
Abstract

This paper addresses the problems of tracking targets
which undergo rapid and significant appearance changes.
Our starting point is a successful, state-of-the-art tracker
based on an adaptive coupled-layer visual model [10]. In
this paper, we identify four important cases when the
original tracker often fails: significant scale changes,
environment clutter, and failures due to occlusion and
rapid disordered movement. We suggest four new
enhancements to solve these problems: we adapt the scale
of the patches in addition to adapting the bounding box;
marginal patch distributions are used to solve patch
drifting in environment clutter; a memory is added and
used to assist recovery from occlusion; situations where
the tracker may lose the target are automatically detected,
and a particle filter is substituted for the Kalman filter to
help recover the target. We have evaluated the enhanced
tracker on a publicly available dataset of 16 challenging
video sequences, using a test toolkit [17]. We demonstrate
the advantages of the enhanced tracker over the original
tracker, as well as several other state-of-the art trackers
from the literature.

1. Introduction
There is a rapidly growing demand for robust automatic

tracking from video sequences, due to the proliferation of
ubiquitous, low-cost, small-scale camera sensors [18].
However, visual tracking still poses many open challenges:
background clutter, occlusion, fast movement,
illumination changes, object scale change and deformation,
etc. [1]. Over more than 30 years of visual tracking
research, numerous approaches have been proposed, most
utilizing two primary components: visual features of the
object and spatiotemporal prediction [20].

Many different cues can be used for target
representation, and making appropriate choices is a non-
trivial problem. Popular cues include color, texture,
silhouette, motion, e.g. [5]. More detailed representation
schemes can be found in [19]. A good tracker should
detect and combine target information from multiple
features. A global representation reflects the overall

statistical characteristics of the target in a simple and
computationally efficient model, e.g. [12, 13, 16].
However, global models can fail if the target rapidly
changes its structure or appearance. In contrast, a local
feature representation typically utilizes interest points or a
set of patches to encode target information [6, 7]. It can
provide greater robustness for deforming targets, but
usually with increased computional cost. For
spatiotemporal prediction, deterministic methods, e.g.
Mean Shift [9], are fast but susceptible to local minima. In
contrast, stochastic methods, e.g. Particle Filter [11], are
more robust to local minima but sacrifice computational
efficiency. It is increasingly clear that one cannot achieve
robust tracking by any single feature or motion model.
More recently, approaches integrating multiple schemes
have been proposed [2, 7, 10].

In most real applications, the appearance of a target will
change, due to deformation, viewpoint, illumination
changes and other causes. Therefore, for robust tracking, it
is also critical to be able to update the target model
adaptively with appearance changes. Martínez-del-Rincón
[8] utilized a Rao-Blackwellised particle filter which
updated a color target model and target position estimate.
However, allowing a single holistic target model to be
continuously relearned or updated is inherently unstable,
since background features can be erroneously learned into
the whole target model. Yang et al [3] built part-based
feature sets for tracklets, to learn discriminative
appearance models online. However, this algorithm used a
fixed number and geometry of patches. Without flexible
patches, this method is limited, e.g. it can track upright
walking pedestrians, but not humans performing
gymnastic movements with large deformations. Kwon and
Lee [7] proposed an approach to automatically update the
topology of local pose changes. Their method utilized a
star model in which all of the parts were connected to the
centre of the target. By analyzing the likelihood function
landscape of local mode of these patches, this method can
move, delete and add patches without any training phase
in initialization. While this approach provides a good
mechanism for adapting the visual model in a controlled
manner, rapid part removal can lead to false structural
changes in the geometrical model and result in tracking
failure. These problems can be mitigated by having a two-

An enhanced adaptive coupled-layer LGTracker ++

Jingjing Xiao
School of Electronics, Electrical

and Computer Engineering,
University of Birmingham,

B15 2TT, UK
shine636363@sina.com

Rustam Stolkin
School of Mechanical Engineering,

University of Birmingham,
B15 2TT, UK

r.stolkin@bham.ac.uk

Aleš Leonardis
School of Computer Science, University

of Birmingham, B15 2TT, UK
ales.leonardis@fri.uni-lj.si

2013 IEEE International Conference on Computer Vision Workshops

978-0-7695-5161-6/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCVW.2013.24

137

2013 IEEE International Conference on Computer Vision Workshops

978-1-4799-3022-7/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCVW.2013.24

137

layer model, in which each layer provides robustifying
constraints when updating the other layer.

