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Abstract

We propose a convex relaxation approach to space-time
3D reconstruction from multiple videos. Generalizing the
works [16], [8] to the 4D setting, we cast the problem of
reconstruction over time as a binary labeling problem in
a 4D space. We propose a variational formulation which
combines a photoconsistency based data term with a spatio-
temporal total variation regularization. In particular, we
propose a novel data term that is both faster to compute and
better suited for wide-baseline camera setups when photo-
consistency measures are unreliable or missing. The pro-
posed functional can be globally minimized using convex re-
laxation techniques. Numerous experiments on a variety of
publically available data sets demonstrate that we can com-
pute detailed and temporally consistent reconstructions. In
particular, the temporal regularization allows to reduce jit-
tering of voxels over time.

1. Introduction

Estimating 3D geometry from a set of images is among

the central problems in computer vision. Especially for

static scenes significant advances have been made in the last

decade that allow for high quality 3D reconstructions. An

overview is found in [13]. Unfortunately, the generaliza-

tion of these techniques to the reconstruction from videos is

by no means straightforward. Firstly, there are usually far

fewer cameras, the synchronization and simultaneous ac-

quisition from many cameras still being a costly and cum-

bersome effort. With a wider average baseline, many ex-

isting schemes for photoconsistency estimation break down

because respective patches are no longer visible in the other

images or too distorted for reliable patch comparison. Sec-

ondly, accurate reconstructions over time pose huge de-

mands with respect to memory and computation time – in

particular if one wishes to exploit the temporal coherence

of the reconstruction over consecutive frames. In this work,

we tackle the problem of space-time 3D reconstruction by

means of a convex optimization approach.

∗This work was supported by the ERC Starting Grant ’Convex Vision’.

Figure 1. One of the input images and several times frames of a

space time surface evolution.

1.1. Contributions

• We generalize the works of Unger et al. [16] and Kolev

et al. [8] from the three-dimensional setup to a four di-

mensional one leading to a mathematically transparent

and globally optimal approach for space-time multi-

view 3D reconstruction.

• In order to make the 3D reconstruction approach by

Kolev et al. [8] work in wide-baseline camera setups

we propose a novel data term, which has several desir-

able properties and improves the one in [8] in several

aspects. Firstly, it better preserves surface edges and

concavities. Secondly, it has better hole filling abil-

ities when photoconsistency information is weak and

sparse. Finally, it does not have a global influence, that

is, it does not affect surface parts which are not visible

in the respective camera.

• Further, we reduce the computation time per frame

from several hours, as reported by [8], to appr. 1-2

minutes for equivalent volume sizes. This aspect is

important when processing longer sequences.

1.2. Related Work

Zhang et al. [18] extended the problem of classical

binocular stereo matching into the space time domain. Pi-

oneering work on the topic of space-time 3D reconstruc-

tion in a multi-view setup has been done by Goldluecke

et al. [3], [4]. They described the evolution of a space

time surface by means of level set functions which itera-

tively approach a local minimum of the respective energy.
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Figure 2. Outline of the proposed space time reconstruction framework. Two men are filmed synchronously by 16 cameras. The figure

shows (left to right) one input image, estimated photoconsistencies, a level set of the proposed data term, the final reconstructed mesh

shaded and textured.

Generally, these methods rely on a proper initialization to

converge to the desired solution. In [1], Aganj et al. pro-

posed to calculate a spatio-temporal coherent mesh from

silhouettes using 4D Delaunay meshing. Guillemaut and

Hilton [5] jointly solve the problem of multi-layer segmen-

tation and depth estimation within a graph-cut framework.

They enforce temporal coherence by means of optical flow

measures which are weighted according to their confidence

to account for unreliable flow estimates. Richardt et al.

[12] recently proposed a method for spatio-temporal filter-

ing and upsampling of RGB-Depth videos. Sharf et al. [14]

study the problem of space time reconstruction by means of

incompressible flow.

Our approach is related to the space-time 2D tracking

framework by Unger et al. [16]. They cast the problem of

tracking objects in images over time as a 3D segmentation

problem to model temporal smoothness or deal with tem-

porally short occlusions of the tracked object. Although the

task and several properties are quite different we use a sim-

ilar model, but in a 4D rather than a 3D setting.

