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Abstract

Background subtraction is an important task for visual

surveillance systems. However, this task becomes more

complex when the data size grows since the real-world sce-

nario requires larger data to be processed in a more efficient

way, and in some cases, in a continuous manner. Until now,

most of background subtraction algorithms were designed

for mono or trichromatic cameras within the visible spec-

trum or near infrared part. Recent advances in multispec-

tral imaging technologies give the possibility to record mul-

tispectral videos for video surveillance applications. Due to

the specific nature of these data, many of the bands within

multispectral images are often strongly correlated. In ad-

dition, processing multispectral images with hundreds of

bands can be computationally burdensome. In order to ad-

dress these major difficulties of multispectral imaging for

video surveillance, this paper propose an online stochastic

framework for tensor decomposition of multispectral video

sequences (OSTD). First, the experimental evaluations on

synthetic generated data show the robustness of the OSTD

with other state of the art approaches then, we apply the

same idea on seven multispectral video bands to show that

only RGB features are not sufficient to tackle color satura-

tion, illumination variations and shadows problem, but the

addition of six visible spectral bands together with one near

infra-red spectra provides a better background/foreground

separation.

1. Introduction

Background subtraction (BS) is usually the first step to

detect moving objects in many fields of computer vision

applications such as video surveillance (to detect persons,

vehicles, animals, etc.), human-computer interface, motion

detection and multimedia applications [24]. This basic op-

eration consists of separating the moving objects called

“foreground” (FG) from the static information called “back-

ground” (BG). However, in most cases, the background

model is not always static due to the complexity of nat-

ural scenes: wind in the trees, moving water, waves, etc.

In recent decades, a large number of algorithms have been

proposed for background subtraction [24] and several im-

plementations can be found in the BGS1 [22] library.

However, this task becomes more complex when the data

size grows (i.e. massive multidimensional data) since the

real-world scenario requires larger data to be processed in a

more efficient way, and in some cases, in a continuous man-

ner (streaming data). Until now, most of background sub-

traction algorithms were designed for mono (i.e. graylevel)

or trichromatic cameras (i.e. RGB) within the visible spec-

trum or near infrared part (NIR). Recent advances in multi-

spectral imaging technologies give the possibility to record

multispectral videos for video surveillance applications [1].

The primary advantage of multispectral cameras for

video surveillance is the possibility to take into account the

spatial (or spatiotemporal) relationships among the differ-

ent spectra in a neighbourhood, allowing more elaborate

spectral-spatial (and -temporal) models for a more accurate

segmentation. However, the primary disadvantages are cost

and complexity due its massive and multidimensional char-

acteristics.

Usually a multispectral video consist of a sequence

of multispectral images sensed from contiguous spectral

bands. Each multispectral image can be represented as a

1https://github.com/andrewssobral/bgslibrary
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three-dimensional data cube or tensor, and we call frame

the measurements corresponding to a single spectral band

(frontal slice of the tensor). Due to the specific nature of

these data, many of the bands within multispectral images

are often strongly correlated. In addition, processing mul-

tispectral images with hundreds of bands can be computa-

tionally burdensome.

In order to address these major difficulties of multispec-

tral imaging for video surveillance (in particular, the de-

tection of moving objects), this paper propose an online

stochastic framework for tensor decomposition of multi-

spectral video sequences (OSTD). In short, the main con-

tributions of this paper are:

• An online stochastic framework for tensor decompo-

sition to deal with multi-dimensional and streaming

data.

• And, the use of multispectral video sequences instead

of standard mono/trichromatic images, enabling a bet-

ter background subtraction.

First, we start with the related works (Section 2), and

next we describe the notation conventions used in this paper

(Section 3). A brief introduction to tensors are detailed in

Section 4, and the proposed method is shown in Section 5.

Finally, in Sections 6 and 7, the experimental results are

shown as well as conclusions.