An early attempt at two-layer adaptive models was
Stolkin et al. [15]. In this approach, motion and geometric
models for a rigid target object were used to impose
structure for continuously re-learning an intensity model
for target pixels. More recently, Cehovin et al., [10],
proposed a coupled-layer visual model that combined a set
of parts (local layer) together with global target
appearance (global layer). The local layer is a set of small
patches that geometrically constrain updates to the target’s
global appearance models. The global layer models the
target’s global visual properties of color, motion and
shape, and is, in turn, used to help update the local
patches. Because both layers interact and provide
constraints for each other, it enhances the robustness while
adaptively relearning targets which undergo rapid and
significant appearance changes. This coupled-layer visual
model is considered a sophisticated state-of-the-art
technique, and performs well against other methods in
comparative evaluations. We use this method as a starting
point, since it provides a good mechanism for adaptively
updating a visual target model. However, through
extensive testing, we have identified four important
situations in which this method can fail. In this paper, we
describe several extensions and enhancements to the
tracker, which substantially alleviate these problems.

 In section 2, we introduce the coupled-layer tracking
algorithm and identify its vulnerable failure modes in
section 3. In section 4, we propose four modifications to
the original tracker which enhance its performance in
these situations. Section 5 presents the results of testing
with challenging public data sets. Section 6 provides a
discussion and conclusions. Throughout the paper, we
discuss tracking performance with reference to 16 video
sequences, drawn from the ICCV 2013 VOT workshop
public dataset and evaluation toolkit, [17].

2. A coupled-layer tracking algorithm
The coupled-layer visual model is shown in Fig.1. The

local layer is a geometrical constellation of visual parts
that describe the target’s geometrical properties. At each
new image frame, these patches are propagated according
to a Kalman Filtered motion model, and a cross-entropy
method is used to optimize their locations. When the
target’s appearance changes, some patches are unable to
find highly matching candidate regions and these are
gradually removed from the model (representing
disappearing target parts). Meanwhile, new patches are
selected from regions which are identified (by the global
layer) as having a high probability of being the target.
Thus, the global layer is a probabilistic region model,
encoding the fundamental target characteristics of colour,
motion and shape. Once, new local layer patches have
been selected, the local layer is used to constrain the

adaptive updating of the global layer.

The global layer provides a probability map for
allocating new patches, computed by [10]:

�(�|��, ��, ��) ∝ �(�|��)�(�|��)�(�|��) (1)

Where ��, ��, �� represent color, motion and shape
properties, given a location � in frame 	.

The local layer consists of a set of patches,
� =
{��

(�)}��:�� , which are modeled as local distributions of
pixel measurements, ��, with associated weights:

���
(�) = �������

(�)�����
(�)�
�� (2)

where �������
(�)� is “visual consistency” - a measure of

consistency between a patch and a candidate image region,
and ����

(�)�
�� is “drift distance” - a measure of how far a
patch has drifted from the target centroid (modeled as a
sigmoid function) .

3. Four major causes of failure
By analyzing individual instances of tracker failure, we

have identified four common causes of failure in the
original adaptive coupled-layer tracker:

� Significant scale changes: Once a patch has
been initialized, its scale remains fixed. Although the
overall bounding box (global layer) adapts to changing
target scales, the fixed patch size cannot adequately model
targets whose size changes dramatically. For example,
when a target becomes very small (Fig. 2), two or three
patches can cover the whole target while the remaining
patches are forced to occupy nearby background regions.
This leads to low precision and tracking failure.

Global layer

 Colour Motion Shape

Local layer

Matching by cross-entropy

Motion
model

4

1

6

2 3 5

Image: k Image: k+1

 Figure1: A schematic overview of the main steps in the
processing of a single frame. 1-spatiotemporal prediction, 2-
match the local layer, 3- update patches, 4- update the motion
model, 5- update the global layer, 6- add new patches

138138

� Environment clutter: Distracting background
areas can cause one or more patches to move far away
from the main group of patches. The global shape
boundary then stretches to include these distant patches,
causing a large background region to be mislabeled as
target, from which new patches are erroneously sampled.
This can lead to instability and tracking failure (Fig.3).

