognition. In CVPR, 2013. 1, 2, 3, 4, 5, 6, 7

[9] R. Farrell, O. Oza, N. Zhang, V. I. Morariu, T. Darrell, and L. S.

Davis. Birdlets: Subordinate categorization using volumetric primi-

tives and pose-normalized appearance. In ICCV, 2011. 1, 2, 3

[10] P. F. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan.

Object detection with discriminatively trained part based models.

PAMI, 2010. 5, 7

[11] A. Gupta, A. A. Efros, and M. Hebert. Blocks world revisited: Im-

age understanding using qualitative geometry and mechanics. In

ECCV’10. 1

[12] P. Gupta, S. S. Arrabolu, M. Brown, and S. Savarese. Video scene

categorization by 3d hierarchical histogram matching. In ICCV,

2009. 2

[13] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, second edition, 2004. 6, 7

[14] D. Hoiem, A. Efros, and M. Hebert. Putting objects in perspective.

IJCV, 2008. 1

[15] P. G. Ipeirotis, F. Provost, and J. Wang. Quality management on

amazon mechanical turk. In WS ACM SIGKDD, 2010. 4

[16] N. Kumar, P. N. Belhumeur, A. Biswas, D. W. Jacobs, W. J. Kress,

I. C. Lopez, and J. V. Soares. Leafsnap: A computer vision system

for automatic plant species identification. In ECCV. 2012. 2

[17] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features:

Spatial pyramid matching for recognizing natural scene categories.

In CVPR, 2006. 1, 2

[18] J. Liebelt and C. Schmid. Multi-view object class detection with a

3d geometric model. In CVPR, 2010. 1, 2, 3

[19] J. Liu, A. Kanazawa, D. Jacobs, and P. Belhumeur. Dog breed clas-

sification using part localization. In ECCV. 2012. 2, 3

[20] D. Lowe. Distinctive image features from scale invariant keypoints.

IJCV, 2004. 1, 3, 6, 7

[21] T. Malisiewicz, A. Gupta, and A. A. Efros. Ensemble of exemplar-

svms for object detection and beyond. In ICCV, 2011. 3

[22] M.-E. Nilsback and A. Zisserman. Automated flower classification

over a large number of classes. In ICVGIP, 2008. 1, 2

[23] O. M. Parkhi, A. Vedaldi, C. Jawahar, and A. Zisserman. The truth

about cats and dogs. In ICCV, 2011. 2

[24] B. Pepik, P. Gehler, M. Stark, and B. Schiele. 3d2pm – 3d deformable

part models. In ECCV, 2012. 1, 2, 3, 7

[25] C. Redondo-Cabrera, R. J. Lopez-Sastre, J. Acevedo-Rodrı́guez, and

S. Maldonado-Bascón. Surfing the point clouds: Selective 3d spatial

pyramids for category-level object recognition. In CVPR, 2012. 2

[26] S. Savarese and L. Fei-Fei. 3D generic object categorization, local-

ization and pose estimation. In ICCV, 2007. 1, 6, 7, 8

[27] M. Stark, J. Krause, B. Pepik, D. Meger, J. J. Little, B. Schiele, and

D. Koller. Fine-grained categorization for 3d scene understanding.

In BMVC, 2012. 2, 5, 6

[28] H. Su, J. Deng, and L. Fei-Fei. Crowdsourcing annotations for visual

object detection. In AAAI-WS, 2012. 4

[29] C. Wah, S. Branson, P. Perona, and S. Belongie. Multiclass recogni-

tion and part localization with humans in the loop. In ICCV’11. 1,

2

[30] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-

constrained linear coding for image classification. In CVPR’10. 1, 2,

5, 6, 7

[31] C. Wu, S. Agarwal, B. Curless, and S. M. Seitz. Multicore bundle

adjustment. In CVPR, 2011. 7

[32] Y. Xiang and S. Savarese. Estimating the aspect layout of object

categories. In CVPR, 2012. 2

[33] B. Yao, G. Bradski, and L. Fei-Fei. A codebook- and annotation-free

approach for fine-grained image categorization. In CVPR’12. 3

[34] B. Yao, A. Khosla, and L. Fei-Fei. Combining randomization and

discrimination for fine-grained image categorization. In CVPR’11. 2

[35] C. Zauner. Implementation and benchmarking of perceptual image

hash functions. Master’s thesis, Austria. 4

[36] N. Zhang, R. Farrell, and T. Darrell. Pose pooling kernels for sub-

category recognition. In CVPR, 2012. 1, 2, 3

[37] M. Z. Zia, M. Stark, B. Schiele, and K. Schindler. Revisiting 3d

geometric models for accurate object shape and pose. In 3dRR11. 2,

6, 7

561561


