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Abstract

In this paper we present an efficient and accurate method

to aggregate a set of Deep Convolutional Neural Network

(CNN) responses, extracted from a set of image windows.

CNN features are usually computed on the whole frame or

with a dense multi scale approach. There is evidence that

using multiple windows yields a better image representation

nonetheless it is still not clear how windows should be sam-

pled and how CNN responses should be aggregated. Instead

of sampling the image densely in scale and space we show

that selecting a few hundred windows is enough to obtain

an effective image signature. We show how to use Fisher

Vectors and PCA to obtain a short and highly descriptive

signature that can be used effectively for image retrieval.

We test our method on two relevant computer vision tasks:

image retrieval and image tagging. We report state-of-the

art results for both tasks on three standard datasets.

1. Introduction

In this paper we address the problem of efficient multi-

media retrieval and automatic image annotation in the con-

text of social media. In the first task we aim at obtaining a

very compact and discriminative signature, that allows the

creation of scalable image retrieval systems. The goal of the

second task is to predict, for a given image, a finite set of

tags from a given vocabulary, serving as a compact descrip-

tion of the image. A popular group of recent image annota-

tion methods apply tag propagation using diversely defined

image neighborhoods [4, 12, 19–21, 30]. These approaches

have been successfully applied to the context of social and

user generated media, that are typically annotated with tags

that are likely to correlate with image content. However,

this rich source of metadata is often hard to exploit both

for the noise in labels and for the difficulty to find seman-

tically meaningful visual features. Clearly a good image

∗Equal contribution and corresponding authors.

representation boosts the precision and recall of these tech-

niques by providing a visually consistent neighborhood. In

fact, many of these techniques apply a form of metric learn-

ing to make up for low quality image features. We point

out that an essential requirement of these techniques is the

ability to retrieve similar images to compose good image

neighborhoods. Hence, excelling in image retrieval is likely

to improve image tagging. A recent breakthrough in image

representation has been achieved using Convolutional Neu-

ral Networks (CNN) with deep architectures. It has been

shown that using a large corpus of images CNNs can learn

compact and powerful image features. CNNs are typically

applied to classification tasks and activations from the lat-

est layers are used as features. These have been used by

several approaches to extract generic features for image re-

trieval [11, 32]. While they show promising results, they

leave several questions unaddressed. First, CNNs features

are more semantically related to the global image and they

hardly preserve local characteristics of objects. Second, ex-

isting approaches address CNNs invariance issues with ex-

tracting patches densely at multiple scales usually leading

to a very onerous feature computation process.

Recently Wei et al. [31] have applied a multi-label vari-

ation of CNN extracting features from few hundred object

proposals. We agree with their intuition and we believe that

multiple image windows can be carefully selected in order

to obtain a more comprehensive representation of image

content. This is particularly relevant in the case of image

tagging where more than one tag is sought. User tags may

refer to the image as a whole but they are also likely to be

associated with specific scene elements. Specifically, tags

often refer to things (e.g. person, car, horse, etc.) and stuff

(e.g. sky, sand, cloud, water, etc.) present in a scene.

In this paper we show a technique, derived from Fisher

Vectors [26], to combine CNN features from multiple win-

dows into a more discriminative representation for image

retrieval and image tagging. Our representation improves

upon the single global representation approach, obtaining

state-of-the-art results with compact image signatures on
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Figure 1. Full pipeline of the proposed method. Each image window is represented by the FC7 CNN activations. The final signature is

obtained encoding activations (same color dots) with a Fisher Vector computed on a GMM dictionary (blue dots). PCA is further applied

to image signature.

three popular public datasets.

2. Previous work

So far, the best performance in image retrieval has been

obtained aggregating SIFT descriptors using Fisher Vectors

[17, 26], VLAD [1, 17], or variations of these approaches

e.g. pooling oriented local features [33]. A breakthrough

in performance for computer vision algorithms has recently

been obtained thanks to supervised image feature learning.