� Occlusion: The original algorithm did not
address the occlusion problem (Fig.4). When part of a
target is occluded, patches try to move to unoccluded parts
and can shrink to occupy a very small region. Patches
without good image matches will be removed. As the
bounding box shrinks, the tracker loses the target.

� Rapid movement: Target speed and direction
can change rapidly (Fig.5). Even for stationary targets,
camera motion or zoom can cause large target motions in
image sequences. The original tracker used a Kalman
Filter which cannot handle the nonlinear and non-
Gaussian problems which this situation often causes. In
the Woman sequence, the target velocity is around 20
pixels in the X direction in frames 560-565. In frame 566,
its speed changes suddenly to -20 pixels. This rapid
irregular movement can easily result in tracking failure if
Kalman Filtering is used to make a spatiotemporal
prediction.

4. Four new enhancements
The main contribution of this paper is to add four

enhancements to the original coupled-layer tracker, in
order to solve the problems highlighted in section 3.
Solutions for the patch scale and drifting problems in
clutter, decreasing the risk of tracking failure while
improving precision. Additionally, we describe a way of
detecting occlusion situations, and then recalling a
memory of previously seen target features to enable
tracking recovery. Furthermore, during periods of low
tracking confidence, the Kalman-filter is augmented by a
stochastic particle-like approach, to help recover the target.

4.1 Adapting patch scales to the target
The original algorithm uses the spread of local patches

to adapt the size of an overall bounding box. However, the
size of each patch itself remains fixed. As shown in Fig.2,
the tracker can fail when the target shrinks to sizes of
similar magnitude to that of individual patches – because
some patches are forced off the target and onto
background pixels. Therefore, it is essential to enable the
scale of patches to adapt.

A naive approach is to scale patches proportionate to
size changes in the overall bounding box. However, the
bounding box may shrink due to occlusion, and not due to
true target scaling, in which case patches should maintain
their current size and refrain from shrinking. Additionally,
rapid and noisy size changes lead to instability. Allowing
patch scale to rapidly respond to noise in the bounding box
size engenders rapid, erroneous addition or removal of
information which can irrevocably damage the adaptive
appearance model. Therefore, an important issue here is
how to ensure the stability while adapting the scale.

Local patches are initialized as a proportion, �, of the
bounding box size:

��
� = ��

�/� (3)
where ��

� and ��
� are the areas of the bounding box and

each patch, respectively. Scale factor � cannot be used to
change patch scale directly, because noisy variation in
bounding box sixe, ��

�, would cause instability. Therefore,
we compute an n-frame moving average bounding box
scale:

�̅�
� = ∑ ��

��
��!" (4)

where ��
� is the scale of bounding box at the frame k. This

moving average scale can be memorized as: �� = �̅�
� .

(a) Frame 565 (b) Frame 566 (c) Frame 567
Figure 5: Rapid irregular target movement (woman)

(a) Occulsion ocurs (b) Tracking failure
Figure 4: Full occlusion (bicycle)

(a) Initialization (b) Patch drifting
Figure 3: Patch drifts from majority due to clutter (diving)

(a) Initialization (b) nearly lost target
Figure 2: Fixed patch scale for a rapidly shrinking target(singer)

139139

During tracking, the moving average �̅�
� is compared

against the last memorized value, ��, at each frame. If the
scale has changed significantly (above the threshold #$),
then the size of patches is adjusted accordingly:

��
� = %

��!�
� , ��̅�

� − ��� < #$

&$��!�
� + (1 − &$)�̅�

�/�, �'ℎ-.�0�-
(5)

where λ3 is a persistence factor to control the speed of size
adaptation, eliminating sudden, large information changes.
Whenever patches are re-scaled, we also need to update
the memorized bounding box:

�� = &$�� + (1 − &$)�̅�
� (6)

Note that #$ cannot be a fixed threshold, because the
significance of any size change must be judged relative to
the current absolute size of the bounding box. Therefore,
threshold #4 is itself adapted with recent box size:

#$ = 	�� (7)
We find a value of 	 = 0.02 to be effective. Following

each scale adaptation, the next adaptation is delayed by a
minimum time interval to ensure that scale is not changed
too frequently.