In [8], Kolev et al. proposed to model the 3D surface as a

binary inside-outside labeling in 3D space to convexify the

surface reconstruction problem and hence obtain globally

optimal solutions for multi-view 3D reconstruction. A sim-

ilar model to the one in [8] has also recently been used by

Ummenhofer and Brox [15] for combined 3D reconstruc-

tion and camera pose estimation. We adopt their approach

because this model has several desirable properties. It easily

deals with topological changes and allows for global opti-

mization. Further, it provides a natural way for surface reg-

ularization in 3D which is perfectly suited for a multi-view

setup.

Although a variety of useful regularizers for depth maps

have been presented in the literature, intuitively they do not

provide a good regularization in a multi-view setup because

we are usually looking for a connected and locally smooth

surface rather than a smooth depth map. 3D reconstruction

based on depth maps is a popular approach to this problem

and many works exist on this topic e.g. [17],[7]. Inherently

these approaches split the overall problem into two sepa-

rate ones: depth reconstruction followed by surface recon-

struction based on these depth maps. As a result, important

information such as the consistency of an estimated depth

map value is usually not handed over into the following sur-

face reconstruction. In contrast, our goal is to carry as much

information as possible into the final global 3D surface op-

timization.

1.3. Paper Outline

In the following we introduce our space time reconstruc-

tion model and subsequently explain how to compute re-

spective terms. In Section 3 we explain the optimization

procedure and give some details on the implementation in

Section 4. Section 5 presents results on several data sets and

Section 6 concludes the paper.

2. Variational Space Time Reconstruction
Let V ⊂ R

3 describe a volume in space and let T ⊂ R+

represent the temporal domain. We are looking for a smooth

hypersurface S in the space V × T which best explains the

series of input images with known projections {πi}Ni=1. For

ease of notation we will drop the temporal index whenever

the meaning is clear by context. Similar as in [8] we rep-

resent surface S by means of a binary labeling function

u : V × T �→ {0, 1} which indicates surface interior (1) or

exterior (0). We follow the path of their work and define an

energy function which measures both the surface smooth-

ness and how well the surface fits to the input data.

E(u) =

∫
V×T

(
ρ|∇xu|+gt|∇tu|

)
dxdt+λ

∫
V×T

fu dxdt (1)

The second term in Eq. (1), data term f gives local pref-

erences for either an interior or an exterior label and will

be defined in Subsection 2.2. It is weighted by parameter

λ > 0 to favor either a smooth surface or a surface that

aligns with the potentially noisy data. The task of the first

term - the regularization term - is to reject outliers, deal with

locations of missing data and to favor a spatially and tempo-

rally smooth surface. To account for the inherent difference

between spatial and temporal dimensions this term is split

into a spatial and a temporal part which then regularizes

these dimensions in an anisotropic manner.
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The spatial regularization is weighted by function ρ :
V × T �→ R which represents the photoconsistency mea-

sure being defined in the following section. Weighting

down the penalization of the gradient norm ρ makes the sur-

face boundary snap to probable surface locations which are

indicated by a low photoconsistency value ρ.

In Eq. (1) function gt : V × T �→ R steers the temporal

smoothness. We choose it as a function that depends on the

gradient magnitude of the data term:

gt(x, t) = exp
(− a|∇tf(x, t)|b

)
. (2)

This choice of gt(·) prevents locations with strong gradi-

ents from being over-smoothed which is a favorable prop-

erty in the presence of fast surface motions. The purpose

of the temporal regularization is mainly to suppress tempo-

ral noise in the surface reconstruction rather then penalizing

surface motion in a dynamic scene. The effects of parame-

ters a, b will be discussed in the experimental section.

2.1. Photoconsistency Estimation

For each camera i we define a cost function1 Ci : V ×
R �→ R which calculates a matching cost at a location

defined by distance d from the camera center towards or

through point x based on the normalized cross correlation

(NCC)

Ci(x, d) =
∑

j∈C′\i
wj

i (x)·NCC
(
πi

(
ri(x, d)

)
, πj

(
ri(x, d)

))
.

