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Abstract

A depth compensation model is presented as a novel

approach to reduce the effects of parallax error for head-

mounted eye trackers. The method can reduce the parallax

error when the distance between the user and the target is

prior known. The model is geometrically presented and its

performance is tested in a totally controlled environment

with aim to check the influences of eye tracker parameters

and ocular biometric parameters on its behavior. We also

present a gaze estimation method based on epipolar geom-

etry for binocular eye tracking setups. The depth compen-

sation model has shown very promising to the field of eye

tracking. It can reduce 10 times less the influence of paral-

lax error in multiple depth planes.

1. Introduction

Eye tracking is an expressive tool for analyzing human

interest and intend [13]. Its potential for detailed and objec-

tive performance analysis in sports has been shown in var-

ious experiments [1, 12, 17] and the collected information

from eye tracking can potentially help athletes to become

more effective in their daily training.

Head mounted eye tracking is the most obvious type

of eye tracker to use for analysis of athletes during daily

training [8] and with current technological developments it

could be implemented without significantly disturbing the

athletes. However, head mounted eye tracking analysis are

typically challenged by the parallax error, which happens

as a consequence of the spatial offset between the eye and

the camera observing the scene [15]. This causes signif-

icant gaze estimation errors (in the scene view) when the

apparent objects are located at different depths than during

calibration. In addition to the inherent inaccuracy of gaze

estimation (0.5 degrees or more), the parallax error will ef-

fectively make it hard, if not impossible, to analyze the eye

tracking data reliably. Despite of this, many research results

are based on manual inspection of video data with overlaid

gaze data and the depth compensated point of regard is done

based on human estimation when the objects move in space.

The parallax error is a practical problem for gaze-analysis

in sports where the target (say ball, stone or person) con-

stantly moves in depth relative to the athlete. So far there

is no commercial eye tracker that can account for the par-

allax error and therefore research results are often based on

human inspection and estimates on the location the point of

regard (PoR) when the target moves in space [13].

In this paper we will present a method that uses the depth

as a prior to compensate for the parallax error. Having the

object depth can be made feasible via visual tracking or

through other sensors. Even without an accurate estimate

the method can be used to discern between which of two

objects the person is most likely to look at. In Section 2 we

describe related work and in Section 3 we describe the par-

allax error in more detail. The parallax error compensation

model is described in Section 4.

The proposed depth compensation model is shown to

consistently improve the accuracy level of gaze estima-

tion process when the target is viewed on both calibration

plane (Section 5.2) and different depth planes (Section 5.3).

Through this paper we intend to show that it is possible

to estimate the athletes’ gaze actively in given sports sit-

uations and thus overcome some of the problems relate to

gaze estimation in depth using head-mounted eye trackers.

An overview of eye and gaze tracking models is reviewed

by Hansen and Ji [8].

2. Related Work

Eye tracking has been used for sports analysis but mostly

using head mounted eye tracking [1, 10, 12, 14, 17, 18].

Most eye tracking results are of psychological nature but

gaze estimation data collected during daily training where

it can be used for analyzing the athletes’ performance, such

as what happens when the athlete perform specific actions

(e.g., shoot, catch, throw)? Are there ocular differences be-

tween novice and experts [12, 14, 17]? Which strategies

can be used to improve the novice athletes’ performance

based on knowledge of eye movements patterns collected

from training activities of expert athletes [1]? For example,
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Paeglis et al. [17] presented a study for analyzing eye move-

ments from elite junior basketball players during shots prac-

tice training. After only a year of training, their free shot

rates significantly improved as a consequence of the use of

eye tracking in their training. They concluded among other

important results that if compared directly with expert bas-

ketball players, novice basketball players need more time

for quality decisions before making their shots but during

free shots, expert players spend more time to do this action

than novice players.

Hüttermann et al. [12] presented a study for verifying the

ability to devote attention simultaneously to multiple visual

objects into a athlete’s field of view and important concept

in team sports, for example. Hüttermann et al. [12] showed

that athletes present better attention performance when fo-

cusing attention simultaneously on two stimuli (i.e., when

the athlete fixates between two stimuli). This could mean,

in the future, it will be possible to improve training athletes

to better focus through of subsequent training studies for

improving fixation strategies of a determinate athlete.

Eye trackers for sports analysis are based on the same

fundamental eye and gaze tracking models as described

in the overview [8]. The parallax error in head-mounted

eye trackers (HMET) can be minimized through hardware.