Krizhevsky et al. revived supervised deep learning for com-

puter vision proposing to solve large scale image classifica-

tion problem using a deep CNN [18]. Following that, sev-

eral architectures have been proposed in the last 3 years,

all sharing a common principle: networks are usually built

with a sequence of convolutional/max-pooling layers, fol-

lowed by low-resolution fully-connected (FC) layers whose

activations are fed to a soft-max classifier.

One interesting fact about CNNs is the ability to perform

transfer learning. Indeed a very powerful image represen-

tation can be obtained by removing the soft-max classifier

and keeping the activations of the last FC layer. This ap-

proach has been applied to many computer vision and mul-

timedia retrieval tasks, with dramatic improvements over

previously proposed techniques such as Fisher Vectors over

local SIFT descriptors. Razavian et al. [24] made a com-

prehensive contribution on this matter testing CNN features

for object and scene classification, attribute prediction and

image retrieval. However, their spatial search approach in

image retrieval has an unbearable computational cost: their

method requires the extraction of CNN features for a large

amount of image sub-windows and the computation of all

pairwise distances between them. The approach has scala-

bility issues, since it is quadratic in the number of windows.

Approaches close to ours have been proposed in [11,

22, 32]. Gong et al. [11], propose to aggregate CNN re-

sponses from multiple scales using VLAD, thus requiring a

dense computation of multi-scale CNN responses. In con-

trast, we show how we can rely on the computation of CNN

responses on a few hundreds of proposal windows. Ng et

al. [22] have speeded up the approach of [11] applying the

network only once to the input image and extracting fea-

tures at each location of the convolutional feature map of

each layer. Yoo et al. [32] propose to apply Fisher Vector

encoding to dense multi-scale CNN activations. Compared

to these methods our approach computes CNN activations

on large parts of the image, which are likely to contain ob-

jects, rather than considering CNN activations of dense and

small patches, that are more similar in spirit to SIFT de-

scriptors. Another difference is that we introduce a sim-

pler and effective multi-scale representation by concatenat-

ing the Fisher Vector with a global representation of image

content, and reducing the overall descriptor size with PCA.

The identification of relevant patches in an image has

been recently addressed in the object detection community,

with the introduction of window proposal methods [9, 28].

Object proposals are cheap to compute and cover more than

90% of objects with few thousands windows of different

scales and aspect ratios. This allows the application of ex-

pensive classifiers like [9] or kernelized bag-of-words clas-

sifiers [28] to perform object detection.

Regarding the task of social image tagging, our work

is related to instance based tag assignment methods [20].

Makadia et al. [21], in their seminal work, showed that

simple tag voting on nearest neighbor outperformed previ-

ous complex approaches. Li et al. [19] improved upon by

adding a penalty on frequent tag votes. As low-level fea-

tures are hardly semantically related, Guillaumin et al. [12]

and Verma et al. [30] proposed to learn a weighted metric

to improve on precision. Ballan et al. [4] proposed using

KCCA to learn mid-level features to be used with previous

nearest neighbors approaches.

3. Proposed method

Our idea is to represent an image as a bag of windows,

each one represented as CNN output activations. The fi-

nal image signature is obtained using Fisher Encoding and

reducing the final descriptor dimensionality using PCA, as

shown in Figure 1. This powerful novel image signature
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is used to boost performance in image retrieval and social

image tagging.

3.1. Image representation

Patch Sampling We start by sampling a set of few hun-

dred windows from each image to construct a bag-of-

windows X as image representation. To perform the sam-

pling we propose a content-based strategy and a random

strategy.

Regarding the content-based strategy, we use the ob-

ject proposal approach, namely EdgeBoxes, from Zitnick

et al. [34] due to its computational efficiency and perfor-

mance in terms of detection, recall and repeatability [13].

This method provides a ranked list of windows that typi-

cally contain instances of objects, disregarding areas with

few edges. The second strategy is a simple random strategy

where window coordinates are generated randomly.

We also consider the combination of the two strategies.

This is motivated by the fact that some discriminative por-

tions of images, often useful for retrieval, are not part of

objects or things but rather are referred as stuff, i.e. part

of larger textured regions like trees or mountains. In fact,

we found in some experiments that employing a set of ran-

domly sampled windows in addition to the EdgeBoxes may

be beneficial.