(3)

The function ri : V ×R �→ V returns points on the ray from

camera i through point x according to a given distance d
from the camera. To calculate Ci(·) we select a subset of

front-facing cameras C′ ⊂ C for which the angle between

the viewing directions is below γmax=85◦. The contribu-

tion of each camera is weighted by a normalized Gaussian

weight wj
i (x) of the angle between view directions of cam-

eras i and j. Further, we discard unreliable correlation val-

ues by means of a threshold τncc = 0.3 and truncate Ci to

zero by setting

C̄i(x, d) =

{
0, if Ci(x, d) < τncc

Ci(x, d), otherwise
(4)

This prevents Ci(·) from being negative and the truncation

to zero will lead to a neutral behavior for its use in the regu-

larizer as well as in the data term. For the photoconsistency

measure ρ we employ the voting scheme of Hernández and

Schmitt [2]

ρ(x, t) = exp
[
−μ

∑
i∈C′

δ
(
dmax
i =depthi(x)

) · C̄i(x, d
max
i )︸ ︷︷ ︸

VOTEi(x)

]
(5)

1The temporal dependency is omitted for better readability.

which accumulates votes from different cameras only in

locations x ∈ V if the maximum quality along the ray

through the center of camera i and x is found at distance

dmax
i = argmaxd C̄i(x, d). Thus, every camera ray has ex-

actly one measurement if the corresponding matching score

exceeds the threshold. Function depthi : V �→ R returns

the Euclidean distance of x to the center of camera i. We

set scaling parameter to μ = 0.15. Function ρ(·) represents

a matching score of how well a small surface patch in x
matches both corresponding camera images. It thus indi-

cates probable surface locations with a low value. In the

next section we explain how this information can be used

for a proper modeling of the data term.

2.2. Data Term for Multi-View Reconstruction

The data term is necessary to avoid trivial solutions when

minimizing Eq. (1) and replicates photoconsistency infor-

mation in form of local labeling preferences. In a multi-

view setup, each label of u(x) depends on the labels of all

points along all the camera rays passing through x. Consid-

ering these dependencies accurately generally leads to an

involved non-convex optimization problem. We argue that

these dependencies can be approximated by means of unary

potentials f . Negative values of f favor an interior label,

while positive ones an exterior label of u. The photoconsis-

tency measure defined in the last section gives hints about

probable surface locations. However, it is not directly us-

able to express regional affinity. Our goal is to carry the

uncertainties about the surface location indicated by quality

functions Ci(·) into the unaries f and thus into the global

optimization of energy (1). We assume that the maximum-

filtered NCC score at point x has the following relation to

the probability that surface S passes through this point:

Pi(x ∈ S) = 1− 1

Z
exp

[
− η · VOTEi(x)

]
(6)

where Z is a normalization constant. Parameter η steers

the exponential relationship between the number of cam-

eras giving a vote, their corresponding voting qualities

VOTEi(x) and the probability that the point x is part of

the surface. Each camera ray may give a single vote for a

probable surface location. Starting from this location and

walking towards the respective camera i we follow the idea

that each time we pass another probable surface location,

the probability of being in the surface interior further de-

creases. This idea is expressed in the following equation

which defines the probability of point x being in the sur-

face interior for a reference camera i:

Pi

(
x ∈ int(S)

)
=

N∏
j=1

∏
depthi(x)<d≤dmax

i

[
1− Pj

(
ri(x, d) ∈ S

)]
(7)
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The inner product integrates the surface probability votes

along the ray between depthi(x) and dmax
i and the outer

product accounts for the fact that these probabilities come

from other cameras. We assume independence of individ-

ual cameras and obtain the overall probability that x is an

interior point:

P
(
x ∈ int(S)

)
=

N∏
i=1

Pi

(
x ∈ int(S)

)
(8)

Finally we define data term f in Eq. (1) as the log-

probability ratio:

f(x, t) = − ln

(
1− P

(
x ∈ int(S)

)
P
(
x ∈ int(S)

) )
. (9)

Equation (7) is related to the probabilistic visibility model

used by Pollard and Mundy [11, Eq.(4)]. They define the

visibility visi(x) of a point x as the probability that x is

not occluded by any other point between x and the camera

center:

visi(x) =
∏

0<d<depthi(x)

[
1− Pi

(
ri(x, d)∈S

)]
(10)

One could argue that 1 − visi(x) is also a good indica-

tor for being in the surface interior. However, as long as

none of the Pi

(
x ∈ S

)
equals exactly one, visi(x) never

reaches zero and will influence the probability of x being

inside the surface far behind the camera vote. This model

propagates the uncertainty that a ray from the camera cen-

ter has passed a surface forward infinitely into the scene.

