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Abstract

We present an open source cross platform technology

for 3D face tracking and analysis. It contains a full

stack of components for complete face understanding:

detection, head pose tracking, facial expression and

action units recognition. Given a depth sensor, one

can combine FaceCept3D modules to fulfill a specific

application scenario. Key advantages of the technology

include real time processing speed and ability to handle

extreme head pose variations. Possible application areas

of the technology range from human computer interaction

to active aging, where precise and real-time analysis is

required. The technology is available to community.

1. Introduction

Over the past years, there has been an increasing interest

in technologies aimed at supporting or enhancing people’s

lives (especially elders) in various environments, such as

shopping malls, museums or at home [1, 2]. Understanding

the affective state of these subjects offers important clues

in decoding their state of mind, useful in monitoring

tasks. In addition, many studies require estimates of the

direction and level of attention for modeling different types

of interactions. In such cases, the head pose estimation

becomes a valuable proxy.

There is one important constraint shared by all

these scenarios when solving the above-mentioned tasks:

non-invasiveness, i.e. the solution must not hinder the

naturalness of the subject’s behavior. Consequently, the

vision sensors are typically placed out of the direct sight of

the subject. FaceCept3D is motivated by challenges arising

from these types of scenarios and is able to successfully

address them in a unified, open source and cross-platform

solution. Additionally, our system can be deployed in a

much broader spectrum of applications (e.g. those cases for

which the face is not fully visible to the sensor), being able

to maintain state-of-the-art performance, as shown in [36].

Several examples of correctly handled self-occlusions due

Figure 1. Several examples of FaceCept3D applied to the

RGB-Depth stream. The system requires a person-specific

template to operate. Typically, the template creation is performed

in advance and takes only 3 seconds to complete.

to face rotations are given in the Figure 1. The code of the

technology is available on GitHub1.

2. Related work

Since our proposed system addresses multiple tasks in

a unified solution, we will briefly review related work

for each separate task, namely 3D head pose estimation,

pose-invariant facial expression and facial action unit

recognition.

2.1. Head pose estimation in 3D

There is an abundance of work [22] exploiting 2D

information for estimating head pose (HPE). Although there

are many works tackling head pose problem using only

a single RGB image [32, 14, 46], 2D acquisition devices

are sensitive to illumination changes, making it difficult to

find simple enough features to meet real-time constraints.

However, depth images are less influenced by illumination

and, as such, become an attractive alternative for HPE. As

a consequence, many research groups have investigated the

1https://github.com/sergeytulyakov/FaceCept3D
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use of 3D data, especially since sensors such as Kinect have

become affordable.

One way of addressing HPE in 3D is to treat the task

as a mesh registration problem. Weise et al. [38] present a

method for transferring facial expressions from a user to an

animated avatar. They first create a person-specific model

for a performer by manually marking correspondences

between the model and the user. This operation is done

automatically in [16], eliminating the requirement to do

offline tuning of the system to a particular human performer.

However, methods like [38, 30, 18, 7] still rely on

landmarks detection, such as eyes, nose, mouth and other

facial points. In the context of severe head orientations,

accurate correspondence estimation is no longer possible

(due to self-occlusions) and the accuracy of the system

decreases. We also build a personalized template for a given

user, but in contrast to previous work, our template creation

stage is offline, fully automatic and estimating the head pose

needs no facial landmarks available.

In [13], an approach for head pose estimation based on

random regression forests is described. The results obtained

on Biwi Kinect Database are promising (the percentage of

correctly identified test examples within the threshold of

10◦ degrees is 90.4%), however, the case of extreme head

orientations is not covered in their study. In [6] the authors

propose a novel shape signature to help identifying nose

position in range images. Using parallel computing, they

evaluate many pose hypotheses reaching a hit rate of 97.8%
corresponding to an error threshold of 15◦ at 55.8 fps. In the

same context, in [23] a particle swarm optimization search

generates remarkably small uncertainty when predicting

head pose (around 2◦ standard deviation for all angles), but,

similar to [6], they also resort to massive parallel resources

coming from GPU.