CNN usually require, as it is in our case, a fixed size in-

put patch. To this end we resize each window to 224× 224
pixels disregarding the aspect ratio, as it is common practice

in object detection [9]. We use the pre-trained CNN-S-128

CNN architecture from [5] in order to have a low dimen-

sional representation (128D), comparable to that of SIFT.

For each window, we extract the activation from the first

fully connected layer (FC7).

Activation Aggregation To obtain a short signature for

each image we perform an aggregation step. Given a set of

patches x ∈ X , we encode it using Fisher Encoding.

We first learn a Mixture of Gaussians codebook with di-

agonal covariances on a subset of the windows extracted at

the previous step. Differently from [26] we do not apply

PCA on the local window features. This is not needed, and

actually slightly worsen the performance in our case, since

our window representation has highly decorrelated features.

In Fig. 2 we show a comparison of the absolute values of

correlation coefficients ρ among dimensions of CNN codes

and SIFT descriptors extracted from the INRIA Holidays

dataset. The ρ coefficients of the CNN codes are 1 only on

the diagonal, while as a counter-example on SIFT descrip-

tors extracted from the same dataset there are many direc-

tions with |ρ| > .8.

For each bag-of-windows we compute an Improved

Fisher Vector (IFV) applying L2 and Power Normalization
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Figure 2. Correlation coefficients computed on a set of SIFT de-

scriptors (left) and on a set of CNN features on image windows

(right).

as in [26]. Finally, to compress the representation, we re-

duce the dimensionality of the IFVs using PCA.

Global-Local signature The PCA-compressed IFV sig-

nature provides a compact representation of the local sam-

pled windows of an image. However, windows are ag-

gregated independently, without considering their relation

to the context. It can be further enhanced by integrat-

ing an explicit global scene representation. We propose

a Global-Local (GL) signature made by the concatenation

of the FC7 feature of the entire image with the generated

PCA-compressed IFV signature. The FC7 feature has been

proved to be very powerful [24] as we can also observe from

our baseline experiments in Tab. 1, 2 and 3.

3.2. Image retrieval

The first task we address with our novel image repre-

sentation is image retrieval. To retrieve images means that

given an image as query we want to rank a dataset of images

in order to assign high ranks to images with the same con-

tent of the query. We perform this task in a very straight-

forward manner. Given a query image I and a dataset of

images Yi, we consider their respective sets of image win-

dow features I and Yi and signatures φ(I) and φ(Yi). For

each query I we rank images by cosine distances:

d(I, Yi) = 1−
φ(I)T · φ(Yi)

‖φ(I)‖‖φ(Yi)‖

3.3. Social image tagging

In this task we aim at annotating social images, using

other social images as training data. A collection of social

images, e.g. obtained from Flickr, can be modeled as a set

of tuples Ti = 〈Y,W〉 where Y is an image, W is a set of

tags provided by the users and the vocabulary V is the set

of all the tags of W . These tags are typically ambiguous,

imprecise, and tend to follow user preferences [27]. This

is a different setup from that of using images from datasets

annotated by experts.

When performing image annotation we would like to

predict tags for an untagged image I . This problem is usu-
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ally solved with voting algorithms based on nearest neigh-

bor search [3, 12, 19], because of their scalability and rela-

tively good performance [20]. We use the ranking described

in Sect. 3.2 to obtain the first K neighbors, and use the fol-

lowing three different algorithms.

NN voting The simplest voting algorithm is nearest

neighbor tag voting, which is close to the method first pro-

posed by Makadia et al. [21]. We count the tag occurrences

of images in the neighborhood and rank tags per image us-

ing their frequencies.

Tag Relevance With NN voting we assume that the more

frequently the tag occurs in the neighbor set, the more rel-

evant it might be for the image. However tags occurring

frequently in the whole training set are not necessary rel-

evant for all the images. So to moderate this effect, Li et

al. [19] proposed a tag relevance measure that takes into ac-

count both the tags distributions of the neighbor set and of

the entire training set.

TagProp Guillaumin et al. [12] have proposed TagProp,

a method that learns a weighted nearest neighbor model.