In contrast, we propose a more conservative approach: we

propagate the uncertainty of a ray-surface intersection from

the local camera vote only towards the respective camera

centers. This way the uncertainty is only distributed in be-

tween the camera and the location of its vote. Figure 3 illus-

trates the shape of these probability distributions schemati-

cally. Visually speaking, every camera vote carves its way

towards the camera with its corresponding probability mea-

sure and the multiplication of all such camera bundles gives

the probability of being in the surface interior. As a de-

sirable result, this approach does not influence areas where

photoconsistency information is missing. This way the data

term favors the photo hull wherever photoconsistency infor-

mation is missing or unreliable. Note that we do not need to

assume any minimal surface thickness as it is usually done

in approaches dealing with truncated signed distance func-

tions (e.g. [17]). In contrast to the data term proposed in

[8] our approach does not influence the estimates of other

surfaces behind the camera vote.

3. Global Optimization
To minimize energy (1) we relax the image of function

u to [0, 1] and employ the preconditioned primal-dual algo-

���������

� �� � ��

1

�������
��
�
� � ��	���

�

���������

Figure 3. Schematic plots of probabilities along a camera ray. The

center of camera i is in the coordinate origin. Pi

(
x ∈ int(S)

)

and visi(x) multiplicatively integrate the probabilities P (x ∈ S)
along the ray before and behind location x respectively (when

looking from the camera).

rithm by Pock and Chambolle [10]. Eq.(1) can be rewritten

by introducing a dual variable p : V × T �→ R
4 that helps

to deal with the non-differentiability of the total variation

norm. The derivations follow the ones of Unger et al. [16]:

E(u) = max
‖p‖≤1

∫
V×T

〈u,−div(p)〉 dxdt+ λ

∫
V×T

fu dxdt

(11)

This saddle point problem is optimized by means of an it-

erative update scheme performing a gradient ascent in the

dual and a gradient descent in the primal variable:

pn+1 = ΠC [pn + σ∇ūn]

un+1 = Π[0,1]

[
un + τ(div(pn+1)− λf)

]
(12)

ūn+1 = 2un+1 − un

The projection Π of u onto the unit interval [0, 1] is done by

thresholding. Projection onto the set C = {q = (qx, qt)
T :

V × T �→ R
4
∣∣ ‖qx‖ ≤ 1, |qt| ≤ 1} is a projection on a 4D

hyperball and can be done as follows:

ΠC(q) =

(
qx

max(1, ‖qx‖ρ )
,max

(− gt,min(gt, qt)
))T

(13)

The step sizes σ and τ are chosen adaptively by keeping

track of the corresponding operator norms as suggested in

[10]. For the primal variable u we assume von Neumann

boundary conditions for both spatial and temporal deriva-

tives and corresponding Dirichlet boundary conditions for

p, that is ∇u
∣∣∣
∂(V×T )

= 0 and p
∣∣∣
∂(V×T )

= 0. The up-

date scheme (12) provably converges to a global minimum

of relaxed energy (1). The corresponding optimal binary la-

beling can be found by simple thresholding of the relaxed

solution [10].
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4. Implementation
Both the photoconsistency estimation as well as the en-

ergy optimization have been implemented on the GPU using

the NVidia CUDA framework. The optimization scheme in

Eq. (12) lends itself to a parallel implementation. In the re-

sult section we also briefly detail the implementation of the

photoconsistency estimation.

A limiting factor of our method is memory requirement.

Overall, the method needs 8|V ||T | ·4 bytes, one volume for

the data term and photoconsistency each, two for the primal

and four volumes for the dual variable. The second pri-

mal variable is needed because of the over-relaxation step

in Eq. (12). In practice memory resources are limited and

smoothing over too many frames is usually not meaningful

in dynamic scenes. Therefore, we limit |T | to a fixed num-

ber of frames and process longer sequences with a sliding

window approach for which we take the center frame of the

window as the smooth solution.

5. Results
We applied our algorithm to several data sets provided

by the INRIA 4D repository [6] and the free viewpoint

video data sets from Tsinghua University provided by Liu

et al. [9]. Both data sets also provide silhouette information

which is quite useful in a sparse camera setup. We used the

silhouette information provided with the data sets to speed

up photoconsistency matching and optimization by restrict-

ing all computations to the interior of the visual hull. In

some frames the silhouettes are incorrect and lead to miss-

ing scene parts in some experiments. All experiments have

been computed on a Intel Xeon E5520 PC with 12GB RAM,

equipped with an NVidia Tesla C2070 card and running a

recent Linux distribution.

