
Surface Recovery: Fusion of Image and Point Cloud

Siavash Hosseinyalamdary Alper Yilmaz

The Ohio State University

2070 Neil avenue, Columbus, Ohio, USA 43210

pcvlab.engineering.osu.edu

Abstract

The point cloud of the laser scanner is a rich source of

information for high level tasks in computer vision such as

traffic understanding. However, cost-effective laser scan-

ners provide noisy and low resolution point cloud and they

are prone to systematic errors. In this paper, we propose

two surface recovery approaches based on geometry and

brightness of the surface. The proposed approaches are

tested in realistic outdoor scenarios and the results show

that both approaches have superior performance over the-

state-of-art methods.

1. Introduction

Point cloud is a valuable source of information for scene

understanding. There are scientific endeavors to detect and

classify objects in a scene using Kinect point cloud [17]. In

addition, urban challenge has proven that the point cloud,

collected from laser scanner, is an essential source of in-

formation for reliable traffic understanding resulted in au-

tonomous driving [19]. The accurate and high resolution

laser scanners are expensive and may not be cost-effective

to be used in autonomous vehicles. In contrast, point cloud

generated from inexpensive laser scanners are noisy and low

resolution and prone to systematic errors. Therefore, 3D

scene recovery based on sparse and noisy point clouds has

attracted scientific attentions. Independently, scientists has

also attempted to reconstruct the surface of objects based on

the images for many years. In this paper, we combine these

two sources of information to recover the surface of the ob-

jects and remove the noise from the point cloud. Figure

1 shows the sparse point cloud collected by laser scanner

overlaid on the image.

Surface of an object can be implicitly or explicitly rep-

resented in three dimensional Euclidean space. In explicit

representation, a function is fitted to the sampled points

of the surface. The Delaunay triangulation is the earliest

attempt to explicitly represent the surface using triangles.

Moreover, splines and its derivatives [18] are applied to re-

construct surfaces. Implicit (or volumetric) representation

of a surface divides the three dimensional Euclidean space

to voxels and the value of each voxel is defined based on an

indicator function which describes the distance of the voxel

to the surface. The value of every voxel inside the surface

has negative sign, the value of the voxels outside the surface

is positive and the surface is represented as zero crossing

values of the indicator function. Unfortunately, this repre-

sentation is not applicable to open surfaces and some mod-

ifications should be applied to reconstruct open surfaces.

The least squares and partial differential equations (PDE)

based approaches have also been developed to implicitly re-

construct surfaces. The moving least squares(MLS) [22, 1]

and Poisson surface reconstruction [16], has been used in

this paper for comparison, are particularly popular. Lim and

Haron review different surface reconstruction techniques in

more details [20]. Berger et al. also describe the advantages

of different methods to handle noise, sparsity, missing data

and misalignment in the point cloud and they investigate

different applications of surface reconstruction [3].

Beside point cloud, the surface can be recovered from

image content, known as shape from shading. The semi-

nal works of Horn and his colleagues have initiated shape

from shading approaches [13, 15]. This problem has been

extensively studied for the laboratory environments where

the different illuminations, light sources, object properties,

and pose of the cameras are known [28, 7]. However, this

problem has still remained unsolved for realistic scenarios

where the surface reflectance and light source properties are

unknown.

This paper relates the surface curvature and the bright-

ness changes on the surface and introduces a cost function

to minimize their difference. Consequently, a regularizer

is constructed based on this cost function and it is used to

recover the surface. Due to the complexity of the lighting

situation, the regularizer cannot obtain satisfactory results

unless it is updated by the sampled points of the surface.
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Figure 1. This paper uses the image (left) and point cloud (right)

sources to reconstruct the surface.

2. Methodology

A local coordinate system is defined at every sampled

point to locally represent the surface of an object. We pro-

pose geometry and brightness based approaches to recover

the surface at the neighborhood of the sampled points. The

geometry based approach has been previously described in

[14] .Finally, we introduce a global constraint to remove

the discontinuities between locally estimated surfaces and

assure continuity of the surface.

2.1. Local coordinate system

Every surface is a two dimensional manifold embedded

into the three dimensional Euclidean space, S : R2 → Λ ⊂
R3. Λ is a subset of R3 that encompasses the surface. If

we assume that the surface of the object is smooth and con-

sequently differentiable, it becomes a Riemannian manifold

and the tangent space, T , can be defined.

