
Abstract 

This paper addresses the problems of tracking targets 
which undergo rapid and significant appearance changes. 
Our starting point is a successful, state-of-the-art tracker 
based on an adaptive coupled-layer visual model [10]. In 
this paper, we identify four important cases when the 
original tracker often fails: significant scale changes, 
environment clutter, and failures due to occlusion and 
rapid disordered movement. We suggest four new 
enhancements to solve these problems: we adapt the scale 
of the patches in addition to adapting the bounding box; 
marginal patch distributions are used to solve patch 
drifting in environment clutter; a memory is added and 
used to assist recovery from occlusion; situations where 
the tracker may lose the target are automatically detected, 
and a particle filter is substituted for the Kalman filter to 
help recover the target. We have evaluated the enhanced 
tracker on a publicly available dataset of 16 challenging 
video sequences, using a test toolkit [17]. We demonstrate 
the advantages of the enhanced tracker over the original 
tracker, as well as several other state-of-the art trackers 
from the literature. 

1. Introduction 
There is a rapidly growing demand for robust automatic 

tracking from video sequences, due to the proliferation of 
ubiquitous, low-cost, small-scale camera sensors [18].
However, visual tracking still poses many open challenges: 
background clutter, occlusion, fast movement, 
illumination changes, object scale change and deformation,
etc. [1]. Over more than 30 years of visual tracking 
research, numerous approaches have been proposed, most 
utilizing two primary components: visual features of the 
object and spatiotemporal prediction [20]. 

Many different cues can be used for target 
representation, and making appropriate choices is a non-
trivial problem. Popular cues include color, texture, 
silhouette, motion, e.g. [5].   More detailed representation 
schemes can be found in [19]. A good tracker should 
detect and combine target information from multiple 
features. A global representation reflects the overall 

statistical characteristics of the target in a simple and 
computationally efficient model, e.g. [12, 13, 16]. 
However, global models can fail if the target rapidly 
changes its structure or appearance. In contrast, a local 
feature representation typically utilizes interest points or a 
set of patches to encode target information [6, 7]. It can 
provide greater robustness for deforming targets, but 
usually with increased computional cost. For 
spatiotemporal prediction, deterministic methods, e.g. 
Mean Shift [9], are fast but susceptible to local minima. In 
contrast, stochastic methods, e.g. Particle Filter [11], are 
more robust to local minima but sacrifice computational 
efficiency. It is increasingly clear that one cannot achieve 
robust tracking by any single feature or motion model.
More recently, approaches integrating multiple schemes 
have been proposed [2, 7, 10].  

In most real applications, the appearance of a target will 
change, due to deformation, viewpoint, illumination 
changes and other causes. Therefore, for robust tracking, it 
is also critical to be able to update the target model 
adaptively with appearance changes. Martínez-del-Rincón 
[8] utilized a Rao-Blackwellised particle filter which 
updated a color target model and target position estimate. 
However, allowing a single holistic target model to be 
continuously relearned or updated is inherently unstable, 
since background features can be erroneously learned into 
the whole target model. Yang et al [3] built part-based 
feature sets for tracklets, to learn discriminative 
appearance models online. However, this algorithm used a 
fixed number and geometry of patches. Without flexible 
patches, this method is limited, e.g. it can track upright 
walking pedestrians, but not humans performing 
gymnastic movements with large deformations. Kwon and 
Lee [7] proposed an approach to automatically update the 
topology of local pose changes. Their method utilized a 
star model in which all of the parts were connected to the
centre of the target. By analyzing the likelihood function 
landscape of local mode of these patches, this method can 
move, delete and add patches without any training phase 
in initialization. While this approach provides a good 
mechanism for adapting the visual model in a controlled 
manner, rapid part removal can lead to false structural 
changes in the geometrical model and result in tracking 
failure. These problems can be mitigated by having a two-
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layer model, in which each layer provides robustifying 
constraints when updating the other layer.  