Weights can be learned based on distance or rank. More-

over, to compensate for varying frequencies of tags, a tag-

specific sigmoid is used to boost the probability for rare tags

and decrease that of frequent ones. Sigmoids and metric pa-

rameters can be learned by maximizing the log-likelihood

of tag predictions.

4. Experiments

Datasets For the image retrieval task we use the popular

INRIA Holidays dataset [16]. The dataset is composed by

1,491 images in total. We measure average precision (AP)

for 500 queries and 991 corresponding relevant images.

We test image tagging on the MIRFLICKR-25K and

NUS-WIDE datasets. The MIRFLICKR-25K dataset [15]

is composed of 25,000 images from Flickr with 1,386 user

tags that occur in at least 20 images, and is split in 12,500

for training and 12,500 for testing, with exactly the same

partition as [4, 12]. In addition ground truth annotations for

18 tags are provided on the whole set. The NUS-WIDE

dataset [7] is composed of 269,648 images from Flickr with

355,913 user tags, and is split in training and testing sets of

161,789 and 107,859 images, respectively. Ground truth is

available for 81 tags. Since there is no common experimen-

tal setup for NUS-WIDE, we have adopted the same setup

of [10], i.e. following the train/test splits of the dataset, ig-

noring the small subset of images that are not annotated by

any tag and using only the ground-truth tags. The resul-

tant train and test sets have a respective total of 125,449

and 83,898 images. Since it is feasible to evaluate tagging

performance only on ground truth tags, the experiments are

performed with the user tags provided in the ground truth

annotations, as in [29].

Baselines The natural baseline for our method is the ex-

traction of a single CNN code per image. We refer to

this baseline as CNN-Image. We warp the whole image

to 224 × 224 and use the FC7 output as image signature.

We develop two other baselines to see if the use of an ag-

gregated signature is relevant to keep the expressiveness of

the many windows extracted or if sampling multiple CNN

responses is enough to boost retrieval and annotation per-

formance. The first one is obtained by averaging the output

of all the CNN features of the bag-of-windows, we refer to

it as AVG-Pooling. The latter is computed with a max pool-

ing operation over the CNN activations, which we denote as

MAX-Pooling.

Experimental results: retrieval We first evaluate the pa-

rameters affecting retrieval performance on INRIA Holi-

days, evaluated in terms of mean average precision (MAP).

In a set of preliminary experiments we found that the fi-

nal PCA step slightly improves results but not significantly.

This step is indeed mostly relevant to compress the image

signature. The size of the GMM codebook is instead ex-

tremely relevant for performance.

Increasing the number of Gaussians allows to model the

distribution of CNN activations more precisely, as it has

been observed also for SIFT features [26], where increas-

ing the number of Gaussians improves the performance. To

see how the codebook size affects retrieval performance we

fixed the final PCA dimension to 512 which we found im-

proving performance across codebook sizes.

# Gaussians
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Figure 3. Mean average precision of our proposed approaches

varying the number of Gaussians on Holidays dataset.

We sample the top 400 ranked EdgeBoxes and 400 Ran-
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dom windows for a total of 800 windows in each image.

Our method is efficient since it does not require to compute

window correspondences exhaustively. Finally, we repre-

sent images with a very short 512D signature that scales in

terms of space and time complexity.
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Figure 4. Mean average precision of our proposed approaches

varying the number of EdgeBoxes + Random windows.
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Figure 5. Mean average precision of our proposed approaches

varying the number of windows, using Fisher-PCA coding.

In Figure 3 we evaluate the performance of the proposed

approach with a varying number of Gaussians and with dif-

ferent window sampling strategy. We can see how using

EdgeBoxes alone for retrieval is not sufficient. Adding ran-

dom windows increases the performance also for a small

amount of Gaussians (32). In Figure 4 we report MAP

values obtained using different numbers of EdgeBoxes and

random windows, with different encodings. The combi-

nation with the global signature (FisherGL and FisherGL-

PCA) does not improve the MAP for large codebooks but

instead allows to get very high results even for small code-

books. Fisher Vectors always outperform max and aver-

age pooling. In Figure 5 we evaluate the performance of

Fisher Vector + PCA coding with varying number of win-

dows, either from EdgeBoxes, random, or EdgeBoxes +
random sampling. As for Fig.4 it can be observed that FV

+ PCA outperforms the use of single global CNN descrip-

tors, when using more than 100 windows. Considering the

random windows step we report the average of five runs.