Let’s assume that point X is given on the surface and the

normal vector of the surface, ~n, is known at point X. Let’s

define two orthonormal vectors ~u and ~v in the tangent space.

Local coordinate system is defined in the way that its origin

is located at point X and its bases are the ~u, ~v, and ~n. Let’s

define ΩX the neighborhood of the point X on the surface

and assume there is a point X′ ∈ ΩX on the surface at the

neighborhood of point X. The coordinates of point X′ is

X
′ = [uX′ , vX′ , wX′ ]⊤. wX′ is the distance of the point X′

from the tangent space and it can be written as a function

of the point coordinates in tangent space, u and v such that

W (uX′ , vX′) = wX′ . W is a scalar field which indicated

the distance of every point from the surface to the tangent

space. In order to recover the surface, it suffices that the

scalar field W is estimated in the neighborhood of point X.

The estimation of W is independent of the definition of two

vector bases ~u and ~v. Here, we simplify the definition of W
by choosing the following transformation between the local

coordinate system, defined for the neighborhood of point

X, and Euclidean coordinate system, such that

X
′ = R1(α)R2(β)X

′
Euclidean

. (1)

If n1,n2, and n3 are elements of ~n in 3D Euclidean space,

it leads to α = − arctan(n2

n3

) and β = arccos
√

n2
2 + n2

3.

R1 and R2 are rotations around ~X and ~Y axes of Euclidean

coordinate system. This transformation transfers origin of
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Figure 2. The profile of the surface in local coordinate system is

presented in this figure. The sampled point X on the surface is the

origin of the local coordinate system and first and second axes of

the local coordinate system are laid on the tangent space, ~u and

~v. Every point on the surface, X′, has two components, u and

v on the tangent space and one component in normal direction,

W . Point X′ can be stated with X
′ = [u, v,W (u, v)] in the local

coordinate system.

Euclidean coordinate system to the point X and it maps ~X ,
~Y , and ~Z of Euclidean coordinate system into ~u, ~v, and ~n
of the local coordinate system. Figure 2 shows a profile of

the surface where it is passed through point X and point X′.

The tangent space is defined at point X and point X′ can be

recovered if W (uX′ , vX′) is estimated.

In order to estimate W (uX′ , vX′), point X and its nor-

mal vector are not sufficient and other sampled point of the

surface should be projected to the local coordinate system.

Let’s assume, the sampled points of the surface in the neigh-

borhood of point X are Π = {X1, ...,Xn}. The moving

least squares (MLS) fits a polynomial to the sampled points

in the local coordinate system to recover the surface. The

disadvantage of MLS is that it assumes the neighborhood

is the same in all directions. Therefore, it may violate the

boundaries of the surface. We propose an approach to de-

fine the neighborhood based on geometry of the sampling

points to preserve the boundaries.

Geometry of the surface at the local neighbor-

hood can be represented as the co-variance matrix

of the sampled points. The co-variance matrix,

SXX =
∑

Xi∈ΩX

(Xi −X)⊤(Xi −X) represents a three-

dimensional ellipsoid. The axes of the ellipsoid are eigen-

vectors, (θ1, θ2, θ3) of the matrix SXX corresponding to the

eigenvalues, (λ1 ≥ λ2 ≥ λ3 ≥ 0), of this matrix. The

normal to the surface at point X is corresponding to the

eigenvector θ3, with the smallest eigenvalues, λ3. Two other

eigenvectors, θ1, θ2, are corresponding to the two largest

eigenvalues λ1 ≥ λ2, indicate an ellipse in the tangent

space. The ellipse follows geometry of the surface in the

tangent space. That is, it become a circle within the bound-

aries of the surface and it elongates at the boundaries of the

surface. Therefore, this definition of the neighborhood of
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point X does not violate the boundaries of the surface and

consequently, it preserves the boundaries. Figure 3 shows

our definition of the neighborhood of point X in the tangent

space.

Figure 3. The neighborhood of point X, corresponding to the

highlighted region in Figure 1, is shown in the tangent space. A

100 × 100 grid is created around point X and the other sampled

points (red dots) are also projected to the tangent space. An ellipse

is created based on the distribution of sampled points around point

X and the neighborhood of point X is defined as the intersection

of the grid points and ellipse. In other words, the grid points that

lay in the ellipse belong to the neighborhood of point X. The color

of the grid points shows slope of the initial surface at this neigh-

borhood.