An early attempt at two-layer adaptive models was 
Stolkin et al. [15]. In this approach, motion and geometric 
models for a rigid target object were used to impose 
structure for continuously re-learning an intensity model 
for target pixels. More recently, Cehovin et al., [10], 
proposed a coupled-layer visual model that combined a set 
of parts (local layer) together with global target 
appearance (global layer). The local layer is a set of small 
patches that geometrically constrain updates to the target’s
global appearance models. The global layer models the 
target’s global visual properties of color, motion and 
shape, and is, in turn, used to help update the local 
patches. Because both layers interact and provide 
constraints for each other, it enhances the robustness while 
adaptively relearning targets which undergo rapid and 
significant appearance changes. This coupled-layer visual 
model is considered a sophisticated state-of-the-art 
technique, and performs well against other methods in 
comparative evaluations. We use this method as a starting 
point, since it provides a good mechanism for adaptively 
updating a visual target model. However, through 
extensive testing, we have identified four important 
situations in which this method can fail. In this paper, we 
describe several extensions and enhancements to the 
tracker, which substantially alleviate these problems. 

 In section 2, we introduce the coupled-layer tracking 
algorithm and identify its vulnerable failure modes in
section 3. In section 4, we propose four modifications to 
the original tracker which enhance its performance in 
these situations. Section 5 presents the results of testing 
with challenging public data sets. Section 6 provides a 
discussion and conclusions. Throughout the paper, we 
discuss tracking performance with reference to 16 video 
sequences, drawn from the ICCV 2013 VOT workshop 
public dataset and evaluation toolkit, [17]. 

2. A coupled-layer tracking algorithm 
The coupled-layer visual model is shown in Fig.1. The 

local layer is a geometrical constellation of visual parts 
that describe the target’s geometrical properties. At each 
new image frame, these patches are propagated according 
to a Kalman Filtered motion model, and a cross-entropy 
method is used to optimize their locations. When the 
target’s appearance changes, some patches are unable to 
find highly matching candidate regions and these are 
gradually removed from the model (representing 
disappearing target parts). Meanwhile, new patches are 
selected from regions which are identified (by the global 
layer) as having a high probability of being the target. 
Thus, the global layer is a probabilistic region model, 
encoding the fundamental target characteristics of colour, 
motion and shape. Once, new local layer patches have 
been selected, the local layer is used to constrain the 

adaptive updating of the global layer. 

The global layer provides a probability map for 
allocating new patches, computed by [10]: 

�(�|��, ��, ��) ∝ �(�|��)�(�|��)�(�|��) (1)

Where ��, ��, ��  represent color, motion and shape 
properties, given a location � in frame 	. 

The local layer consists of a set of patches, 
� =
{��

(�)}��:�� , which are modeled as local distributions of 
pixel measurements,  ��, with associated weights:  

���
(�) = �������

(�)�����
(�)�
��             (2) 

where �������
(�)� is “visual consistency” - a measure of 

consistency between a patch and a candidate image region, 
and  ����

(�)�
�� is “drift distance” - a measure of how far a 
patch has drifted from the target centroid (modeled as a 
sigmoid function) .

3. Four major causes of failure 
By analyzing individual instances of tracker failure, we 

have identified four common causes of failure in the 
original adaptive coupled-layer tracker: 

� Significant scale changes: Once a patch has 
been initialized, its scale remains fixed. Although the 
overall bounding box (global layer) adapts to changing 
target scales, the fixed patch size cannot adequately model 
targets whose size changes dramatically. For example,
when a target becomes very small (Fig. 2), two or three 
patches can cover the whole target while the remaining 
patches are forced to occupy nearby background regions. 
This leads to low precision and tracking failure. 
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 Figure1: A schematic overview of the main steps in the 
processing of a single frame. 1-spatiotemporal prediction, 2-
match the local layer, 3- update patches, 4- update the motion 
model, 5- update the global layer, 6- add new patches
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� Environment clutter: Distracting background 
areas can cause one or more patches to move far away 
from the main group of patches. The global shape 
boundary then stretches to include these distant patches, 
causing a large background region to be mislabeled as 
target, from which new patches are erroneously sampled. 
This can lead to instability and tracking failure (Fig.3).

� Occlusion: The original algorithm did not 
address the occlusion problem (Fig.4). When part of a
target is occluded, patches try to move to unoccluded parts 
and can shrink to occupy a very small region. Patches 
without good image matches will be removed. As the 
bounding box shrinks, the tracker loses the target. 