4.2 Preventing patch drifting in clutter
In cluttered environments, individual patches can easily

drift away from the main patch cluster. The original
algorithm utilized the median of Euclidean distances
between an individual patch and all other patches to
evaluate whether or not the patch is drifting. This
geometric constraint can adequately prevent a single patch
from drifting (Fig.6.a). However, if two or more patches
drift at the same time, then the median becomes distorted
and can fail (Fig.6.b and Fig.6.c).

As drifting means small groups of patches distributing
differently from the majority patch distribution, one
should both consider the number and the density of
drifting patches. Here, we employ the marginal
distribution to solve this problem. The joint spatial
distribution density of patches can be denoted as:

∑ ∑ 5(6, 7)(8,9)∈> = 1 (8)
Where (6, 7) represents patch coordinates in image ? .

We obtain the marginal distribution of patches by:
59(6) = ∑ 5(6, 7)9 and 58(7) = ∑ 5(6, 7)8 (9)

Drifting must be checked for in both x and y directions.
Here we illustrate for the x direction:

In order to identify potential drifting regions, we first
search the maximum non-zero interval ∆6AB8 in 59(6) .
The region outside of this interval is regarded as a
candidate potential drifting region. Next, the following
two criteria are applied to each such candidate region, to
confirm whether or not it is really drifting. The weights of
confirmed drifting patches are then decreased.

A. search maximum non-zero interval

Drifting causes a large gap in the distribution of patch
positions. This can be detected easily in the patches
marginal distributions. The algorithm first searches the
maximum non-zero interval ∆6AB8 , ∆7AB8 for each
marginal distribution respectively, and drifting is detected
when either of these intervals exceed thresholds #∆8, #∆9.
Noticeably, #∆8 and #∆9 are not fixed parameters, but
change adaptively according to the scale of the local patch
C�BDEF and current distribution length CBGG . For example, in
the X-direction (Fig.7):

 #∆8 = H
I� C�BDEF, IBGGCBGG < I� C�BDEF
 IBGGCBGG , I� C�BDEF ≤ IBGGCBGG ≤ IKC�BDEF
IK C�BDEF, IKC�BDEF < IBGGCBGG

 (10)

Where IBGG and I�, IK are factors which must be chosen
by the user according to the tracking situation. We have
found that values of 0.2< IBGG≤0.4 and 2<I�, IK≤5 work
well in many tracking situations. These factors define the
extent of drifting which is permitted, before being detected
and corrected as an error situation. Once ∆6AB8 exceeds
 #∆8 , the region outside the maximum non-zero interval
becomes regarded as a potential drifting region and is then
chosen as a candidate for additional drift checking
according to the following method.

B. detecting drifting from the patch density

Drifting is not only characterised by a small group of
patches, which are separated from the majority cluster.
Additionally, the distribution density of the drifting
patches should be very small. The proportion . of patches
in the drifting region can be computed by:

. = ∑ 59(6)8LMN
88O (11)

Where 6� and 6P"4 are coordinates shown in Fig.7, and
59(6) is a normalised distribution which sums to unity.

Figure 7: Marginal distribution in x direction

(a) (b) (c)
 Figure 6: majority (blue) and drifting (orange) patches.

140140

The user must set a value QR� first (good values lie in the
range 0, 40%) to define “minor” patch drifting.

A second measure is patch density in the candidate
drifting region from the length ratio QRK, denoted by:

QRK = C4R�SD/CBGG (12)

where C4R�SD and CBGG are lengths shown in the Fig.7. If . is
smaller than QRK, it indicates that the patch density in the
candidate drifting region is less than the average patch
density. Considering both constrains, drifting can be
automatically detected by satisfaction of the inequality:

. < #T (13)

where threshold #T = U0V(QR�, QRK) (14)
C. automatic recovery from patch drifting

Once a drifting patch has been detected, its weight is re-
computed as:

�8 W�4(X)Y
Z = %-!(GN[X\]!GN(X)), 0 ∈ ^
1, �'ℎ-.�0�-

 (15)

where subscript 0 is used to denote the 0 th patch in the
drifting region, ^, and C4(X)is the distance between patch 0
and the closest boundary patch (located in 6P"4) of whole
distributed region. C4R�SD is shown in Fig.7.