In order to handle large pose variations and process

non-frontal facial views, we fuse two independent

components: a detection module and a tracking one. In

addition, by keeping the pipeline simple, no dedicated

hardware is needed to speed up processing, reaching

real-time performance on standard CPUs.

2.2. Pose-invariant facial expression recognition

In the past decade, much work has been done on static

facial expression recognition dealing with non-frontal poses

by exploiting 3D data. Such methods are split in [26]

into four main categories: distance based, patch based,

morphable models and 2D representations.

Distance based methods extract the (3D) landmark

positions of the input face and use inter-landmark distances

to classify facial expressions [29, 17]. Obvious limitations

arise from the difficulty of localizing facial landmarks

in cases of severe self-occlusions [27]. Patch based

approaches extract local features from either every point of

a 3D mesh or around specific landmarks [26]. For instance,

in [19] facial landmarks on the 3D surface of a face specify

the positions in which patches are described by means of

level curves. Probe and gallery expression samples are

compared computing the geodesic distance between such

curves. Note that in our approach we extract patches from

the 2D projection of the 3D face point cloud representation.

In [21] a morphable model is fitted to the face point cloud

by matching a set of landmarks, which need to be localized

both on the prototypical model and on the analyzed face.

The 2D approaches [26] are the category most similar to

our method and are based on mapping the 3D data onto 2D

representations. Once the mapping is computed, different

features can be extracted from the 2D representation. For

instance, in [25] depth maps and Azimuthal Projection

Distance Images are filtered with different methods, such

as Gabor filters, LBP features, etc., with the goal of action

unit detection. In [4] a depth map of the 3D facial meshes

is computed and SIFT features are extracted in this map

around specific landmarks. In our approach we do not need

to accurately localize landmarks on our 2D representation

and a rough estimation of the head pose together with the

position of the eyes in the depth map is sufficient to compute

our cylindrical projection surface. Moreover, our Random

Forest based joint selection of features and channels makes

it possible to adaptively choose among a huge number of

possible features.

Closest to our system in systematically addressing severe

head orientations is the work of [24] in which the authors

use a discrete set of 34 poses (spanning angles between

−45◦ and 45◦ on the yaw direction and between −30◦ and

30◦ for the tilt) along with the frontal pose in order to learn

a mapping function between facial landmark positions of

a given non-frontal face and the frontal correspondence.

At testing time, the head pose is estimated and the closest

training poses are used to project the landmarks onto the

frontal pose. Finally, a multi-class SVM is applied to

the frontally-normalized landmark positions to categorize

the facial expressions. One drawback of this work is

the necessity to accurately estimate a large number of

facial landmarks. Many systems estimating such landmarks

fail when large head pose variations come into play and,

as such, alter drastically the performance of subsequent

processing stages.

2.3. Facial action unit recognition

Along with facial expression recognition, action unit

analysis has been in the center of attention of many research

groups. Action units (AU) are anatomical descriptors that

correspond to various facial muscle contractions. They can

occur alone or in hundreds of combinations which account

for all possible facial expressions. In other words, facial

expressions in general (and Ekmans six prototypical ones in
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Figure 2. A pipeline for tracking the head pose and recognizing

facial expressions. The grabber executes processors one after

another.

particular) are manifestations of a small subset of AUs. The

most commonly used taxonomy for action units is described

by FACS [12] and typically research focuses on a small

subset only.

There is a large body of research on AU recognition from

both 2D and 3D data (see recent surveys for reference [41,

11, 26, 20]). Approaches are generally split into static and

dynamic ones. In the first category, AU recognition is posed

as a binary (1-vs-all) or multi-class classification problem,

using different features, typically extracted around salient

facial landmarks (such as SIFT [9, 44, 40] or LBP-based [3,

25]) and different classifiers (SVM, AdaBoost). In dynamic

modeling, frames are grouped into sequences and temporal

models (for instance HMMs, CRFs [8, 28, 35]) are used to

dissociate between AU components, such as onset, apex and

offset.