Velez and Borah [20] presented an eye tracker that uses

a hot-mirror glass in front of the user’s eyes for control-

ling the distances and angular relationships of eye camera,

scene camera and user’s eyes. The hot-mirror is positioned

in the eye’s optic axis with aim to reflect images from the

eyes and environment toward their respective cameras. This

setup removes the parallax error and ensures a wide-angle

scene viewing over multiple depth planes. Not all HMET

have a physical structure that allows hot-mirror glasses to

be used. Mardanbegi and Hansen [15] proposed a study to

identify the main sources of parallax error in head mounted

eye trackers. They analyzed the influence of scene camera

positions, the calibration and fixation distances on the paral-

lax error. They showed that the angle kappa (the difference

between visual and optical axes) does not have a significant

effect on the parallax error [15].

3. Parallax Error in Gaze Estimation

We are going to explain the parallax error based on a

HMET. The most of current HMET cannot estimate high

accuracy gaze due to the parallax error. Parallax error is a

geometrical problem due to the projection center of HMET

scene camera and the user’s eyeball center are not co-axial.

Since the scene camera cannot be placed at the same axis

of the user’s eye, it is necessary to find out a solution for

compensating the parallax error for general HMET.

HMET usually have two (monocular) or three (binocu-

lar) cameras attached in their physical structure. For exam-

ple, a binocular HMET has two eye cameras located slightly

close to each eye and one scene camera on the head. The

scene camera is used for capturing images from the user’s

field of view. However, the scene camera is usually not co-

axial with any user’s eye. In this case, the gaze estimation

includes the parallax error on it. Figure 1 shows an example

of the parallax error when a person uses an HMET like that.

Figure 1. Geometry of parallax error in a HMET. The head

mounted eye tracking system is calibrated on the calibration plane.

Targets on calibration plane can be estimated with high accuracy.

However, when the user looks at to a target in the same position

X1 but on a different plane Di, the gaze will be estimated on posi-

tion X3

i instead of the position X2

i . The green arrows represent the

parallax error corresponding to the vector ||X2

i X
3

i || on the viewed

plane and a vector ||x1x2

i || on the scene camera plane.

The first parameter to be analyzed is the user’s eye. Ac-

cording to Gullstrand-Le Grand Eye Model, the simplified

model for representing the human visual system is formed

by two spheres with distinct sizes for representing the eye-

ball and the cornea surface [4, 5, 11]. The center of rotation

of these spheres is around a fixed point Oeyeball and there

is a small angular difference between the optical and vi-

sual axes, which is user dependent and they intersect in the

point Ocornea. The second parameter is the scene camera,

in which is not co-axial with the user’s eye. The scene cam-

era is represented as a pinhole camera with a vertical im-

age plane. The last parameter to be analyzed are the planes

viewed by the user during the eye tracking session.

The eye tracking system is calibrated in a given distance

Dcalibration from the user to the calibration plane. All

points on the calibration plane can be estimated with high

accuracy level. However, what happen when the user fix-

ates his/her gaze so far away from the calibration plane (at
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Figure 2. Example of parallax error during a curling daily training session. The system is calibrated on the calibration plane and there is no

influence of parallax error on that. On the other hand, when the stone goes to position X2 on the viewed plane, the gaze will be estimated

on position X3. When the distance between the curling athlete and the viewed stone is prior known, the proposed depth compensation

model is able to correct the estimated PoR for the correct position in the scene image, as shown in the small upper picture.

the distance Di)? The user’s visual axis intersects the cali-

bration plane exactly at the point X1 and the multiple depth

planes at the point X2

i (1 ≤ i ≤ n). When the user looks

directly at the point X1, the gaze is estimated correctly as

the point x1 on the image plane. On the other hand, when

the user looks at to any depth plane at the point X2

i , the

gaze is going to be estimated as the same point x1 instead

of the point x2

i on the image plane. According to Mardan-

begi and Hansen (2012), the parallax error is defined as a

vector ||x1x2

i || on the image plane, which is corresponding

to the vector ||X2

i X
3

i || on the viewed plane [15]. Figure 2

shows a practical example of using an eye tracking system

for a curling daily training. The parallax error appears in

different planes on the curling sheet when the athlete look

at to the stone (target) far way from the calibration plane.

4. Depth Compensation Model

The phenomenon of parallax is related by the geometry

of the HMET, in which it can be described by epipolar ge-

ometry in a stereo vision system [2, 15]. In this case, the

epipolar geometry is expressed by the point peye on the eye

plane and the point pscene on scene camera plane that must

lie on a line called epipolar line. As shown in Figure 3,

if the point P in the athlete’s field of view moves along the

line formed by the optical center of the scene camera Oscene

and the point pscene, its projection on the scene plane will

not change but the projection on the eye plane will change.

This movement traces out the epipolar line Deye [2].