2. Previous Work

In the literature, several algorithms have been proposed

to cope with low-rank and sparse decomposition problem

in computer vision. For example, Candes et al. [4] de-

signed an interesting framework called RPCA via Princi-

pal Component Pursuit (PCP) to decompose an observation

matrix into low-rank and sparse components. The observa-

tion matrix is represented as: M = L + S where L is a

low-rank matrix and S is a matrix that can be sparse or not.

The low-rank minimization concerning L offers a suitable

framework for background modeling due to the correlation

between frames. Minimizing L and S implies that the back-

ground is approximated by a low-rank subspace that can

gradually change over time, while the moving foreground

objects constitute the correlated sparse outliers which are

contained in S. A survey on RPCA applied for BS can be

found in Bouwmans and Zahzah [2].

However, these RPCA matrix based decomposition

methods used for BS works only on single dimension and

consider image as a vector and hence multidimensional data

for efficient analysis can not be considered. In addition,

the local spatial information sometimes lost and erroneous

foreground regions are obtained. Some authors use a ten-

sor representation to solve this problem. Wang and Ahuja

(a) (b) (c) (d)

Figure 1: An example of tensor decomposition: (a) input,

(b) low-rank, (c) sparse tensor, and (d) foreground mask.

[27] propose a rank-R tensor approximation which can cap-

ture spatiotemporal redundancies in the tensor entries. He et

al.[11] present a tensor subspace analysis algorithm which

detects the intrinsic local geometrical structure of the tensor

space by learning a lower dimensional tensor subspace. The

algorithm learn a subspace basis using multidimensional

data but does not provide the convergence analysis. Sun et

al. [25] introduce a general framework, incremental tensor

analysis (ITA), which efficiently computes a compact sum-

mary for high-order and high-dimensional data, and also

reveals the hidden correlations. However, Li et al. [12] ex-

plains that the previous work cannot be applied to back-

ground modeling and object tracking directly. To solve this

problem, Li et al. [12] propose a high-order tensor learning

algorithm called incremental rank-(R1,R2,R3) tensor-based

subspace learning. This online algorithm builds a low-order

tensor eigenspace model where the mean and the eigenba-

sis are updated adaptively. However, the previous method

uses only the gray-scale and color information. In some sit-

uations, these features are insufficient to perform a robust

foreground detection. To deal with this situation, Sobral

et al. [21] propose an incremental tensor subspace learning

approach that uses a multi-feature model and updates the

low-rank component incrementally. In [16], RSTD (Robust

Subspace Tensor Decomposition) is developed for auto-

matic robust subspace recovery using Block Coordinate De-

scent (BCD) approach on unconstrained problem via vari-

able splitting strategy, and some computer vision applica-

tions such as image restoration, BS and face recognition are

addressed in [16]. But the parameters tuning and the com-

plexity of the optimization method are the main drawbacks

in the RSTD. Otherwise, Tran et al. [26] proposed a tensor-

based method for video anomaly detection applying the Sta-

ble PCP [4] decomposition in each tensor mode. The pro-

posed method is a one-shot framework to determine which

frames are anomalous in a video. Moreover, Donald and

Qin [7] developed some Higher-order RPCA (HoRPCA)

methods for robust tensor recovery. Convergence guarantee

and proofs of each method are presented in [7]. Recently,

Zhao et al. [29] proposed a Robust Bayesian Tensor Factor-

ization (BRTF) scheme for incomplete tensor completion

data. BRTF provides a fast multi-way data convergence but

tunning of annoying parameters and batch processing are

the major difficulties of this approach.
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All these tensor-based decomposition methods discussed