2.2. Surface recovery based on geometry

In section 2.1, the local coordinate system is defined at

point X. If the scalar field W is estimated in the neigh-

borhood of point X, the surface can be recovered in this

neighborhood. However, estimation of the scalar field W
is an inverse problem and it cannot be estimated without

any assumption. For instance, it is assumed that the sur-

face is planar in the Voronoi triangulation and a plane is

fitted into every three points of the surface. Here, we as-

sume that the surface is smooth and therefore, ∇W ≃ 0,

where ∇ = [ ∂
∂u

, ∂
∂v

]. This assumption leads to the cost

function and the smoothness of the surface is guaranteed by

minimizing the energy of this cost function, such that

min
W :Ω→R

E(W ) =

∫∫

Ω

φ(||∇W ||)dudv, (2)

Φ(.) is an arbitrary differentiable convex function and

||∇W || is L2 norm of ∇W . The Euler-Lagrange equations

can be applied to minimize (2) and it leads to isotropic dif-

fusion equation if Φ(.) is a quadratic function, such that

∂W

∂t
= div(∇W ) (3)

Solution of this equation is a uniform gaussian filter that

provides a smooth surface. The disadvantage of this method

is that it smoothes the corners and edges of the surface since

it is uniform gaussian filter. In order to preserve the corners

and edges, the diffusion tensor, D, can be introduced into

(3), such that
∂W

∂t
= div(D∇W ) (4)

Equation (4) is anisotropic diffusion equation which its so-

lution is equivalent to the oriented gaussian filter. In order to

preserve the edges and corners, D should be selected in the

way that it suppresses the smoothing filter in the direction

of ∇W . The choice of diffusion tensor has been extensively

studied in image processing [27, 25, 23]. The solution of (2)

can be estimated using the gradient descent in an iterative

scheme

Wk+1 = Wk − ∂W

∂t
δ, (5)

where the subscripts indicate to the iterations and δ is the

step size in the gradient descent iterative solution. Obvi-

ously, an initial estimate of the surface, W0, is required in

(5) to estimate the surface in the next iterations.

In (4), the sampled points do not change if ∂W
∂t

= 0
for the sampled points. Depending on the accuracy of the

sampled points, an additional term is added in (4) to handle

noise in the sampling points, such that

{

∂W
∂t

= div(D∇W ) ifX′ /∈ X
i

∂W
∂t

= ǫ ifX′ ∈ X
i.

(6)

ǫ ≤ 0 is a parameter dependent on the accuracy of the sam-

pling points. If ǫ = 0, then (6) obtains a smooth surface in

the way that it passes through the sampling points. If the

sampled points of the surface are noisy, then by the choice

of ǫ > 0 the sampling points are smoothed by the rate of ǫ.

2.3. Surface recovery based on reflectance

The idea of using reflectance of an object to recover the

surface is not new and shape from shading has been studied

to reconstruct the surface of an object for many years. The

reflectance is a function of light source energy, its direc-

tion, the surface normal vector and its material. This func-

tion is called Bidirectional Reflectance Distribution Func-

tion (BRDF). Like geometry, reflectance based surface re-

construction is an inverse problem and therefore, it is ill-

conditioned. In the controlled environment where the light-

ing sources are known, such as photometric stereo, different

illuminations are used to reconstruct the surface. Further-

more, the shade cue has been used with other cues, such

as motion cue, to resolve this ill-condition problem. In an

inspiring work, the motion cue estimated from optical flow

is integrated with the shade cue to reconstruct the surface

[5, 4].
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If image of an object is available, the brightness of the

image depends on the reflectance of the object. In order

to recover the surface based on reflectance, the lighting

sources, the material of surface and its optics properties,

and the camera pose should be known. In a realistic uncon-

trolled indoor and outdoor scenarios, when these sources of

information are not available, it is impossible to recover the

surface. Here, we assume convexity of the surface, distant

illumination and orthographic light source. The distant illu-

mination and orthographic light source assumption is espe-

cially valid for outdoor environment. If the surface is recov-

ered in a local coordinate system, the convexity assumption

of the surface is valid for the neighborhood of point X.