When the athlete focuses on objects at different planes

(see Figure 1), the PoR projection will move along an epipo-

Figure 3. Geometry of parallax error in a HMET.

lar line in the image plane. Based on epipolar geometry, all

epipolar lines intersect at a common point called epipole.

In our context, the epipole is placed in the optical center

Oeyeball into eye plane. Each epipolar line can be estimated

through an algebraic representation called fundamental ma-

trix (F ). F can be estimated given at least seven point corre-

spondences in both image and scene camera planes. These

correspondences represent the geometric information about

the intrinsic and extrinsic parameters of the cameras.

The fundamental matrix F encapsulates the intrinsic

camera geometry and it is independent of scene structure.

Given F as a 3 × 3 matrix, it is possible to calculate the

corresponding epipolar line Dscreen for every point peye in

the eye image plane by Equation 1:

Dscreen = F × peye. (1)

If any point P is imaged as peye in the eye camera and
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pscreen in the scene camera, then the following relation is

equivalent to the corresponding epipolar line and constrains

the matching of points through Equation 2:

pTscreen × F × peye = 0, (2)

for all corresponding points pscreen ↔ peye.

In a binocular HMET, each pair of eye camera and scene

camera forms a structure similar to a stereo vision sys-

tem. We uses a binocular eye tracking approach to define

two epipolar lines in the scene camera plane. As the PoR

moves along each epipolar line, the intersection between

these epipolar lines will be very close to the real athlete’s

gaze. The biggest problem is when the target moves so far

away from the calibration plane, because the parallax error

will drastically reduce the precision of the gaze estimation

process. Our depth compensation model is based on pure

translation motion, i.e. a planar motion case where there is

no rotation [9, 19]. According to Hartley and Zisserman [9],

the “pure” definition means that there is no change in the in-

ternal parameters of the cameras.

After estimating the gaze, it is necessary to correct the

parallax error based on the information about the depth dis-

tance between the viewed target and the calibration plane.

As the cameras are stationary in the HMET and we consider

that only the targets undergoes a translation −t. In this case,

the three-dimensional points move on straight lines paral-

lel in the direction of t. One may assume that the calibra-

tion plane and viewed plane are respectively Pcalibration =
K[I|0] and Pviewed = K ′[I|t]. Equation 3 is used for cal-

culating the fundamental matrix when there is no rotation

(R = I) and both camera matrices are the same (K = K ′):

F = [e′]×K
′K−1 = [e′]× (3)

in which the notation [e′]× is a rank 2 skew-symmetric 3×3
matrix. If the target plane translation is parallel to the cal-

ibration plane z-axis, then e′ = (0, 0, 1)T . In this case, the

fundamental matrix can be represented by the Equation 4:

F =





0 −1 0
1 0 0
0 0 0



 . (4)

If a point x in the calibration plane is normalized as

x = (x, y, 1)T , then from x = PcalibrationX = K[I|0]X ,

the space point’s coordinates are (X,Y, Z)T = ZK−1x,

where Z is the depth of the point X from the viewed plane

along the principal axis of the calibration plane. It then fol-

lows from x′ = P ′X = K[I|t]X , Equation 5 corrects the

estimated gaze point x to the real gaze point x′ viewed by

the athlete without parallax error:

x′ = x+Kt/Z (5)

in which depends on the magnitude value of the translation

t and the inverse depth Z [9].

5. Assessment on Simulated Data

Simulated eye tracking data were used for assessing the

proposed gaze estimation approach (using epipolar geome-

try) and depth compensation model (using pure translation)

in a totally controlled environment. We have used a MAT-

LAB eye tracker simulator in which it is possible to control

the eye tracker parameters and the ocular biometric param-

eters [3]. Therefore, it was possible to evaluate the noise ef-

fects of each parameter in the gaze estimation process. The

evaluation process was divided according to when the user

visualizes targets on the calibration plane (Subsection 5.2)

and on the multiple depth planes (Subsection 5.3).

The assessment on the calibration plane has evaluated

the accuracy of the proposed gaze estimation approach

based on epipolar geometry, and the assessment on the mul-

tiple depth planes has evaluated the parallax error rectifica-

tion of the proposed depth compensation model based on

pure translation. We have evaluated the following aspects

during our assessment process: (1) refractive index of aque-

ous humor [α]; (2) number of calibration targets [N ]; (3)

horizontal [γ] and vertical [β] angle offset between optical

and visual axes [a.k.a. angle kappa]; (4) the influence of

noise in the eye features detection process [Pc+λ]; and (5)

depth movements along to the calibration plane z-axis.