� Rapid movement: Target speed and direction 
can change rapidly (Fig.5). Even for stationary targets, 
camera motion or zoom can cause large target motions in 
image sequences. The original tracker used a Kalman 
Filter which cannot handle the nonlinear and non-
Gaussian problems which this situation often causes. In
the Woman sequence, the target velocity is around 20 
pixels in the X direction in frames 560-565. In frame 566,
its speed changes suddenly to -20 pixels. This rapid 
irregular movement can easily result in tracking failure if 
Kalman Filtering is used to make a spatiotemporal 
prediction. 

4. Four new enhancements 
The main contribution of this paper is to add four 

enhancements to the original coupled-layer tracker, in 
order to solve the problems highlighted in section 3. 
Solutions for the patch scale and drifting problems in 
clutter, decreasing the risk of tracking failure while 
improving precision. Additionally, we describe a way of 
detecting occlusion situations, and then recalling a 
memory of previously seen target features to enable 
tracking recovery. Furthermore, during periods of low 
tracking confidence, the Kalman-filter is augmented by a 
stochastic particle-like approach, to help recover the target. 

4.1 Adapting patch scales to the target 
The original algorithm uses the spread of local patches 

to adapt the size of an overall bounding box. However, the 
size of each patch itself remains fixed. As shown in Fig.2, 
the tracker can fail when the target shrinks to sizes of 
similar magnitude to that of individual patches – because 
some patches are forced off the target and onto 
background pixels.  Therefore, it is essential to enable the 
scale of patches to adapt. 

A naive approach is to scale patches proportionate to 
size changes in the overall bounding box. However, the 
bounding box may shrink due to occlusion, and not due to 
true target scaling, in which case patches should maintain 
their current size and refrain from shrinking. Additionally, 
rapid and noisy size changes lead to instability. Allowing 
patch scale to rapidly respond to noise in the bounding box 
size engenders rapid, erroneous addition or removal of 
information which can irrevocably damage the adaptive 
appearance model.  Therefore, an important issue here is 
how to ensure the stability while adapting the scale. 

Local patches are initialized as a proportion, �, of the 
bounding box size: 

��
� = ��

�/�                                  (3) 
where ��

�  and ��
�  are the areas of the bounding box and 

each patch, respectively. Scale factor � cannot be used to 
change patch scale directly, because noisy variation in 
bounding box sixe, ��

�, would cause instability. Therefore,
we compute an n-frame moving average bounding box 
scale:

�̅�
� = ∑ ��

��
��!"                              (4)

where ��
�  is the scale of bounding box at the frame k. This 

moving average scale can be memorized as: �� = �̅�
� . 

(a) Frame 565            (b) Frame 566               (c) Frame 567
Figure 5: Rapid irregular target movement (woman)

(a) Occulsion ocurs                        (b) Tracking failure
Figure 4: Full occlusion (bicycle)

(a) Initialization                            (b) Patch drifting
Figure 3: Patch drifts from majority due to clutter (diving)

(a) Initialization                         (b)   nearly lost target
Figure 2: Fixed patch scale for a rapidly shrinking target(singer)
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During tracking, the moving average �̅�
� is compared 

against the last memorized value, ��, at each frame. If the 
scale has changed significantly (above the threshold #$),
then the size of patches is adjusted accordingly: 

��
� = %

��!�
� ,          ��̅�

� − ��� < #$

&$��!�
� + (1 − &$)�̅�

�/�,   �'ℎ-.�0�-
(5)

where λ3 is a persistence factor to control the speed of size 
adaptation, eliminating sudden, large information changes. 
Whenever patches are re-scaled, we also need to update 
the memorized bounding box: 

�� = &$�� + (1 − &$)�̅�
�                  (6)

Note that #$ cannot be a fixed threshold, because the 
significance of any size change must be judged relative to 
the current absolute size of the bounding box. Therefore, 
threshold #4 is itself adapted with recent box size: 

#$ = 	��                                    (7) 
We find a value of 	 = 0.02 to be effective. Following 

each scale adaptation, the next adaptation is delayed by a
minimum time interval to ensure that scale is not changed 
too frequently. 