Taking into account both X-axis and Y-axis marginal
distributions and also the sigmoid function constraint from
the original tracker, the new weight � W�4(X)Y
Z in Eq. 2 is
revised as:

� W�4(X)Y
Z = �8 W�4(X)Y
Z �9 W�4(X)Y
Z �� W�4(X)Y
Z (16)

where �� W�4(X)Y
Z is a sigmoid function that is the same as
that in the original tracker. For minor drifting situations,
such as Fig.6.b, the weights of patches are allowed to
decrease gradually by:

��
(�) = &_��!�

(�) + (1 − &_)���
(�) (17)

where λ` is a persistence constant. However, in cases such
as Fig.6.c, the drifting should be resolved immediately. It
is possible to detect this situation by extremely large
values of the maximum non-zero interval, #∆8 . In such
cases, &_ is set to zero so that these drifting patches are
immediately deleted.

4.3 Memory recovery in occlusion situations
The original tracker often fails in occlusion situations

because information about occluded parts of the target is
immediately and permanently deleted during model
updating at each frame. An obvious way to overcome this
problem is by continuously recording a memory of the
visual model in its unoccluded state, and then recalling the
memory once an occlusion state has been detected. Here
we propose a simple but useful method for detecting such
occlusions.

During the updating stage at each frame, local patches
can be deleted from the target model for three reasons: low
weights due to visual mismatching; low weights due to
drifting; and nearby patches being merged. Normally, the
first two situations happen frequently while merging
patches only occur occasionally. During severe occlusions,
most patches will rapidly converge on the unoccluded part
of the target (see Fig.4), which rapidly becomes very small.
Therefore, we propose two features for detecting occlusion
situations: firstly, an extremely small size of bounding box
scale; secondly, the rate at which patch mergers occur
(reflect the speed of shrinking). This step takes place after
local patch matching (step 2 in Fig.1). We can obtain the
scale of bounding box �a and the number of potential
merging patches, bc, from the current set of patch positions.
When these values both satisfy the below inequalities, an
occlusion situation is confirmed:

�a < #� and bc > #� (18)
where #� is a scale threshold and #� is a threshold for the
number of merged patches. Once an occlusion situation is
detected, the model updating stage is stopped, and. a target
model, recorded during the most recent unoccluded period,
is recalled from memory. Essentially this this is equivalent
to forcing the original coupled-layer model to temporarily
degenerate into a single holistic model for tracking. In
other words, patch positions remain the same, relative to
their neighbors, in the patch constellation.

 In this situation, we first predict the location of patches
from the previous frame (giving all patches the same
movement). Then, comparing current observed patches to
their templates, one can compute likelihoods for each
patch. If the average likelihood is very low, a mixed
spatiotemporal prediction mechanism is triggered for
tracking which is explained in details in section 4.4.

4.4 Mixed strategies for spatiotemporal prediction
In the original algorithm, a Kalman Filter is utilized for

spatiotemporal prediction [14]. It is accurate and highly
efficient for tracking a target with a known linear and
Gaussian motion model. However, typically only a limited
region of the image is searched (usually the same size as
the target region) by the Kalman Filter, so that predictions
fail when the target motion changes direction or the
camera moves significantly.

When prediction is noisy or the tracker cannot find a
good match, it is natural to search a larger region so that
we can obtain the best estimation of the target state.
Therefore, we first compute overall likelihood from the
local patches to judge whether or not the tracker has found
a good match. In contrast to the usual location
optimization of patches, which considers both appearance
and geometrical models (Eq.2), we only use the
appearance model here to get the overall likelihood of
patches by:

141141

�� = �
�

∑ -!e(F[L\
(X) ,F�

(X))�
�� (19)

where 5(.) is the Bhattacharyya distance between
histogram [11]. ℎRPS

(�) is the histogram of patch 0 when
initialized and ℎ�

(�) is the observed histogram at frame 	. b
is the number of local patches. A very low value of ��
indicates that Kalman Filter is becoming ineffective. Once,
�� is smaller than a threshold, the Kalman Filter is
replaced by a Particle Filter [4] to more robustly estimate
candidate target locations. In other words, this tracker will
split into several trackers (particles). Each of them can
obtain likelihood ��

(g) of particle h by Eq. 19.
After normalization of these likelihoods, the new

estimation of target location from the particle state #�
(g)can

be denoted by:
#a� = ∑ ��

(g)�i
g� #�

(g) (20)
In order to preserve efficiency, we do not perform the

original algorithm’s patch optimization procedure on
every particle, but only on the overall estimated set of
patch poses as derived from Eq.19.The particle-based
tracking procedure is continued until the overall patch
likelihood improves above a minimum threshold, at which
point deterministic Kalman Filtering is resumed.