More recently [37, 44], efforts have been channeled

into modeling dependencies between combinations of

AUs, showing improved performance w.r.t. the simpler

models. In [44] a joint patch and multi-label learning

framework for AU recognition is being proposed, in

which dependencies between certain pairs of AUs are

modeled using a matrix that encodes positive correlations

and negative competitions computed from an ensemble of

datasets. It shows superior results over both methods that

focus only on learning patch importance [31, 45] as well as

those adopting the multi-label strategy [42].

As in the case of face analysis in general, action

unit recognition is now addressing spontaneous scenarios,

moving one step closer to real life situations [43]. For

example, cases in which data are generated following

carefully planned elicitation protocols, including subjects

that have not been particularly trained or prepared for the

task. Recent papers and challenges [34] are now publishing

results along this line.
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Figure 3. Person-specific template creation pipeline. Prior to

creating the point cloud, we filter out noise by convolving the

depth image with a Gaussian kernel. Voxel-grid algorithm on the

smooth cloud is used to obtain a cloud with fewer points. Pairwise

registration is performed on the consecutive clouds.

3. Modular architecture

FaceCept3D is a set of independent modules. The

modules are split into three major parts:

• Recognition modules include filtering, registration,

feature extraction, machine learning methods and

other components.

• Pipeline modules, that encapsulate underlined

platform and sensor-specific technical details.

• User interfaces modules, that enable viewing,

annotating and displaying the results.

Figure 2 shows a typical pipeline for an automatic

head pose tracking and facial expression recognition.

A sensor dependent grabber module executes a queue

of processors that perform necessary actions using the

recognition components.

4. Head pose tracking

In order to track a face, FaceCept3D builds offline a

person-specific 3D head template for a person in front of

the sensor. When the template is ready, a modified version

of the Iterative Closest Point (ICP) [5] method is used to

register it with a scene and obtain the head pose (more

details in [33]). The process of person-specific template

creation is outlined in Figure 3 and takes around 3 seconds

on an embedded Intel processor.

Table 1. Comparison between history-based weighted ICP and

generic ICP in computational time

# Iterations Fps

Generic ICP 14.64 10.05

History-based weighted ICP 3.16 38.87

Our modified version of the ICP algorithm uses

history-based points weighting as described in [33] to guide

the optimization procedure of ICP to a promising descend

direction and reach local minima faster. Table 1 shows

that our version of ICP converges almost 4 times faster.
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Figure 4. Top row (left to right): an example of face scan with

two eyes detected. The cylindrical head model (CHM) parameters.

Our CHM with 150 × 120 sampling points imposed on the face

scan. Sampling point values computed based on the three nearest

neighbors. An example of pose-invariant face representation.

Bottom row: examples of sampled faces under varying head poses

and facial expressions. The head rotation (tilt, yaw) is given in

the brackets.

Several examples of recognized head poses are given in

the Figure 6. Note the difficult viewing angle and head

orientation correctly handled by the system.

To evaluate the head pose tracking accuracy we use the

Dali3DHP RGB-D dataset [33]. This database contains

two sessions of range and RGB images of 33 subjects.

During the first session a subject is asked to perform a

left-to-right head movement. This session is used to create

a person-specific head template. During the second session,

a subject performs a set of head movements. The second

session contains more than 60K range/RGB pairs covering

the following head pose angles: tilt [−65.76◦, 52.60◦], roll

[−29.85◦, 27.09◦], and yaw [−89.29◦, 75.57◦]. To ensure

uniform distribution over all possible head pose ranges,

all the subjects follow a special head movement pattern

on the wall. Ground truth is recorded using a Shimmer

sensor 2. Table 2 shows the results. Note that weighted

template tracker provides a slightly better results than the

full template tracker, while maintaining four times faster

speed.