above are based on generalization of matrix based decom-

position problems, and the majority of them work as a batch

optimization processing. In addition, most of incremental

tensor subspace learning approaches apply matrix SVD in

the unfolded matrices. However, the matrix factorization

step in SVD is computationally very expensive, especially

for large matrices. Therefore, a real time processing is sac-

rificed due to the major challenges discussed above. In

order to address these problems, this paper proposes a ro-

bust and fast online tensor-based algorithm for RGB videos

as well for MSVS (multispectral video sequences). The

proposed algorithm is based on stochastic decomposition

of low-rank and sparse components. The idea of online

stochastic RPCA optimization was previously proposed by

Feng. et al. [5] and Goes et al. [6], and it was successfully

applied to background subtraction in [13, 14]. In this work

we extend this approach for tensor analysis. The stochastic

optimization is applied on each mode of the tensor and the

individual basis are updated iteratively followed by the pro-

cessing of one video frame per time instance. In addition,

a comparison of RGB and MSVS is provided which shows

that visible together with NIR spectral bands provide an im-

proved foreground estimation as compare to RGB features.

3. Basic Notations

This paper follows the notation conventions in multilin-

ear and tensor algebra as in [15, 8]. Scalars are denoted by

lowercase letters, e.g., x; vectors are denoted by lowercase

boldface letters, e.g., x; matrices by uppercase boldface,

e.g., X; and tensors by calligraphic letters, e.g., X . In this

paper, only real-valued data are considered.

4. Tensor Introduction

A tensor can be considered as a multidimensional or

N-way array. As in [15, 8], an Nth-order tensor is de-

noted as: X ∈ R
I1×I2×...×IN , where In(n = 1, . . . , N).

Each element in this tensor is addressed by Xi1,...,in , where

1 ≤ in ≤ IN . The order of a tensor is the number of di-

mensions, also know as ways or modes [15]. A tensorX has

column, row and tube fibers represented by X:jk, Xi:k, and

Xij:. Similarly, slices of a tensor are two dimensional sub-

array that can be obtained by fixing all indexes but two. A

tensor X has horizontal, lateral and frontal slices indicated

by Xi::, Xj::, and Xk::. By unfolding a tensor along a mode,

a tensor’s unfolding matrix corresponding to this mode is

obtained. This operation is also known as mode-n matri-

cization2. For a Nth-order tensor X , its unfolding matrices

are denoted by X (1),X (2), . . . ,X (N). A more general re-

view of tensor operations can be found in [15].

2Can be regarded as a generalization of the mathematical concept of

vectorization.

5. Online Stochastic Tensor Decomposition

Let say that Y is an input Nth order observation tensor,

which is corrupted by outliers, say E , then Y can be re-

constructed by separating it into low-rank tensor X (cor-

responds to BG), and sparse error E (corresponds to FG

objects), i.e., Y = X + E , under the convex optimization

framework developed in [7] as:

X ,E
min

1

2

N∑

i=1

||Yi −Xi − Ei||2F+λ1||Xi||∗+λ2||Ei||1, (1)

where ||Xi||∗ and ||Ei||1 denote the nuclear and l1
norm of each mode-i unfolding matrices of X and

E , respectively. Efficient methods such as CANDE-

COMP/PARAFAC (CP)-decomposition and Tucker decom-

postion [15] (a.k.a HOSVD) are used for low-rank decom-

position of tensors. In addition, APG, HORPCA-s based on

ADAL and HORPCA-M based on I-ADAL are also devel-

oped in [7] to solve Eq.1. However, as mentioned above,

these methods are based on batch optimization and not suit-

able for scalable or streaming data.

In this work, an online optimization is considered to

solve Eq.1. The major challenge is the computation of

HOSVD because nuclear norm keeps all the samples tightly

and therefore all samples are accessed during optimization

at each iteration. Therefore, it suffers from high computa-

tional complexities. In contrast, an equivalent nuclear norm

is used in this work for each mode-i unfolding matrices of

X , whose rank is upper bounded as shown in [18] as:

||Xi||∗= inf
L∈Rp×r,R∈Rn×r

{
1

2
(||Li||2F+||Ri||2F )

s.t. Xi = LiRi
T
}
, (2)

where p denotes the dimension of each sample e.g., width×
height, n is the number of samples and r is the rank. Eq. 2

shows that mode-i unfolding matrices of low-rank tensor

X can be an explicit product of each low-dimensional sub-

space basis L ∈ R
p×r and its coefficients R ∈ R

n×r

and this re-formulated nuclear norm is shown in recent

works [3], [18], [19]. Hence, Eq. 1 is re-formulated by sub-

stituting Eq.2 by:

(3)
min

X1,...,XN ,L ∈Rp×r,R∈Rn×r,E

1

2

N∑

i =1

||Yi −Xi − Ei||2F +

λ1

2
(||Li||2F + ||Ri||2F ) + λ2||E||1, s.t. Xi = LiRi

T .