5. Experimental results
We evaluate our algorithm in two stages. First, we

compare our enhanced tracker to the original coupled-
layer tracker, and demonstrate how the enhancements are
advantageous for some specific sequences. Then, the
overall performance is evaluated using the public bench-
mark toolkit [17].

5.1 Enhanced vs original trackers
Here, we demonstrate that the enhancements can

decrease the failure rate and improve the precision for
some specific sequences.

Fig. 9 shows an example of a target (Singer) which
rapidly shrinks to a small size. With the adaptive patch
scale enhancement, the bounding box accurately shrinks to
match the target, whereas the original tracker with
constant patch size fails (Fig.2.). The size of the target

rapidly shrinks after frame 70. As shown in figure 10, the
precision of the original tracker rapidly deteriorates during
this time, whereas the enhanced tracker with adaptive
patch scale maintains a consistently high precision.

Fig. 10 shows the performance of the enhanced tracker
on a difficult occlusion problem, which can be compared
the original tracker in Fig.4. The enhanced tracker retains
a memory of the target history, automatically detects
occlusion conditions, and recalls the memory to recover
from occlusion. While the occlusion is occurring, the
precision decreases dramatically for both trackers from
frame 170. However, while the original algorithm
continues to deteriorate, the enhanced algorithm
automatically detects the occlusion situation and recovers
by using memory. Once the target re-appears, the tracker
can continue tracking accurately.

Fig. 11 shows the Woman sequence, where there is a
fast movement of the camera view as it zooms in. Near to
the end of the sequence, both trackers suffer a sharp
decrease in precision due to rapid camera motion (nearly
+40 pixels between some successive frames in Woman
sequence, for a target of width order 40 pixels). Worse still,
the velocity predicted by Kalman Filter is actually in the

Figure10: tracking performance: bicycle
50 100 150 200 250

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frame

P
re

ci
si

on

Orginal Coupled-layer Model
Modified Coupled-layer Model

Frame 171 Frame 173

Frame 10 Frame 250

Figure9: Tracking performance: singer

50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frame

P
re

ci
si

o
n

Orginal Coupled-layer Model
Modified Coupled-layer Model

Global layer

Colour Motion Shape

Local layer

 Drifting cancellation

High Low
 Kalman Particle
 Filter Filter

Motion
model

Overall

likelihood

Memory

Occlusion

Scale adaption

Propagation

Figure 8: A schematic overview of modified steps

142142

opposite direction of the real target motion. The enhanced
tracker detects deteriorating tracking confidence, and
triggers the Particle Filter to continue tracking the target
successfully, while the original tracker does not recover
and fails.

It is difficult to demonstrate the efficacy of our drifting
solution with examples from specific sequences. However,
we demonstrate the effectiveness of this modification
though as part of the ovearall results comparison in
Section 5.2.

5.2 Objective tracking evaluation
The overall tracking results are obtained by using the

publicly available tracking benchmark toolkit of the ICCV
2013 VOT tracking workshop, [17], to evaluate trackers in
terms of failure rate and accuracy. Since both LGT and
LGT++ trackers are stochastic, each is run 15 times on
each video sequence to generate statistically meaningful
results. Each tracker is assessed on the criteria of
“accuracy” and amount of “failure”. Here, we first explain
the statistical meaning of the “failure” criterion. For the
results of each sequence, 0 means no failure (target was
not lost) at all in all 15 repetitions of all 16 video
sequences. An increase of 0.067 means the target was lost
one more time during the 15 repetitions. The target is
defined as “lost” when the tracker output bounding box
has no overlap with the human-annotated ground-truth
bounding box. Whenever the target is lost, the toolkit
records the failure and then automatically re-initializes the
bounding box and resumes tracking. Therefore, a bad
tracker may “fail” a maximum of 15*(number_of_frames)
times for each test video. Values below 1.0 mean the
tracker seldom lost the target (less than once per sequence
on average). For a total score, averaged over all 16 test
videos, an increase of 0.004 means the tracker failed one
extra time over the whole experiment. Accuracy j� is
defined as the overlap between the tracker’s predicted
bounding boxTTm and the ground truth bounding boxGTm:

j� = oo�∩qo�
oo�∪qo�

 (21)

Once the tracker drifts completely to the background,
the measure becomes zero, regardless of how far from the
target the tracker is currently located. The overlap measure
is summarized over an entire sequence by an average
overlap over the valid frames.
Experiment 1: runs trackers on all 16 sequences,
initialized from ground truth bounding box at first frame.