Given the relaxed solution of energy (1) we extracted an

isosurface at u = 0.5 with the Marching Cubes algorithm.

To better see the jittering reduction all experiments show

pure results of our algorithm after Marching Cubes without

any mesh smoothing, filtering or remeshing. The following

section details the photoconsistency and data term compu-

tation to explain differences and compare to previous work.

5.1. Photoconsistency and Data Term Evaluation

As explained in Section 2.2 the data term is built based

on the photoconsistency measure ρ. The quality of this mea-

sure directly influences the quality of the data term. Kolev

et al. [8] iteratively improved the quality of the photocon-

sistency by calculating the NCC scores based on a surface

normal estimate which they first take from the visual hull

and later update with the solution of the surface reconstruc-

tion in an iterative manner. In the photoconsistency voting

scheme as described in [8] each point x defines a ray to each

camera. Point x only gets a vote if the normal correspond-

input (a) (b) (c) (d)

Figure 4. Comparison of data term from [8] (a) and the proposed

one (b) for a lower cross section of the skirt. Shown are the vox-

els’ probability of being inside (white) and outside (black) the sur-

face. Corresponding photoconsistencies are respectively displayed

in (c) and (d). Dark pixels represent higher matching scores. Al-

though the photoconsistency is slightly worse, the proposed data

term yields sharper contours and better carves out concavities be-

cause only front facing cameras determine their shape, rather than

all cameras. The volume resolution was 128x256x192.

ing to x maximizes the NCC along the whole ray in point x.

This means that for every point x the photoconsistency has

to be calculated for all points on the corresponding camera

rays with respect to the same normal. This makes the pho-

toconsistency estimation inherently slow and explains the

long (up to 10 hours for one scene) computation times re-

ported in [8]. In our 4D setup we dropped this dependency

by maximizing the photoconsistencies along rays indepen-

dent of the normal direction. This way the photoconsis-

tency calculations can be done independently and thus eas-

ily be parallelized to speed up computations. We simply use

the viewing direction of the reference camera towards x as

the surface normal estimate. We compared the results with

our reimplementation of the normal dependent maximiza-

tion and experienced fairly similar results. Figure 4 shows

exemplarily results for these different photoconsistency es-

timation schemes. As result, we experienced speedups of

one or several orders of magnitude (depending on the vol-

ume resolution) for getting comparable results.

On the left part of Fig. 4 we compare the proposed data

term with the one in [8]. We briefly repeat its definition to

clarify the differences. They also define a quality measure

for each camera ray defined by point x and camera j:

ρjint(x) =H(dmax
i − d) · (1− f(C̄i(x, d))) (14)

+ (1−H(dmax
i − d)) · f(C̄i(x, d))

H is the Heavyside step function switching between two

different costs depending on whether d is larger or smaller

than dmax
i , i.e. if the point x is either before or behind the

voting location. The data term is then defined as an aver-

age of ρjint(·) over all cameras. The key difference to our

proposed approach is the fact that this model influences the

data term before and behind the camera vote while the pro-

posed approach only influences the data term in between

the camera and the camera vote. This global influence de-

grades the quality of back faces and other object parts which
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1/16 input images Kolev et al. [8] Jancosek and Pajdla [7] proposed

Figure 5. Comparison of the reconstruction results using the data term by Kolev et al. [8] and the proposed one. Further we show the

result of the method by Jancosek and Pajdla [7]. The ball has low texture information and further exhibits strong reflections which makes

it difficult to reconstruct.

Figure 6. Comparison of the proposed method for |T | = 1 with other 3D reconstruction methods. Respectively from left to right (twice):

Jancosek and Pajdla [7], Liu et al. [9] and the proposed method. The approach by Jancosek and Pajdla wrongly connects points at the hand

and the armpits. Our approach method better preserves several details like the hand.

are unrelated to the camera vote. This is visible in Fig. 4

showing the differences in the data term, as well as in Fig. 5

which depicts a resulting surface reconstruction. For com-

parison we also show the reconstruction result of Jancosek

and Pajdla [7]. The scenes with the gymnastic ball are espe-

cially challenging because the ball surface has low texture

information and a shiny surface. In Fig. 6 we compared

the output of our method with the methods by Jancosek and

Pajdla [7] and to the ones of Liu et al. [9] who provided

the data. Both methods yield much smoother surface re-

constructions, but also blur fine scale details like the hand.