4.2 Preventing patch drifting in clutter 
In cluttered environments, individual patches can easily 

drift away from the main patch cluster. The original 
algorithm utilized the median of Euclidean distances 
between an individual patch and all other patches to 
evaluate whether or not the patch is drifting. This 
geometric constraint can adequately prevent a single patch 
from drifting (Fig.6.a). However, if two or more patches 
drift at the same time, then the median becomes distorted 
and can fail (Fig.6.b and Fig.6.c).  

As drifting means small groups of patches distributing
differently from the majority patch distribution, one 
should both consider the number and the density of 
drifting patches. Here, we employ the marginal 
distribution to solve this problem.  The joint spatial 
distribution density of patches can be denoted as: 

∑ ∑ 5(6, 7)(8,9)∈> = 1                     (8) 
Where (6, 7)  represents patch coordinates in image ? .

We obtain the marginal distribution of patches by: 
59(6) = ∑ 5(6, 7)9  and 58(7) = ∑ 5(6, 7)8 (9) 

Drifting must be checked for in both x and y directions. 
Here we illustrate for the x direction:  

In order to identify potential drifting regions, we first 
search the maximum non-zero interval ∆6AB8  in 59(6) .
The region outside of this interval is regarded as a 
candidate potential drifting region. Next, the following 
two criteria are applied to each such candidate region, to 
confirm whether or not it is really drifting.  The weights of 
confirmed drifting patches are then decreased. 

A. search maximum non-zero interval

Drifting causes a large gap in the distribution of patch 
positions. This can be detected easily in the patches 
marginal distributions. The algorithm first searches the 
maximum non-zero interval ∆6AB8 , ∆7AB8 for each 
marginal distribution respectively, and drifting is detected 
when either of these intervals exceed thresholds #∆8,  #∆9. 
Noticeably,  #∆8  and  #∆9 are not fixed parameters, but 
change adaptively according to the scale of the local patch 
C�BDEF and current distribution length CBGG . For example, in 
the  X-direction (Fig.7): 

 #∆8 = H
I� C�BDEF,                      IBGGCBGG < I� C�BDEF 
 IBGGCBGG , I� C�BDEF ≤ IBGGCBGG ≤ IKC�BDEF   
IK C�BDEF,                     IKC�BDEF <  IBGGCBGG

    (10)

Where  IBGG and I�, IK are factors which must be chosen 
by the user according to the tracking situation. We have 
found that values of 0.2< IBGG≤0.4 and 2<I�, IK≤5 work 
well in many tracking situations. These factors define the 
extent of drifting which is permitted, before being detected 
and corrected as an error situation. Once ∆6AB8 exceeds
 #∆8 , the region outside the maximum non-zero interval 
becomes regarded as a potential drifting region and is then 
chosen as a candidate for additional drift checking 
according to the following method.

B. detecting drifting from the patch density

Drifting is not only characterised by a small group of 
patches, which are separated from the majority cluster.
Additionally, the distribution density of the drifting 
patches should be very small. The proportion . of patches 
in the drifting region can be computed by: 

. =  ∑ 59(6)8LMN
88O                      (11) 

Where 6� and 6P"4  are coordinates shown in Fig.7, and 
59(6) is a normalised distribution which sums to unity. 

Figure 7: Marginal distribution in x direction

(a)                          (b)                       (c)
         Figure 6: majority (blue) and drifting (orange) patches. 
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The user must set a value QR� first (good values lie in the 
range 0, 40%) to define “minor” patch drifting.  

A second measure is patch density in the candidate 
drifting region from the length ratio  QRK, denoted by: 

QRK = C4R�SD/CBGG                              (12) 

where C4R�SD and CBGG are lengths shown in the Fig.7. If  . is 
smaller than QRK, it indicates that the patch density in the 
candidate drifting region is less than the average patch 
density. Considering both constrains, drifting can be 
automatically detected by satisfaction of the inequality:

. < #T                                (13) 

where threshold  #T = U0V(QR�, QRK)            (14) 
C. automatic recovery from patch drifting

Once a drifting patch has been detected, its weight is re-
computed as:

�8 W�4(X)Y
Z = %-!(GN[X\]!GN(X)), 0 ∈ ^
1, �'ℎ-.�0�-

         (15)

where subscript 0 is used to denote the 0 th patch in the 
drifting region, ^, and C4(X)is the distance between patch 0
and the closest boundary patch (located in 6P"4) of whole
distributed region. C4R�SD is shown in Fig.7.