For objective function minimization, avoiding the con-

straints in Eq.3 and put Xi = LiRi
T as:
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min
X1,...,XN ,L∈Rp×r,R∈Rn×r,E

1

2

N∑

i=1

||Yi − LiR
T
i − Ei||2F+

(4)

λ1

2
(||Li||2F+||Ri||2F ) + λ2||E||1,

(5)

where λ1 and λ2 are regularization parameters for low-rank

and sparsity patterns. Eq. 5 is the main equation for stochas-

tic tensor decomposition which is not completely convex

with respect to L and R. However, Eq. 3 is the global opti-

mal solutions to the original optimization problem in Eq. 2

as proved in [5].The following cost function is required to

optimize for solving Eq. 3 as:

fn(L) =
1

n

N∑

i=1

n∑

t=1

l(Yt
i ,Li) +

λ1

2n
||Li||2F , (6)

where Yt
i denotes ith mode of a tensor Y at a time t instance

given by:

l(Yt
i ,L) = min

r,e
||vec(Yt

i )− Lr− e||22+
λ1

2
||r||22+λ2||e||1.

(7)

Finally, the objective function lt(L) for updating the

mode-i basis Li matrix of multidimensional subspace ten-

sor X at a time t instance is given by:

lt(Li) =
1

n

n∑

t=1

{
1

2
||vec(Yt

i )− L
t
ir

t − e
t||22+

λ1

2
||rt||22

+λ2||et||1
}
+

λ1

2t
||Lt

i||2F , (8)

where rt and e
t are vectors of coefficient and noise at a time

t for matrix Ri, respectively, and mode-i matrix of sparse

tensor E . The main goal is to minimize the cost function

Eq. 6 through stochastic optimization method as shown in

Algorithm 1.

In case of BG modeling, one video frame (i.e. RGB im-

age) at a time t is processed in an online manner. The co-

efficient r, sparse matrix e and basis L are optimized in an

iterative way. First, the coefficient r and noise e matrices

are estimated with fixed random basis L by projecting one

sample using Eq. 11. This subproblem in step 6 requires to

solve a following small-scale convex optimization problem

at a time instance t as:

r
t = (LT

L+ λ1I)
−1

L
T
{
vec(Yt

i )− e
t−1

}
, (9)

et =





M
t(k)− λ2, if Mt(k) > λ2,

M
t(k) + λ2, if Mt(k) < λ2,

0, otherwise,

(10)

where M = vec(Yt
i ) − Lr

t and Mt(k) is the kth element

in M at a time t. Second, the basis L
t is estimated us-

ing the Eq. 14 through minimizing the previously computed

coefficients r and e. These basis L
t for low-dimensional

subspace learning is then updated using Algorithm 2 by the

results of r and e. If the rank r is given and basis L are es-

timated as above which is a fully rank, then L converges to

the optimal solution asymptotically as compared to its batch

counterpart as shown in [5].

Finally each ith mode low-dimensional subspace tensor

X is estimated by a multiple of basis L and coefficients R.

The BG sequence is then modeled by low-rank tensor X
which changes at a time instance t, whereas the resulting

sparse tensor E is obtained by the matricization of e entries.

Finally, a hard thresholding scheme is applied on a sparse

component to get the binary FG mask.

6. Experimental Evaluations

In this section, we present our experimental results in de-

tail. We first evaluate the proposed method performance on

synthetic generated data then the qualitative and quantita-

tive analysis on MSVS are presented for BS application.