Let’s assume the tangent space is tangential to the sur-

face at point X, point X′ is a point on the surface in ΩX,

and the brightness of these points is I(x) and I(x′) in the

image space. The brightness changes indicate the changes

in normal direction of the surface at these points [26], such

as

|I(x)− I(x′)| ≃ arccos(~n⊤
X
~nX′), (7)

where ~nx and ~nX′ are normal vectors to the surface at points

X and X
′. The normal vectors at point X and point X′ in

the local coordinate system are ~nX = [0, 0, 1]⊤ and ~nX′ =
1
µ
[Wu,Wv, 1]

⊤ where µ =
√

1 +W 2
u +W 2

v . Replacing

normals in (7), it can easily be shown that

||∇W || ≃ tan |I(x)− I(x′)|. (8)

Equation (8) constructs a cost function that relates the sur-

face changes in the local coordinate system to the bright-

ness changes in the image. By minimizing the energy of

cost function (8), the surface can be recovered, such that

min
W :Ω→R

E(W ) =

∫∫

Ω

Φ(||∇W ||−tan |I(X)−I(X′)|)dudv.
(9)

The Euler-Lagrange equations provide the necessary condi-

tions for the minimization of (9), such that

∂W

∂t
= div(Φ(||∇W || − tan |I(x)− I(x′)|) ∇W

||∇W || ).
(10)

If the brightness changes are small, tan |I(x)− I(x′)| ≃ 0
and (10) is converted to the uniform gaussian filter in (3).

When the brightness changes are significant (10) becomes

anisotropic diffusion equation and the rate of the diffusion

in each direction is equivalent to the brightness changes in

that direction. In other words, brightness changes indicates

to the curvature on the surface. Similar to geometry based

surface recovery, the sampled points can be smoothed if

these points are noisy, such that










∂W
∂t

= div(Φ(||∇W || − tan |I(x)− I(x′)|) ∇W
||∇W || )

ifX′ /∈ X
i

∂W
∂t

= ǫ ifX′ ∈ X
i.
(11)

It should be noted that the noise in the image can cause in-

correct surface changes and therefore, the recovered surface

may not be smoothed using the noisy images. Therefore, it

is suggested that noise is removed from the image by ap-

plying filters, such as bilateral filter. Also, it is assumed that

the brightness changes are the results of the surface curva-

ture. However, the brightness can change due to the texture

and it may affect the results of the surface recovery. It may

required that the surface recovery is suppressed in the pres-

ence of texture.

2.4. Global constraint

When the surface in the neighborhood of point X is re-

covered, it can be transferred to Euclidean coordinate sys-

tem using (1). The surface of an object is recovered when

the local surfaces of all neighborhoods of sampled points

are transferred to Euclidean coordinate system. However, it

does not guarantee a continuous surface of an object since

the local surfaces are independently estimated. Therefore, a

global constraint is required to provide a continuous surface

from the independently estimated local surfaces. A Markov

random field regularizer can be used to impose the global

smoothness constraint, such that

min
Λ

E(S) =
∑

Xi

(S(Xi)−Xi)2 +

∫

Λ

S(X)2dX, (12)

where Λ is the subset of R3 that encompasses the surface.

The surface, S(X) in (12) is a function that represents the

surface of the object. In order to satisfy the global continu-

ity constraint, we have designed a filter to remove disconti-

nuities of the surface in the normal direction such that,
{

w =
∫

exp (X′−X)~n
||X′−X|| dX

′

X~n =
∫

wX ′
~ndX

′.
(13)

where ~n is the normal direction of the surface at point

X. Equation (13) indicates that points of the surface are

smoothed in the normal direction. This equation smoothes

the corners and edges too.

2.5. Numerical scheme

Equation (2) provides a smooth surface of the object.

However, the solution to this equation is not feasible in re-

ality and the problem cannot be solved unless the surface is

discretized and this equation is estimated for finite points of

the surface. Therefore, we consider that surface at the local

neighborhood is a 100 × 100 grid and the location of these

grid points are estimated based on geometry or brightness

in previous sections.

The given solution may obtain incorrect results in the

lack of numerical conditioning. Let’s assume the local coor-

dinate system is defined for the point X with the neighbor-

hood ΩX. Based on [12, 11], the distance between points
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should be scaled in the way that the maximum distance of

the grid points in this neighborhood changes to
√
2. If the

point X is not located in the center of the grid points, the

centroid of the grid points in the neighborhood should be

estimated and the origin of coordinate system should be

shifted to the centroid.