Table 1 accurate initialization

Name
Failure Accuracy

Original Modified Original Modified
Bicycle 1.000 0.400+ 0.528 0.503-

Bolt 0.067 0.067 0.414 0.446+

Car 0.000 0.000 0.484 0.535+

Cup 0.000 0.000 0.628 0.790+

David 0.000 0.000 0.568 0.569+

Diving 1.000 0.200+ 0.435 0.485+

Face 0.000 0.000 0.598 0.497-

Gymnastics 0.867 0.267+ 0.475 0.519+

Hand 0.133 0.133 0.534 0.555+

Ice-skater 0.000 0.000 0.548 0.556+

Juice 0.000 0.000 0.695 0.716+

Jump 0.000 0.000 0.588 0.525-

Singer 0.000 0.000 0.215 0.474+

Sunshade 0.333 0.200+ 0.541 0.542+

Torus 0.000 0.000 0.673 0.750+

Woman 0.867 0.267+ 0.338 0.352+

The (.)+ and (.)- symbols denote improved vs worse
performance respectively of the enhanced tracker. The
total evaluation scores, averaged over all 16 test videos,
are original LGT: accuracy (0.516), failure (0.267); our
LGT++ tracker: accuracy (0.551), failure (0.096).

LGT++ enhancements are most noticeable in terms of
enhanced robustness (reduced failures). However,
significant accuracy gains are also apparent in certain
difficult tracking situations. In terms of accuracy, we can
find large improvements in the Cup and Singer sequences
but reduced accuracy in the Face sequence. Note that it is
hard to demonstrate a clear improvement in accuracy,
because the drifting solution enhancement tends to hold
the bounding box tighter and focus on the main body of
the target. In doing so, it may miss some small peripheral
parts of the target thus adversely affecting accuracy
metrics. However, this enhancement clearly decreases the
risk of patches drifting onto background distracters in
cluttered environments, thus enhancing robustness. We
can see this effect most clearly in the Diving and
Gymnastics sequences (note the large improvements in
failure rates). As shown in Section 5.1, the improvement
of Bicycle comes from the occlusion solution and Woman
thanks to the mixed spatiotemporal prediction strategy.
Experiment 2: same as Exp. 1, but initialized with
randomly perturbed bounding box. Original LGT tracker:

50 100 150 200 250 300 350 400 450 500 550
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frame

P
re

ci
si

on

Orginal Coupled-layer Model
Modified Coupled-layer Model

Frame 561 Frame 562

Figure11: tracking performance: woman

143143

accuracy (0.513), failure (0.221); our LGT++ tracker:
accuracy (0.541), failure (0.113).
Experiment 3: same as Exp. 1 but all images converted to
grayscale. Original LGT tracker: accuracy (0.480), failure
(0.783); Our LGT++: accuracy (0.520), failure (0.463).

6. Conclusion
We have identified four major causes of failure, in a

state of the art tracker, and proposed a series of additional
techniques to address each of these problems. Detecting
and correcting patch drifting enhances performance in
heavily cluttered environments. Enabling patches to scale,
in addition to the bounding box, solves problems
associated with rapid target size changes. Occlusion is
automatically detected and resolved by recalling a target
memory. Rapid erratic motion is addressed by means of a
mixed spatiotemporal prediction strategy. Experimental
results demonstrate that the enhanced tracker outperforms
the original tracker on a variety of challenging sequences,
showing significantly reduced failure rates and improved
accuracy in most test sequences. Future work will focus on
how to allocate the patches during initialization.

Acknowledgements
The authors would like to thank for the help from authors
of [10]. Xiao is supported by the China Scholarship
Council and school scholarship in the University of
Birmingham. This work was in part supported by ARRS
projects J2-2221 and J2-4284 and EU project CogX (FP7-
ICT215181-IP).