6.1. Evaluation on Synthetic Data

The proposed method is first quantitatively tested on

synthetic data. For data evaluation, a true low-rank ten-

sor L of size 30 × 30 × 30 is generated by rank-3 fac-

tor matrices e.g., Yk ∈ R
30×3 where k = 1, 2, 3. Each

factor matrix Y
k consists of three components such as

[sin( 2πnin30 ), cos( 2πnin30 ), sgn(sin(0.5πin))]. The first two

components are different and third one is common in all

modes. A random entries of L is corrupted by outliers

from uniform distribution U(−|H|, |H|) and small noise

N(0, 0.01) is also considered. We use a well known mea-

sure for evaluation called “Root Relative Square Error”

(RRSE) given by
||L̂−L||2
||L||2

, where L̂ is the estimated low-

rank tensor. We compare our RRSE performance with other

state of the art methods such as BRTF [29], CP-ARD [17],

CP-ALS [15], HORPCA [7] and HOSVD [7] respectively.

Fig. 2 shows the value of RRSE with a results of recov-

ered tensor L̂. We consider two cases for robust tensor re-

covery for true data generation in Fig. 2. First, the magni-

tude is considered within a range of true data as shown in

Fig. 2 (a). However, Fig. 2 (b) shows that the magnitude

is taken larger for corrupting some entries in true low-rank.

In each case, the proposed method shows a very significant

improvements as compare to its batch counter-part such as

BRTF.
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Algorithm 1 Online Stochastic Tensor Decomposition

Input: Y ∈ R
I1×I2×...×IN .

Initialize: X = E = 0 (low-rank and sparse components),

L ∈ R
p×r (initial basis), r, A ∈ R

r×r, B ∈ R
p×r, r ∈

R
r, R ∈ R

n×r, e ∈ R
p, I ∈ R

r×r (unitary matrix),

λ1 = 1√
max(size(Y)

, and λ2 = 10λ1.

1: for t = 1 to n do {Access each sample}
2: for i = 1 to N do {Each tensor mode}
3: Access each frame from ith mode of tensor Y by

Yt
i← unfold(Y)

4: Compute the coefficients r and noise e by project-

ing the new sample as:

{
r
t, st

}
= argmin

1

2
||Yt

i − L
t−1

r− s||22

+
λ1

2
||r||22+λ2||s||1. (11)

5: R(:, t)← r
t. Compute the accumulation matrices

A
t and B

t for each ith mode:

A
t ← A

t−1 + rr
T , (12)

B
t ← B

t−1 + (Yt
i − s

t)rT . (13)

6: Compute L
t with previous iteration L

t−1 and up-

date the basis using Algorithm. 2

L
t = argmin

1

2
Tr[LT (At + λ1I)L]− Tr(LT

B
t).

(14)

7: Lt
i ← LR

T (low-dimensional subspace for each

unfold ith mode)

8: vec(Eti )← e
t (sparse error)

9: end for

10: end for

Output: X = 1
N

N∑
i=1

Xi, E =
N∑
i=1

Ei.

Algorithm 2 Basis Update

Input: L = [l1, ..., lr] ∈ R
p×r, A = [a1, ...,ar] ∈ R

r×r,

B = [m1, ...,mr] ∈ R
p×r, Ã← A+ λ1I.

1: for j = 1 to r do {access each column of L}
2: Update each column of basis matrix L

(15)lj ←
1

Ãj,j

(bj − Lãj) + lj

3: end for

4: return L (Updated basis for ith mode)
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Figure 2: Performance of reconstructed low-rank tensor.

(a) O=max(vec(L)), and (b) O=10.std(vec(L)).

6.2. BS of Multispectral Video Sequences

We evaluate the proposed method on a set of MSVS data

set [1]. This is a first data set on MSVS3 available for re-

search community in background subtraction. The main

purpose of this data set is not to show the robustness of

the BS methods but the integration of multispectral infor-

mation shows efficient FG/BG separation when color satu-

ration and illumination variation issues occur. A set of both

qualitative and quantitative results are presented.