Table 1 lists average computation times for the experiments

depicted in Fig. 9.

data set volume size pc+d opt

kick one 3843 89 28/93/-

cartwheel 384× 384× 256 21 18/59/-

playing 384× 384× 256 18 18/60/-

adult child 3843 43 31/91/-

red skirt 2563 90 10/31/88

Table 1. Average runtimes per frame for our method on differ-

ent data sets for the photoconsistency and data term estimation

(pc+d) and the surface optimization (opt) for different sizes of

|T | ∈ {1, 3, 5}. Timings are in seconds. In comparison the

method by Jancosek and Pajdla [7] computed 10-20 min/frame.

5.2. Temporal Regularization

For evaluation we studied the influence of the temporal

window size |T | and weighting gt = exp(−a|∇tf |b) in Eq.

(2). Fig. 7 gives an overview for |T | ∈ {3, 5, 7} (hori-

zontal) and different a ∈ {0.001, 1} (left, vertical). The

effect of gt on the solution is mainly governed by parame-

ter a. When a approaches zero the temporal regularization

gets maximal and the reconstructed surface tends towards

the intersection with neighboring time slices (see the dis-

appearance of the lower leg part in Fig. 7, top row). We

could not experience significant visible differences for vary-

ing values of b and set b=1 in all experiments. The differ-

ences are largest between window sizes |T |=1 and |T |=3.

Choosing larger window sizes only led to subtle differences

which do not pay off the increase in computation time and

memory resources. Since no other 4D reconstruction imple-

mentations are publicly available and it is difficult to obtain

ground truth geometry, we visually compare our method

with (a) time-independent reconstruction by Jancosek and

Pajdla [7], (b) time-independent reconstruction as proposed

with |T | = 1, (c) temporal Gaussian smoothing of (b) as

post processing for temporal smoothness, and (d) the pro-

posed method with |T | = 3. In particular, we compute a

smoothed occupancy labeling ū from the time-independent

result û as follows:

ū(x, t) =
1

Z

|T |−1∑
i=0

exp
[
− (i− |T |/2)2

2σ2

]
û(x, t+i−|T |/2)

(15)

Fig. 8 shows a representative frame for each method. Gen-

erally, the Gaussian filtering cannot reach the same level

of smoothness as (d) while preserving fast moving object

parts. For preserving fast movements σ needs to be chosen

very small such that voxel jittering is barely reduced. The

proposed method balances these issues much better.
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|T | = 1 |T | = 3 |T | = 5 |T | = 7 |T | = 1 |T | = 3, a = 0.5
Figure 7. Effect of the temporal regularization. The approach allows to impose temporal regularity over multiple time steps |T |. For a

small weight of temporal smoothness (a = 1, left bottom row) the regularity reduces the jittering of voxels over time (see supplementary

video), where as for strong temporal smoothness (a = 0.001, left top row) the regularization starts to deteriorate fast moving structures

like the right foot. Temporal coherence also improves reconstructions with weak photoconsistencies in single time frames (right).

(a) Jancosek and Pajdla [7] (b) time-indep. (|T | = 1) (c) temp. filtering (|T | = 3) (d) proposed (|T | = 3)

Figure 8. Comparison of different reconstruction techniques. (a) produces strong surface jittering, wrongly connects the leg and hand and

misses parts of the head. (b) Voxel jittering is visible. (c) Voxel jittering can be reduced, but fast moving object parts start disappearing,

e.g. the foot. The edge on the lower leg is an artifact of the averaging of consecutive time frames. (d) Due to the weighting and the

TV-regularization the problems of (c) can be balanced much better (see also supplementary video).

6. Conclusion
We presented a novel approach to space time multi-view

3D reconstruction that generalizes several previous works

into a 4D setting. In order to get competitive reconstruc-

tions on wide-baseline camera setups we further proposed a

novel data term that better preserves concavities and fine de-

tails. 3D reconstruction results compare favorably to other

works. Our approach directly accounts for temporal surface

coherence within the reconstruction process. In compari-

son to single frame-by-frame reconstruction our approach

clearly reduces the amount of noise on the estimated sur-

face. In several experiments we showed the viability of the

proposed framework. To our knowledge, this is the first

time that space-time 3D reconstruction was formulated as a

convex variational problem. The solutions are provably op-

timal, independent of initialization and recover fine details.
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