Taking into account both X-axis and Y-axis marginal 
distributions and also the sigmoid function constraint from 
the original tracker, the new weight � W�4(X)Y
Z in Eq. 2 is
revised as:

� W�4(X)Y
Z = �8 W�4(X)Y
Z �9 W�4(X)Y
Z �� W�4(X)Y
Z (16)

where �� W�4(X)Y
Z is a sigmoid function that is the same as 
that in the original tracker. For minor drifting situations,
such as Fig.6.b, the weights of patches are allowed to 
decrease gradually by:

��
(�) = &_��!�

(�) + (1 − &_)���
(�)                    (17)

where λ` is a persistence constant. However, in cases such 
as Fig.6.c, the drifting should be resolved immediately. It 
is possible to detect this situation by extremely large 
values of the maximum non-zero interval,  #∆8 . In such 
cases, &_ is set to zero so that these drifting patches are 
immediately deleted.

4.3 Memory recovery in occlusion situations 
The original tracker often fails in occlusion situations

because information about occluded parts of the target is 
immediately and permanently deleted during model 
updating at each frame. An obvious way to overcome this 
problem is by continuously recording a memory of the 
visual model in its unoccluded state, and then recalling the 
memory once an occlusion state has been detected. Here 
we propose a simple but useful method for detecting such 
occlusions.

During the updating stage at each frame, local patches 
can be deleted from the target model for three reasons: low 
weights due to visual mismatching; low weights due to 
drifting; and nearby patches being merged. Normally, the 
first two situations happen frequently while merging 
patches only occur occasionally. During severe occlusions,
most patches will rapidly converge on the unoccluded part 
of the target (see Fig.4), which rapidly becomes very small. 
Therefore, we propose two features for detecting occlusion 
situations: firstly, an extremely small size of bounding box 
scale; secondly, the rate at which patch mergers occur 
(reflect the speed of shrinking). This step takes place after 
local patch matching (step 2 in Fig.1). We can obtain the 
scale of bounding box �a  and the number of potential 
merging patches, bc, from the current set of patch positions. 
When these values both satisfy the below inequalities, an 
occlusion situation is confirmed: 

�a < #�  and bc > #�                       (18) 
where #�  is a scale threshold and #� is a threshold for the 
number of merged patches. Once an occlusion situation is 
detected, the model updating stage is stopped, and. a target 
model, recorded during the most recent unoccluded period, 
is recalled from memory. Essentially this this is equivalent 
to forcing the original coupled-layer model to temporarily 
degenerate into a single holistic model for tracking. In 
other words, patch positions remain the same, relative to 
their neighbors, in the patch constellation.  

 In this situation, we first predict the location of patches 
from the previous frame (giving all patches the same 
movement). Then, comparing current observed patches to
their templates, one can compute likelihoods for each 
patch. If the average likelihood is very low, a mixed 
spatiotemporal prediction mechanism is triggered for 
tracking which is explained in details in section 4.4. 

4.4 Mixed strategies for spatiotemporal prediction 
In the original algorithm, a Kalman Filter is utilized for 

spatiotemporal prediction [14]. It is accurate and highly 
efficient for tracking a target with a known linear and 
Gaussian motion model. However, typically only a limited 
region of the image is searched (usually the same size as 
the target region) by the Kalman Filter, so that predictions 
fail when the target motion changes direction or the 
camera moves significantly. 

When prediction is noisy or the tracker cannot find a 
good match, it is natural to search a larger region so that 
we can obtain the best estimation of the target state. 
Therefore, we first compute overall likelihood from the 
local patches to judge whether or not the tracker has found 
a good match. In contrast to the usual location 
optimization of patches, which considers both appearance 
and geometrical models (Eq.2), we only use the 
appearance model here to get the overall likelihood of 
patches by: 
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�� = �
�

∑ -!e(F[L\
(X) ,F�

(X))�
��    (19) 

where 5(. )  is the Bhattacharyya distance between 
histogram [11]. ℎRPS

(�) is the histogram of patch 0  when 
initialized and ℎ�

(�) is the observed histogram at frame 	. b
is the number of local patches. A very low value of  ��
indicates that Kalman Filter is becoming ineffective. Once, 
��  is smaller than a threshold, the Kalman Filter is 
replaced by a Particle Filter [4] to more robustly estimate 
candidate target locations. In other words, this tracker will 
split into several trackers (particles). Each of them can 
obtain likelihood ��

(g) of particle h by Eq. 19. 
After normalization of these likelihoods, the new 

estimation of target location from the particle state #�
(g)can 

be denoted by: 
#a� = ∑ ��

(g)�i
g� #�

(g)             (20) 
In order to preserve efficiency, we do not perform the 

original algorithm’s patch optimization procedure on 
every particle, but only on the overall estimated set of 
patch poses as derived from Eq.19.The particle-based 
tracking procedure is continued until the overall patch 
likelihood improves above a minimum threshold, at which 
point deterministic Kalman Filtering is resumed. 

5. Experimental results 
We evaluate our algorithm in two stages. First, we 

compare our enhanced tracker to the original coupled-
layer tracker, and demonstrate how the enhancements are 
advantageous for some specific sequences. Then, the 
overall performance is evaluated using the public bench-
mark toolkit [17]. 

5.1 Enhanced vs original trackers 
Here, we demonstrate that the enhancements can 

decrease the failure rate and improve the precision for 
some specific sequences. 

Fig. 9 shows an example of a target (Singer) which 
rapidly shrinks to a small size. With the adaptive patch 
scale enhancement, the bounding box accurately shrinks to 
match the target, whereas the original tracker with 
constant patch size fails (Fig.2.). The size of the target 

rapidly shrinks after frame 70. As shown in figure 10, the 
precision of the original tracker rapidly deteriorates during 
this time, whereas the enhanced tracker with adaptive 
patch scale maintains a consistently high precision. 

Fig. 10 shows the performance of the enhanced tracker 
on a difficult occlusion problem, which can be compared 
the original tracker in Fig.4. The enhanced tracker retains 
a memory of the target history, automatically detects 
occlusion conditions, and recalls the memory to recover 
from occlusion. While the occlusion is occurring, the 
precision decreases dramatically for both trackers from 
frame 170. However, while the original algorithm 
continues to deteriorate, the enhanced algorithm 
automatically detects the occlusion situation and recovers 
by using memory. Once the target re-appears, the tracker 
can continue tracking accurately. 

Fig. 11 shows the Woman sequence, where there is a 
fast movement of the camera view as it zooms in. Near to 
the end of the sequence, both trackers suffer a sharp 
decrease in precision due to rapid camera motion (nearly 
+40 pixels between some successive frames in Woman
sequence, for a target of width order 40 pixels). Worse still, 
the velocity predicted by Kalman Filter is actually in the 

Figure10: tracking performance: bicycle 
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Figure9: Tracking performance: singer
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opposite direction of the real target motion. The enhanced 
tracker detects deteriorating tracking confidence, and 
triggers the Particle Filter to continue tracking the target 
successfully, while the original tracker does not recover 
and fails.  

It is difficult to demonstrate the efficacy of our drifting 
solution with examples from specific sequences. However, 
we demonstrate the effectiveness of this modification 
though as part of the ovearall results comparison in 
Section 5.2.

5.2 Objective tracking evaluation 
The overall tracking results are obtained by using the 

publicly available tracking benchmark toolkit of the ICCV 
2013 VOT tracking workshop, [17], to evaluate trackers in 
terms of failure rate and accuracy. Since both LGT and 
LGT++ trackers are stochastic, each is run 15 times on 
each video sequence to generate statistically meaningful 
results. Each tracker is assessed on the criteria of 
“accuracy” and amount of “failure”. Here, we first explain 
the statistical meaning of the “failure” criterion. For the 
results of each sequence, 0 means no failure (target was 
not lost) at all in all 15 repetitions of all 16 video 
sequences. An increase of 0.067 means the target was lost 
one more time during the 15 repetitions. The target is 
defined as “lost” when the tracker output bounding box 
has no overlap with the human-annotated ground-truth 
bounding box. Whenever the target is lost, the toolkit 
records the failure and then automatically re-initializes the 
bounding box and resumes tracking. Therefore, a bad 
tracker may “fail” a maximum of 15*(number_of_frames)
times for each test video. Values below 1.0 mean the 
tracker seldom lost the target (less than once per sequence 
on average). For a total score, averaged over all 16 test 
videos, an increase of 0.004 means the tracker failed one 
extra time over the whole experiment. Accuracy j� is 
defined as the overlap between the tracker’s predicted 
bounding boxTTm and the ground truth bounding boxGTm:

j� = oo�∩qo�
oo�∪qo�

                               (21)