7. Reference
[1] A. Yao, X. Lin, G. Wang, and S. Yu, "A Compact
Association of Particle Filtering and Kernel based Object
Tracking," Pattern Recognition, vol. 45, pp. 2584-2597, 2012.
[2] B. Stenger, T. Woodley, and R. Cipolla, "Learning to Track
with Multiple Observers," IEEE Conf. Computer Vision and
Pattern Recognition, pp. 2647-2654, 2009.
[3] B. Yang and R. Nevatia, "Online Learned Discriminative
Part-based Appearance Models for Multi-human Tracking," Proc.
European Conf. Computer Vision, pp. 484-498, 2012.
[4] G. Kitagawa, "Non-Gaussian State—Space Modeling of
Nonstationary Time Series," Journal of the American statistical
association, vol. 82, pp. 1032-1041, 1987.
[5] H. Yang, L. Shao, F. Zheng, L. Wang and Z. Song, "Recent
Advances and Trends in Visual Tracking: A Review,"
Neurocomputing, vol. 74, pp. 3823-3831, 2011.
[6] J. Fan, Y. Wu, and S. Dai, "Discriminative spatial attention
for robust tracking," Proc. European Conf. Computer Vision, pp.
480-493, 2010.

[7] J. Kwon and K. M. Lee, "Tracking of a Non-rigid Object via
Patch-based Dynamic Appearance Modeling and Adaptive Basin
Hopping Monte Carlo Sampling," IEEE Conf. Computer Vision
and Pattern Recognition, pp. 1208-1215, 2009.
[8] J. Martínez-del-Rincón, C. Orrite, and C. Medrano, "Rao–
Blackwellised Particle Filter for Colour-based Tracking," Pattern
Recognition Letters, vol. 32, pp. 210-220, 2011.
[9] K. Fukunaga and L. Hostetler, "The Estimation of the
Gradient of a Density Function, with Applications in Pattern
Recognition," Information Theory, IEEE Transactions on, vol.
21, pp. 32-40, 1975.
[10] L. Čehovin, M. Kristan and A. Leonardis, "Robust Visual
Tracking Using an Adaptive Coupled-Layer Visual Model,"
Pattern Analysis and Machine Intelligence, IEEE Transactions
on , vol.35, no.4, pp.941-953, 2013.
[11] P. Pérez, C. Hue, J. Vermaak, and M. Gangnet, "Color-
based Probabilistic Tracking," Proc. European Conf. Computer
Vision, pp. 661-675, 2002.
[12] Q. Zhao, Z. Yang, and H. Tao, "Differential Earth Mover's
Distance with its Applications to Visual Tracking," Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol.
32, pp. 274-287, 2010.
[13] R. T. Collins, Y. Liu, and M. Leordeanu, "Online Selection
of Discriminative Tracking Features," Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 27, pp. 1631-
1643, 2005.
[14] R. E. Kalman, "A New Approach to Linear Filtering and
Prediction Problems," Journal of basic Engineering, vol. 82, pp.
35-45, 1960.
[15] R. Stolkin, A. Greig, M. Hodgetts, and J. Gilby, "An EM/E-
MRF Algorithm for Adaptive Model based Tracking in
Extremely Poor Visibility," Image and Vision Computing, vol.
26, pp. 480-495, 2008.
[16] S. Wu, Y. Zhu, and Q. Zhang, "A New Robust Visual
Tracking Algorithm based on Transfer Adaptive Boosting,"
Mathematical Methods in the Applied Sciences, vol. 35, pp.
2133-2140, 2012.
[17] The VOT 2013 evaluation kit. http://www.votchallenge.net.
[18] X. Wang, "Intelligent Multi-camera Video Surveillance: A
Review, " Pattern Recognition Letters, vol. 34, no.1, pp. 3-19,
2013.
[19] X. Li, W. Hu, C. Shen, Z. Zhang, A. Dick, and A. Hengel,”
A Survey of Appearance Models in Visual Object Tracking,”
TIST, 2013, in press.
[20] Y.-M. Seong and H. Park, "Multiple Target Tracking Using
Cognitive Data Association of Spatiotemporal Prediction and
Visual Similarity," Pattern Recognition, vol. 45, pp. 3451-3462,
2012.

144144