Method Features Codebook Dim. MAP

Fisher-PCA FC7-CNN 128 512 85.8

Fisher-GL-PCA FC7-CNN 128 635 83.3

Fisher-GL FC7-CNN 128 32,889 81.2

Fisher FC7-CNN 128 32,768 80.3

AVG-Pooling FC7-CNN − 128 66.2

MAX-Pooling FC7-CNN − 128 60.1

CNN-Image 128D FC7-CNN − 128 60.0

CNN-Image 4096D FC7-CNN − 4,096 71.0

Spatial Pooling [25] CONV-CNN − 256 74.2

CNNaug-ss [24] FC7-CNN − 4,096 84.3

VLAD+PCA [22] CONV-CNN 100 128 83.6

Neural codes [2] FC7-CNN − 128 78.9

VLAD+PCA [11] FC7-CNN 100 2,048 80.2

VLAD+PCA [11] FC7-CNN 100 512 74.2

Perronin [23] FC7-SIFT+LCS 1,024 4,096 84.7

Fisher [26] SIFT 4,096 524,288 70.0

Zhao [33] SIFT 32 32,768 68.8

Delhumeau [8] SIFT 64 8,192 65.8

Arandjelovic [1] SIFT 256 32,536 65.3

Fisher [17] SIFT 256 16,384 62.5

Fisher [17] SIFT 64 4,096 59.5

VLAD [17] SIFT 256 16,384 58.7

VLAD [17] SIFT 64 4,096 55.6

Table 1. Image retrieval results on INRIA Holidays compared with

state-of-the-art approaches.

Finally, we compare our method with other global meth-

ods aggregating local features in Table 1 and some recent

methods that use either convolutional or fully connected

layers of CNNs [2, 11, 22, 24, 25]. We can clearly see that

although the 128D CNN is competitive with some smaller

size representations based on SIFT features [17] the 4096D

outperforms all the approaches based on engineered fea-

tures. Average pooling of 128D activations outperforms the

single image 128D representation indicating that more in-

formation is contained in multiple windows. Adoption of

Improved Fisher Vector coding improves over the majority

of the other methods based on CNN features except [22,24].

Finally we can see how applying the Fisher encoding and

PCA outperforms all other methods, including [22,24], with

a very small signature (512D).

Experimental results: tagging In this set of experiments

we show how our novel representation improves perfor-

mance on image tagging. We report results as Mean Av-

erage Precision (MAP) and Mean image Average Precision
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(MiAP) in Tab. 2 and Tab. 3. MAP measures the quality

of image ranking and can be affected by the performance

on rare tags, while MiAP measures the quality of tag rank-

ing and is biased toward frequent tags [20]. In each ex-

periment we fix the number of nearest-neighbor K to 1,000

as suggested by the authors [19]. For TagProp we employ

the best combination reported (distance + sigmoids) [29].

To speedup computations on these larger datasets we have

used a GMM codebook of only 32 elements and halved the

number of windows (200 EdgeBoxes and 200 Random for

a total of 400) with respect to the experimental setup used

for retrieval. We reduce the dimension of the final IVF to

512 dimensions as in the previous case using PCA.