5.1. Setup

The simulated eye tracker device was setup as a binocu-

lar HMET. In this case, it had two eye cameras (one for each

user’s eye) located slightly close to the calibration plane

and one scene camera (to get images from the user’s field

of view) slightly close to the user’s head. The calibration

plane was adjusted to 55 cm distance from the user. During

each test, it was estimated the gaze error from 4,096 targets

distributed in a 64 × 64 matrix over the viewed plane. For

all simulated tests, we have used two eye models with dif-

ferent angle kappa offsets [7], namely: E0[β = γ = 0◦] (a

physically infeasible setup only to avoid some eye specific

biases) and E1[β = 1.5◦, γ = 4.5◦] (a more realistic ocular

biometric setting). For standard, it has used the minimum

number of calibration targets necessary to create the funda-

mental matrix (N = 8) during the user calibration process.

5.2. Tests on the Calibration Plane

Refractive Index of Aqueous Humor The first test evalu-

ated the influence of refraction index in the gaze estimation

process. According to Hansen and Ji [8], the refractive in-

dex of aqueous humor has a constant value around 1.336. It

can add some noise or have some directly influence to the

gaze estimation process. Table 1 presents the influence of

the refractive index of aqueous humor when it is included

and when it is not. We concluded that there is no influence

of the refractive index in the gaze estimation process. On
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the other hand, changes in the angle kappa offset present a

notable difference for a similar test.

Model Refraction Maximum Error Mean Error

E0 No 0.0000231◦ 0.0000037◦

E0 Yes 0.0000231◦ 0.0000037◦

E1 No 0.0791455◦ 0.0088679◦

E1 Yes 0.0791455◦ 0.0088679◦

Table 1. The influence of refractive index of aqueous humors

[1.336] to the gaze estimation using E0 [β = γ = 0◦] and E1

[β = 1.5◦, γ = 4.5◦] eye models.

Number of Calibration Targets The second test evaluated

how the number of calibration targets (8 ≤ N ≤ 25) in-

fluences the gaze estimation process. The user calibration

process is performed in the beginning of an eye tracking ses-

sion. The user needs to look at N targets on the calibration

plane for creating a mapping used by the gaze estimation

process. Figure 4 shows the accuracy of the gaze estima-

tion as a function of the number of calibration targets. For

both eye models the minimum number of calibration targets

(N = 8) has achieved a good accuracy. In opposite to the

classical gaze estimation methods, in a more realistic ocu-

lar biometric setting this approach does not improve its ac-

curacy when the number of the calibration targets increase

during the user calibration process (see the blue graphic).

Figure 4. The influence of the number of calibration targets N

to the gaze estimation using eye model (up) E0[β = γ = 0◦] and

(down) eye model E1 [β = 1.5◦, γ = 4.5◦].

Angle Kappa Offset The third test showed that there is a

huge difference among the tests performed with different

angle kappa offsets. Figure 5 shows the influence of differ-

ent angle kappa offsets within a range of angular horizontal

offsets (−4.5◦ ≤ γ ≤ 4.5◦) and a fixed angular vertical off-

set (β = 0◦). We conclude that the gaze estimation based

on epipolar geometry does not model the angle kappa with

high accuracy. The accuracy linearly decreases according

to angle kappa, i.e. the bigger the angular difference among

visual and optical axes the lower will be the accuracy.

Figure 5. The influence of the angle kappa offset to the gaze es-

timation. Angle kappa has two angles offsets, i.e. horizontal (γ)

and vertical (β). We observed the influence of angle kappa with

−4.5◦ ≤ γ ≤ 4.5◦ and β = 0◦.

Noise During the aforementioned tests, the gaze estima-

tion approach based on the intersection of multiple epipolar

lines showed very promising (error < 0.01◦). However,

in a real application will this approach achieve the same

accuracy degree? With aim to answer this question, we

have performed a fourth test add a controlled noise in the

pupil center coordinate before calculate the epipolar line,

i.e. lineleft = Fleft × (Pcleft + λ) and lineright =
Fright × (Pcright + λ). Figure 6 shows a two-dimensional

view of the noise tests with different values to horizontal

coordinates and a fixed vertical coordinate Pc = (x+λ, y).

Figure 6. Two-dimensional view of the influence of noise added

to the pupil center coordinate to the gaze estimation process us-

ing eye model (up) E0 [β = γ = 0◦] and (down) eye model E1

[β = 1.5◦, γ = 4.5◦]. The noise (λ) was added to Pcenter =
(x, y) in the following range −18.90 ≤ λ ≤ 18.90 pixels.