The MSVS data set contains a set of 5 video sequences

with 7 multispectral bands (6 visible spectrum and 1 NIR

spectra). Each sequence presents a well known BS chal-

lenges such as color saturation and dynamic background.

Fig. 3 shows the result from RGB image, 6 visible spectrum

and 1 NIR spectral band together with visible spectra. Fig. 5
shows the visual comparison of the proposed approach for

BS task over three scenes of MSVS data set. Fig. 6 (a) and

(b) shows the visual results of these sequences using indi-

vidual band with RGB features. This qualitative evaluation

shows that BS using stochastic tensor decomposition on 7
multispectral bands together with visible spectra provides

the best FG segmentation.

The proposed method is also tested for quantitative anal-

ysis. MSVS data set contains an image size of 658 × 492
for each band and 658 × 492 × 3 for RGB image. So,

the size of the input tensor A with 7 multispectral bands

is 658 × 492 × 7 for each video frame. A well-known F-

measure metric is computed for each video sequence with

its available ground truth images. Table. 2 shows a fair com-

parison of RGB and 7 multispectral bands (MSB). The aver-

age F-measure score is computed for each video by compar-

ing our results with 3 other methods such as CP-ALS [15],

HORPCA [7], and BRTF [29]. The experimental evalua-

tions show that the proposed methodology outperforms the

other approaches.

The proposed scheme processes each multispectral or

RGB image (third-order tensor) per time instance reaching

almost a real-time processing, whereas CP-ALS, HORPCA,

and BRTF are based on batch optimization strategy. Due

to this limitation, the CP-ALS, HORPCA, and BRTF were

3http://ilt.u-bourgogne.fr/benezeth/projects/

ICRA2014/

110



(a) (b) (c) (d) (e)

Figure 3: FG results on 1st and 2nd videos of the MSVS

data set [1]. (a) input image, (b) ground truth, (c) results

from RGB, (d) 6 visible bands, and (e) 1 NIR spectral band.

applied for each 100 frames at time of the whole video se-

quence (fourth-order tensor). In this paper, the parameter r

in the Algorithm 1 was defined experimentally as 10. For

CP-ALS, the rank was defined as 50 for better visual re-

sults. For HORPCA and BRTF, we used its default parame-

ters. To obtain the foreground mask, the sparse component

E needs to be thresholded. First, we calculate the mean of

E along the third dimension, generating a matrix E, then a

hard threshold function is applied by:

(16)FG =

{
1 if (0.5E)2 > β

0 otherwise

where β = 0.5(std(vec(E)))2, and std(.) denotes the stan-

dard deviation of a data vector.

6.3. Basis Initialization with BRP

Bilateral Random Projections (BRP) was first proposed

by Zhou and Tao [31] as a fast low-rank approximation

method for dense matrices. The effectiveness and the ef-

ficiency of BRP was verified previously in the GoDec [30]

algorithm for low-rank and sparse decomposition. Given r

bilateral random projections of an m × n dense matrix X,

the low-rank approximation L can be rapidly built by:

L = Y1(A
T
2 Y1)

−1
Y

T
2 (17)

where Y1 = XA1, Y2 = X
T
A2, and A1 ∈ R

n×r and

A2 ∈ R
m×r are random matrices.

In this section, we evaluate the robustness of BRP for

the basis initialization instead of the traditional uniformly

distributed random numbers (UDRN). As expected, Fig. 4

shows a fast background modeling convergence for the first

20 video frames on the 3rd video of the MSVS data set [1].

As can be seen, BRP enable a fast and effective low-rank

approximation, reducing the amount of false positive pix-

els in the background model initialization task. Finally, the

power scheme modification proposed by Zhou and Tao [31]

can accelerate the low-rank recovery when the singular val-

ues of X decay slowly.