The use of the Global-Local (GL) component of the de-

scriptor, which accounts for scales variations providing an

holistic representation of the image content, improves the

results. This is reasonable because nearest neighbors ap-

proaches applied to social image datasets typically work

better with descriptors that deal with the gist of the im-

age (e.g. global descriptors or low-dimensionality BoF de-

scriptors, as those provided by the authors of NUS-WIDE

dataset [7]) rather than its details (e.g. performing spatial

verification of matching local features). In this case the

single image approach outperforms [29]. This means that

CNN features are indeed a strong representation for image

annotation. In this case average pooling is not improving

over the single image approach. Finally we can see how

adding the Global-Local part of the descriptor boosts MAP

and MiAP for all voting methods; compressing the descrip-

tor with PCA does not reduce the performance despite the

high reduction in dimensionality. It has to be noted that Tag-

Prop always outperforms the simpler NN Voting and TagRel

methods, exploiting better the improved visual neighbor-

hood obtained with the proposed method. This is visible

when comparing the performance obtained with the single

CNN-Image descriptor w.r.t. that of Fisher-GL-PCA.

Method
NN Voting TagRel TagProp

MAP MiAP MAP MiAP MAP MiAP

Fisher-GL-PCA 51.4 48.6 47.6 51.4 58.0 54.8

Fisher-GL 50.9 48.0 48.4 51.5 57.9 54.9

Fisher-PCA 46.1 44.9 43.7 48.2 51.6 50.9

Fisher 46.2 45.2 44.0 48.2 51.6 50.8

MAX-Pooling 40.7 45.6 41.5 47.1 47.6 49.2

AVG-Pooling 40.2 45.0 40.5 46.6 45.9 48.6

CNN-Image 48.3 46.6 46.0 50.1 55.7 53.7

Table 2. Image annotation results on MIRFLICKR-25K compared

with the state-of-the-art (200 EdgeBoxes + 200 random win-

dows).

Tab. 4 compares the best performance of the pro-

posed method with the original TagProp method, on

MIRFLICKR-25K, showing in particular a good improve-

ment in terms of MiAP. Tab. 5 compares the best perfor-

mance of the proposed method on NUS-WIDE with two

Method
NN Voting TagRel TagProp

MAP MiAP MAP MiAP MAP MiAP

Fisher-GL-PCA 26.7 43.4 27.7 40.1 39.7 50.9

Fisher-GL 26.8 43.4 27.6 40.1 39.7 50.8

Fisher-PCA 21.7 40.4 24.1 37.0 35.9 48.0

Fisher 21.3 40.3 23.6 36.6 35.5 47.4

MAX-Pooling 18.8 37.8 22.1 34.9 29.1 45.0

AVG-Pooling 19.9 40.2 22.4 37.1 29.8 45.9

CNN-Image 24.4 42.0 25.3 38.7 31.9 48.2

Table 3. Image annotation results on NUS-WIDE compared with

the state-of-the-art (200 EdgeBoxes + 200 random windows).

other approaches that have a similar experimental setup,

showing a very good performance.

Method Features MAP MiAP

Fisher-GL-PCA + TagProp FC7-CNN 58.0 54.8

Guillaumin [29] local+global features1 38.4 47.3

Table 4. Image annotation results on MIRFLICKR-25K: compari-

son of the proposed method with other approaches.

Method Features MAP

Fisher-GL-PCA + TagProp FC-7-CNN 39.7

Hash SISO [14] NUS-WIDE 2 25.5

LSMP [6] NUS-WIDE 18.5

Table 5. Image annotation results on NUS-WIDE: comparison of

the proposed method with other approaches.

5. Conclusion

In this paper we have shown the importance of extracting

CNN activations from multiple windows. We investigated

two different window sampling strategies and found out that

the best performance is obtained by their combination. This

confirm the intuition that image information is not fully cap-

tured by object proposals alone. In fact, adding randomly

sampled windows improves our image representation.

We have shown that Fisher Vectors can be effectively

used to aggregate low-dimensional CNN responses improv-

ing over more simplistic max and average pooling ap-

proaches. Finally applying PCA on the Fisher Vector rep-

resentation allows to reduce the computational footprint of

our method. Our method is computationally efficient since

it relies on few hundred windows and has a low memory

footprint representing each image with just 2.5Kb of data.

We tested our representation on two tasks, image re-

trieval and image tagging on three publicly available

datasets collected from social networks showing state-of-

the art results.

1GIST, colour histograms (RGB, LAB, HSV), SIFT + hue local de-

scriptors BoW
2225-D block- wise color moments, 128-D wavelet texture and 75-D

edge direction histogram
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