Table 2. Head pose estimation result obtained on Dali3DHP

Dataset. Mean average error and the standard deviation (in

brackets) are reported.

yaw tilt

Full Template 4.06 (5.89) 8.21 (11.45)
Weighted Template 3.93 (5.23) 8.21 (11.31)

4.1. Head pose invariant face representation

FaceCept3D head pose tracker returns head pose

orientation in real-time. Since subjects are not constrained

in head movements, many parts of the face could be

self-occluded. We deal with this problem by building head

2http://shimmersensing.com/
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Figure 5. From head pose invariant face representation to the

expression label (left to right): initial 2D face representation,

channel computation, dense sampling with overlapping patches,

random forest classification, decision fusion and labeled sample.

pose invariant face representation, which transforms the

head pose problem into a missing information problem.

This representation is constructed by creating a cylinder

around the face and projecting the face onto the cylinder.

Figure 4 shows this cylindrical sampling pipeline.

Several examples of head pose invariant face

representation are given in Figure 4 bottom row. Nearest

neighbor interpolation is the most computationally

expensive step in this pipeline. In order to run it in

real-time FaceCept3D has an efficient way to compute it.

5. Facial expression and action unit recognition

Once computed, the head pose invariant face

representation is subject to a dense sampling procedure

with overlapping patches of fixed size (see Figure 5). For

each patch position, we train a separate classifier, followed

by a late fusion stage for the final estimate. In the case of

action unit (AU) recognition, we employ a 1-vs-all strategy

for every patch. The dense sampling approach comes along

with two important benefits: (i) it offers an elegant way

to cope with missing information, as the empty patches

are simply discarded at decision making stage and (ii) it is

naturally suited for modeling patch importance, as different

patch votes can be weighted differently (especially in the

case of AU recognition).

From each face image encoding depth information, we

first compute channel representations, then we split the

channels into overlapping patches, from which generalized

Haar features are extracted [10]. Random Forests are then

used to perform patch level predictions, which in turn are

aggregated for the final estimate [36].

Figure 7 shows the recognition rate distribution over

the yaw/tilt space on BU-3DFE dataset [39]. The angle

ranges are divided into blocks of equal size 15◦ × 15◦ and

performance is computed on samples belonging to each

block. The gray area corresponds to a reduced set of

angles, commonly used in previous work (e.g. [24]). While

maintaining state-of-the-art performance on the reduced

set, FaceCept3D is able to extend its operating point to

severe head rotation angles with only a reasonable loss in

recognition accuracy.
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Figure 6. For every subject three images are given. The left one represents a template with the most important points marked in red. The

image in the middle shows the template fitted to the point cloud. The right image shows the view from the walker. Note that for some

subjects the face is almost completely hidden.
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Figure 7. Recognition rate distribution over the yaw/tilt space. The

gray area shows the reduced head-pose range reported in [24].

Table 3. Action Unit recognition results obtained on BP4D

AU Index F1 Norm Acc Norm

1 0.46 0.60

2 0.12 0.50

4 0.36 0.56

6 0.80 0.79

7 0.73 0.70

10 0.79 0.77

12 0.82 0.81

14 0.68 0.66

15 0.33 0.56

17 0.58 0.63

23 0.43 0.60

Avg 0.56 0.65

Finally, in Table 3, we show preliminary results

on AU recognition on BP4D dataset [43], following a

leave-one-subject-out protocol. As a performance measure,

we report the normalized F1 score with a skew factor [15],

computed as F1Norm = 2sPR
2sR+P , where R and P are

the Recall and Precision, respectively, and s is the ratio

between the number of negative samples and the number of

positive ones included in the test set. In a similar manner we

compute the skew-normalized accuracy, as AccNorm =
TP+TN/s

TP+TN/s+FP/s+FN .

6. Conclusions

In this paper, we introduce FaceCept3D, an open source

cross platform system for 3D face analysis. FaceCept3D

is able to accurately infer head pose, perform face

frontalization and estimate facial expressions in real-time.

Our system is designed to cope with a wide range of head

pose variations, typically seen in applications for which

non-invasiveness is a particularly important requirement.
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