In addition, (6) and (11) minimize the cost function in

an iterative way and therefore, the initial is required to be

updated in every step. In order to approximate the surface of

the object, we fit a second order polynomial to the sampled

points in the neighborhood. In some regions that sufficient

sampled points do not exist, we have applied lower orders

of polynomials.

3. Experiment

In order to evaluate the proposed approaches, we have

used a point cloud collected by laser scanner in one epoch.

Therefore, the point cloud represents the part of object

which is visible from the laser scanner perspective and it

is an open surface. Some of objects in the scene may

have holes. For instance, laser passes through windows

on the van in the dataset and the observed point cloud has

few holes. Topology of a surface indicates the number of

holes in the surface. In geometry based surface recovery,

we have only used the laser scanner point cloud, but in re-

flectance based surface recovery, the image taken by a cam-

era on the platform and the laser scanner point cloud are

integrated to reconstruct the surface. The images are taken

from PointGray Flea2 color camera and the point clouds are

collected from Velodyne HDL-64E laser scanner in KITTI

dataset [9, 8]. The sampled points are 2 centimeters accu-

rate in range, they are sampled in 0.09◦ angular resolution

and they are within120 meters range [9, 8]. The images are

1.4 Megapixels, 90◦ opening angle and global shutter. The

camera and laser scanner are calibrated and external and in-

ternal calibration parameters of the sensors are known.

The evaluation of the surface recovery is still an open

problem for realistic datasets. Ideally, two surfaces have

the identical points. However, it is not valid for the real

surfaces and there may not exist the corresponding points

between two surfaces. Berger et al. (2003) pointed out to

this problem when they compare the recovered surfaces to

the benchmark. Arguably, if the distance between the re-

covered surface and the benchmark surface are small, the

surface recovery is assumed to be successful. Berger et al.

have provided a benchmark and compared existing surface

recovery approaches [2] and concludeed that Moving Least

Squares (MLS) and its variants, such as Algebraic Point

set surfaces (APSS) [10] and Robust Implicit Moving Least

Squares (RIMLS) [21], have superior performance over the

other approaches [2]. Unfortunately, the image of objects

is not given in [2] and the proposed approaches cannot be

evaluated by this benchmark. Therefore, we compare our

algorithm with Poisson, MLS, APSS, RIMLS surface re-

construction approaches in a realistic outdoor scenario. It is

attempted to use the same set of parameters for these sur-

face recovery approaches and the proposed approach in this

paper.

4. Results

In the proposed approaches in section 2.2 and 2.3, sur-

face is recovered in the neighborhood of the sampled points

in the local coordinate system. Figure 4 demonstrates the

proposed approaches at the neighborhood of one of these

sampled points. The neighborhood is highlighted by red

rectangle in Figure 1. Figure 4a shows the cropped im-

age corresponding to this neighborhood. Figure 4b demon-

strates an initial planar estimation of the surface and it can

be seen that the surface does not correctly fit to the sam-

pled points in this neighborhood. In Figure 4c, geometry

based surface recovery (4) is used to reconstruct the surface.

Equation (4) guarantees that the surface passes through the

sampled points. If the sampled points are noisy, surface

can be recovered in the way that the sampled points are

smoothed too. Equation (6) is applied to suppress noise in

the sampled points in Figure 4d. Figure 4e illustrates sur-

face recovery based on the brightness (10). In this case, the

brightness discontinuity leads to surface discontinuity. Like

geometry based surface recovery, the sampled points can be

smoothed in brightness based surface recovery. Equation

(11) is used to suppress noise of the sampled points and

generate the surface in Figure 4f.

In the local coordinate system, the local surface is es-

timated for every local neighborhood and the locally esti-

mated surfaces are transferred to global (Euclidean) coor-

dinate system. Therefore, the local surfaces may not fit to

each other and the generated surface may become discon-

tinuous. Therefore, the global constraint is applied to guar-

antee the final surface is smooth. Figure 5a demonstrate the

results of the surface recovery using brightness and Equa-

tion (13) is used to guarantee the surface smoothness in Fig-

ure 5b. Figure 5a and 5b may look similar, but the zoomed

look in bottom row demonstrates that the global constraint

provides a smooth surface. However, the global constraint

is computationally expensive and may not be used in near

realtime applications.