Once the tracker drifts completely to the background, 
the measure becomes zero, regardless of how far from the 
target the tracker is currently located. The overlap measure 
is summarized over an entire sequence by an average 
overlap over the valid frames.
Experiment 1: runs trackers on all 16 sequences, 
initialized from ground truth bounding box at first frame. 

Table 1 accurate initialization 

Name
Failure Accuracy

Original Modified Original Modified
Bicycle 1.000 0.400+ 0.528 0.503-

Bolt 0.067 0.067 0.414 0.446+

Car 0.000 0.000 0.484 0.535+

Cup 0.000 0.000 0.628 0.790+

David 0.000 0.000 0.568 0.569+

Diving 1.000 0.200+ 0.435 0.485+

Face 0.000 0.000 0.598 0.497-

Gymnastics 0.867 0.267+ 0.475 0.519+

Hand 0.133 0.133 0.534 0.555+

Ice-skater 0.000 0.000 0.548 0.556+

Juice 0.000 0.000 0.695 0.716+

Jump 0.000 0.000 0.588 0.525-

Singer 0.000 0.000 0.215 0.474+

Sunshade 0.333 0.200+ 0.541 0.542+

Torus 0.000 0.000 0.673 0.750+

Woman 0.867 0.267+ 0.338 0.352+

The (.)+ and (.)-  symbols denote improved vs worse 
performance respectively of the enhanced tracker. The 
total evaluation scores, averaged over all 16 test videos, 
are original LGT: accuracy (0.516), failure (0.267); our 
LGT++ tracker: accuracy (0.551), failure (0.096).

LGT++ enhancements are most noticeable in terms of 
enhanced robustness (reduced failures). However, 
significant accuracy gains are also apparent in certain 
difficult tracking situations. In terms of accuracy, we can 
find large improvements in the Cup and Singer sequences 
but reduced accuracy in the Face sequence. Note that it is 
hard to demonstrate a clear improvement in accuracy, 
because the drifting solution enhancement tends to hold 
the bounding box tighter and focus on the main body of 
the target. In doing so, it may miss some small peripheral 
parts of the target thus adversely affecting accuracy 
metrics. However, this enhancement clearly decreases the 
risk of patches drifting onto background distracters in 
cluttered environments, thus enhancing robustness. We 
can see this effect most clearly in the Diving and 
Gymnastics sequences (note the large improvements in 
failure rates). As shown in Section 5.1, the improvement 
of Bicycle comes from the occlusion solution and Woman
thanks to the mixed spatiotemporal prediction strategy. 
Experiment 2: same as Exp. 1, but initialized with 
randomly perturbed bounding box. Original LGT tracker: 
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accuracy (0.513), failure (0.221); our LGT++ tracker: 
accuracy (0.541), failure (0.113). 
Experiment 3: same as Exp. 1 but all images converted to 
grayscale. Original LGT tracker: accuracy (0.480), failure 
(0.783); Our LGT++: accuracy (0.520), failure (0.463). 

6. Conclusion 
We have identified four major causes of failure, in a 

state of the art tracker, and proposed a series of additional 
techniques to address each of these problems. Detecting 
and correcting patch drifting enhances performance in 
heavily cluttered environments. Enabling patches to scale, 
in addition to the bounding box, solves problems 
associated with rapid target size changes. Occlusion is 
automatically detected and resolved by recalling a target 
memory. Rapid erratic motion is addressed by means of a 
mixed spatiotemporal prediction strategy. Experimental 
results demonstrate that the enhanced tracker outperforms 
the original tracker on a variety of challenging sequences,
showing significantly reduced failure rates and improved 
accuracy in most test sequences. Future work will focus on 
how to allocate the patches during initialization. 
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