We concluded that this gaze estimation approach only

calculate the PoR with high accuracy level when there is

no noise in the eye features detection process. In a real

eye tracking application, this approach is going present the

same accuracy degree as the classical gaze estimation meth-
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ods (e.g. homography, cross-ratio, polynomial, among oth-

ers [5, 7, 16, 23]). Figure 7 shows a three-dimensional

views of the influence of noise in the gaze estimation pro-

cess. The noise was added to each (x, y) coordinate of the

pupil center, in the following range −18.90 ≤ λ ≤ 18.90
pixels (±5 mm) on the calibration plane.

Figure 7. Three-dimensional view of the influence of noise added

to the pupil center coordinate to the gaze estimation process us-

ing eye model (up) E0 [β = γ = 0◦] and (down) eye model E1

[β = 1.5◦, γ = 4.5◦]. The noise (λ) was added to Pcenter =
(x, y) in the following range −18.90 ≤ λ ≤ 18.90 pixels.

There is a huge difference only when the noise is λ =
0. In this case, E0 presents an accuracy degree around

0.0106921◦ and E1 is around 0.0000039◦. For others noise

level, the accuracy degree is basically the same for E0 and

E1, i.e. the difference mean is ±0.01◦.

5.3. Tests on the Depth Planes

The last simulated test was performed with aim to eval-

uate the depth compensation model proposed in this paper.

During this test, the HMET hardware components and the

user are still while the targets moves along to the calibration

plane z-axis. The calibration plane is 55 cm far away from

the user and the viewed plane moves in a range 35-105 cm

from the user (step of 10 cm). Figure 8 and 9 show the in-

fluence of parallax error to the gaze estimation. For each 10

cm far away from the calibration plane, the parallax error

adds a gaze error around ±0.23◦.

Figure 8. The influence of parallax error to the gaze estimation.

The viewed plane was moved to 10 different distances far away

from the user position, i.e. in a range 35-125 cm. The accuracy

level decrease because the parallax error.

Figure 9. The influence of parallax error to the gaze estimation.

After the user calibration process, the viewed plane was moved

to 95 cm far away from the user position. The gaze estimation

presented an accuracy level around 0.95◦.

Figure 10 and 11 show the influence of proposed depth

compensation model to the gaze estimation process. The

depth compensation model was able to correct the parallax

error of simulated eye tracking data. For each 10 cm far

away from the calibration plane, the parallax error adds only

a gaze error around ±0.02◦ (i.e. 10 times less). At this

point, we concluded that this depth compensation model is

very promising to the field of eye tracking.

6. Conclusions

This paper has presented a novel depth compensation

model used for correcting the parallax error in HMET. The

proposed model is robust to large depth planes when the dis-

tance between the user and the target is prior known. The

distance is used for compensating the parallax error using

the pure translation approach. This paper has also described

a gaze estimation method based on epipolar geometry. This

method has presented high accuracy degree with simulated

date. However, it has shown very sensitive to intrinsic and
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Figure 10. The influence of depth compensation model to the gaze

estimation. The viewed plane was moved to 10 different distances

far away from the user position, i.e. in a range 35-125 cm. The

gaze estimation presented a good accuracy level despite the paral-

lax error.

Figure 11. The influence of depth compensation model to the gaze

estimation. Using the depth compensation model, the gaze esti-

mation achieved an accuracy level around 0.04◦ when the viewed

plane was moved to 95 cm far away from the user position.

extrinsic noise and it accuracy is similar to others classi-

cal gaze estimation methods (e.g. homography, cross-ratio,

polynomial, among others).

The proposed model was developed to be used in a big-

ger project with elite sport athletes (shooting and curling).

The main expected contributions by this research project is

to develop flexible eye tracking models that can be used for

elite sport athletes in their daily training. Eye tracking has

been used for sports and has already shown some promise.

However, eye trackers used for sports analysis are general

purpose, expensive and not adapted to be used actively in

sports situations.

Eye tracking can used for collecting information about

the pattern of ocular activities of experts athletes and let

other novices athletes observe their eye movements. The

use of eye tracking in sport can go further, e.g. to auxiliary

the hawk-eye technology for evaluating information that has

raised doubts during a match [22], to activate resources of

a vehicle cockpit through fixations [21], to find the better

alternative to view multiple targets during an action of at-

tack or defenses [12] and to identify external points of dis-

traction presents during an eye tracking session [6]. Eye

tracking data and tools will allow the athletes and trainers

to get much deeper insight into thoughts and strategies used

by the athletes, and adapt the training correspondingly thus

improving their performance in stressful and time critical

situations. While the focus of this project is on sports train-

ing, it is evident that progress made within this project on

eye tracking and supporting tools for sports activities could

have a direct impact on other areas that use eye tracking.
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