In Figure 4, the proposed approaches are evaluated for

a local surface. We compare the proposed approaches for

the whole surface in Figure 6. The first row shows the sur-

face from sensor’s perspective and the second row shows

top view of the surface. Figure 6 shows that initial surface,

geometry based surface recovery, and brightness based sur-

face recovery can reconstruct the surface. It can be seen

that the proposed approaches do not fill in the holes (such

as windows of the van) of the surface and they preserve the

topology.
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Figure 4. (a) The cropped image corresponding to the neighbor-

hood of point X. This neighborhood is highlighted with a red

rectangle in Figure 1; (b) The surface is approximated by fitting a

plane in this neighborhood. This surface is used as initial surface

for (4), (6), (10) and (11). (c) The local surface is recovered based

on pure geometry according to (4). Equation (4) enforces that the

estimated surface must pass through the sampled points. (d) If

the sampled points are noisy, the estimated surface may not pass

through these points. The estimated surface can filter the sampled

points according to (6). (e) The brightness regularizer in (10) ob-

tains an smooth surface that passes through the sampled points.

(f) If the sampled points are noisy, (11) can be used to provide a

smooth surface.

According to [2] moving least squares approach and its

variants have superior performance over the other surface

recovery approaches. Possion and MLS surface recovery

approaches has been implemented using point cloud library

(PCL) [24] in this paper. In Poisson approach, a mesh based

surface of the object is created and the points are sampled

from the generated mesh based surface. The surface is gen-

erated from fitting the second order polynomial to the lo-

cal surfaces in MLS. The search radius and up-sampling ra-

dius are 50 centimeters. Two variants of MLS, APSS and

RIMLS, have been implemented using MeshLab [6]. Filter

scale is 2 for both methods, the spherical parameter is 1 in

APSS and the maximum fitting iterations is 3 in RIMLS. It

is attempted to provide the same resolution for all of the ap-

proaches. However, these algorithms have different strate-

gies and the resolution may not be the same. Figure 7 shows

(a) local (b) global

Figure 5. The highlighted part of the first row is zoomed in the sec-

ond row. (a) The locally estimated surfaces are transferred to the

global coordinate system and the estimated surface may become

discontinuous. (b) If the global smoothness is applied, the surface

becomes continuous.

the results of the surface recovery for these four approaches.

These approaches fill in the holes (windows of the car) of

the object and cannot preserve the topology. The boundary

of the surface is also violated and the shape of the object is

distorted.

In Figure 4, initial surface, geometry based surface re-

covery, and brightness based surface recovery show similar

performance in large scale view. Figure 8 shows the results

of the propose surface recovery approaches for a complex

object. The object, cyclist, is close to the sensor, it has a

complex surface, it is adversely affected by motion of the

platform during data collection. Figure 8 shows that bright-

ness based surface recovery has superior performance over

initial surface and geometry based surface recovery and it

obtains a smoother and more realistic surface.

5. Conclusions

In this paper, we propose geometry based and brightness

based surface recovery. The proposed algorithms are tested

for a realistic scenario when the camera and laser scanner

are mounted on a moving vehicle. The results show that

both of geometry based and brightness based surface recov-

ery approaches outperform the state of art surface recon-

struction approaches. In addition, a global constraint is pro-

vided to smooth the discontinuities of the locally estimated

surfaces and guarantee the continuity of the surface. In con-

trast to the existing approaches, the proposed approaches

preserve the boundary of objects and keep the topology of

surfaces.
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(a) Original cloud (b) Initial surface (c) Geometry (d) Brightness

Figure 6. The proposed surface recovery approaches in sensor’s perspective (top row) and top view (bottom row); (a) The original point

cloud, (b) Initial surface based on fitting the second order polynomial, (c) Geometry based surface recovery, (d) Brightness based surface

recovery. It is shown that the initial surface, geometry based surface reconstruction, and brightness based surface recovery can provide a

smooth and realistic surface. In the large scale, these three methods provide similar results for this object.

a) Poisson (b) MLS (c) APSS (d) RIMLS

Figure 7. A few existing surface recovery approaches in sensor’s perspective (top row) and top view (bottom row); (a) Poisson based

surface recovery [16], (b) Moving least squares surface recovery [22, 1], (c) Algebraic point set surfaces approach [10], (d) Robust implicit

moving least squares method [21]. Top view of the generated surfaces shows that none of these method can provide a smooth and realistic

surface. The boundary of the object is violated and the shape of the object is distorted in all these methods.
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