(a) (b) (c) (d) (e)

Figure 4: FG results on the 3rd video of the MSVS data

set [1]. From top to bottom: basis initialization with UDRN

and BRP. From left to right, the FG mask at: (a) frame 1,

(b) frame 5, (c) frame 10, (d) frame 15, and (e) frame 20.

Size HORPCA CP-ALS BRTF Proposed

160× 120 00:01:35 00:00:40 00:00:22 00:00:04

320× 240 00:04:56 00:02:09 00:03:50 00:00:12

Table 1: Computational time according to different image

resolutions.

6.4. Computational Time

Computational complexity is also observed during our

experiments. The time is recorded in CPU time as [hh :
mm : ss] and Table 1 shows the computational time of

each method for the first 100 frames varying the image

resolution. The algorithms were implemented in MAT-

LAB (R2014a) running on a laptop computer with Win-

dows 7 Professional 64 bits, 2.7 GHz Core i7-3740QM

processor and 32Gb of RAM. The MATLAB implemen-

tation of the proposed approach is available in https:

//github.com/andrewssobral/ostd, and the im-

plementation of the selected algorithms are available in the

LRS4 [23] library.

7. Conclusion

In this paper, we proposed an online stochastic tensor

decomposition algorithm for robust BS application. Exper-

imental results show that the proposed methodology outper-

forms the other approaches, and we have achieved almost a

real time processing since one video frame is processed ac-

cording to online optimization scheme. As previously dis-

cussed, the basis initialization with BRP can accelerate the

low-rank approximation reducing the amount of false pos-

itive pixels in the background model initialization step. In

addition, the basis is updated incrementally making it more

robust against gross outliers. Moreover, the stochastic op-

timization applied on each mode of the tensor can be re-

placed by other incremental subspace learning approaches

such as GRASTA [10], GOSUS [28], ReProCS [9] and in-

cPCP [20]. Finally, this idea can be used as an online track-

ing using the low-rank and sparse components as a tracker.

4http://github.com/andrewssobral/lrslibrary
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(a) (b) (d) (e) (f )(c)

Figure 5: Visual comparison of background subtraction results over three scenes of the MSVS data set [1]. From left to right:

(a) input image, (b) ground truth, (c) proposed approach, (d) BRTF [29], (e) HORPCA [7], and (f) CP-ALS [15]. The true

positives (TP ) pixels are in white, true negatives (TN ) pixels in black, false positives (FP ) pixels in red and false negatives

(FN ) pixels in green.

(a) (b)

Figure 6: Visual results of the proposed method on each RGB and multispectral bands. From top to bottom: input image,

low-rank component, sparse component, and the foreground mask. From left to right: RGB image, set of 7 visible, and 1
NIR spectrum are shown in each of columns respectively.

Table 2: MSVS data set [1]: Comparison of average F-measure score in (%) with other approaches.

Methods 1st 2nd 3rd 4th 5th Avg

CP-ALS [15]
RGB 58.69 RGB 71.25 RGB 51.32 RGB 60.21 RGB 49.35 RGB 58.16

MSB 71.61 MSB 83.50 MSB 68.54 MSB 78.63 MSB 66.97 MSB 73.85

HORPCA [7]
RGB 63.23 RGB 78.52 RGB 55.69 RGB 67.56 RGB 58.80 RGB 64.76

MSB 80.65 MSB 84.79 MSB 68.12 MSB 77.56 MSB 74.47 MSB 77.11

BRTF [29]
RGB 68.56 RGB 79.21 RGB 63.56 RGB 73.22 RGB 62.51 RGB 70.32

MSB 85.30 MSB 89.63 MSB 68.11 MSB 84.65 MSB 77.91 MSB 82.76

Proposed
RGB 78.63 RGB 85.96 RGB 79.56 RGB 76.32 RGB 71.23 RGB 76.69

MSB 93.65 MSB 95.17 MSB 90.64 MSB 89.29 MSB 92.66 MSB 92.28
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