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Abstract

Many details about our world are not captured in writ-

ten records because they are too mundane or too abstract

to describe in words. Fortunately, since the invention of the

camera, an ever-increasing number of photographs capture

much of this otherwise lost information. This plethora of ar-

tifacts documenting our “visual culture” is a treasure trove

of knowledge as yet untapped by historians. We present a

dataset of 37,921 frontal-facing American high school year-

book photos that allow us to use computation to glimpse

into the historical visual record too voluminous to be evalu-

ated manually. The collected portraits provide a constant

visual frame of reference with varying content. We can

therefore use them to consider issues such as a decade’s

defining style elements, or trends in fashion and social

norms over time. We demonstrate that our historical image

dataset may be used together with weakly-supervised data-

driven techniques to perform scalable historical analysis of

large image corpora with minimal human effort, much in the

same way that large text corpora together with natural lan-

guage processing revolutionized historians’ workflow. Fur-

thermore, we demonstrate the use of our dataset in dating

grayscale portraits using deep learning methods.

1. Introduction

In their quest to understand the past, historians—from

Herodotus to the present day—primarily rely on two

sources of data that humanity has left behind through the

ages: 1) textual accounts; and 2) visual and material ar-

tifacts. The invention of the daguerreotype in 1839 as a

means of relatively cheap, automatic image capture her-

alded a new age of massive visual data creation with poten-

tially profound implications for historians. This new format

was complementary to historical texts, as it could both cap-

ture details too obvious to put down in writing, and also

transmit non-verbal information that would otherwise be

lost. For example, it would be hard for a future historian to

understand what the term “hipster glasses” refers to, just as

it is difficult for us to imagine what flapper galoshes might

Figure 1: Average images of students by decade. The evolv-

ing fashions and facial expression throughout the 20th cen-

tury are evident in this simple aggregation. For example,

notice the increasing extent of smiles over the years and the

tendency in recent years for women to wear their hair long.

In contrast, note that the suit is the default dress code for

men throughout the 20th century.

look like from a written description alone [5]. However, de-

spite public adoption of photography in the past century and

a half, and the abundance of online historical visual data,

historians are limited by the amount of data a human curator

can manually process. Typically, only comparatively small-

scale image collections are employed, potentially missing

numerous unseen visual connections.

We take first steps towards a new approach to the analy-

sis of visual historical data using data-driven methods suited

to mining large image collections by creating a large visual

historical dataset that can support such methods. By treat-

ing large historical photo collections as a whole, we expect

to learn things that cannot be inferred from the inspection of

a small number of artifacts in isolation. Similar approaches

have been applied to the study of historical texts [20], but

we are unaware of analyses of visual historical data.

In this paper we present a collection of one particu-

lar type of widely available yet little used historical vi-

sual data—a century’s worth of high school yearbooks from

around the United States (Fig 1). Yearbooks published since

the wide adoption of film (the first Kodak camera was re-

leased in 1888) have contained standardized portrait photos
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of the graduating class. As such, yearbook portraits provide

a consistent visual format through which one can examine

changes in the content ranging from personal style choices

to developing social norms.

The main contributions of this paper are 1) A histori-

cal image dataset that comprises a large scale collection of

yearbook portraiture from the last 120 years in the United

States and which we make publicly-available. 2) An initial

demonstration of the application of data-driven methods to

discover historical visual patterns. In particular, we explore

the gradual changes in social norms of smiling for the cam-

era and the defining styles of different decades. 3) Finally,

we demonstrate the use of the new dataset for training a

deep learning algorithm for the task of image dating.

2. Related Work

Researchers in the humanities are now able to tease out

historical information from large text corpora thanks to ad-

vances in natural language processing and information re-

trieval. For example, these advances (together with the

availability of large-scale storage and OCR technology) en-

abled Michel et al. to conduct a thorough study of about

4% of all books ever printed resulting in a quantitative anal-

ysis of cultural and linguistic trends [20]. Large historical

image collections will enable researchers to conduct similar

analyses of visual historical trends.

To date, the study of historical images has been relatively

limited. Some examples include modeling the evolution

over time of automobile design [19] and architecture [18]

as well as dating historical color photographs [21]. Here we

extend upon these works by presenting a historical dataset

that can be used to answer a broader set of questions.

Several researchers recently focused on modeling fash-

ion items. In HipsterWars, Kiapour et al. take a supervised

approach and use an online game to crowd-source human

annotations of five current clothing-style categories that are

then used to train models for style classification [15]. Hi-

dayati et al. take a weakly-supervised approach to discover

the recent (2010-2014) trends in the New York City fashion

week catwalk shows [12]. They extract color and texture

features and use these to discover the representative visual

style elements of each season via discriminative clustering

in an approach similar to that which Doersch et al. took to

discover architectural elements [3]. While we also deal with

fashion and style in this paper, our focus is on changes in

style through a much longer period of history. Because our

dataset includes scanned images from earlier time periods,

much of it consists of lower resolution and quality images

than the recent datasets described above. This makes some

of the above approaches unsuitable for our data.

Finally, Islam et. al. analyze the connection between

facial appearance and geolocation [13].

Figure 2: The distribution of portraits per year and region.

3. The Yearbook Dataset

We are at an auspicious moment for collecting historical

yearbooks as it has become standard in recent years for lo-

cal libraries to digitally scan their yearbook archives. This

trend enabled us to download publicly available yearbooks

from various online resources such as the Internet Archive

and numerous local library websites. We collected 949

scanned yearbooks from American high schools ranging

from 1905-2013 across 128 schools in 27 states. These con-

tain 154,976 individual senior-class portrait photographs in

total along with many more underclassmen portraits that

were not used in this project. After removing all non-frontal

facing we were left with a dataset of 37,921 photographs

that depict individuals from 814 yearbooks across 115 high

schools in 26 states.

On average, 28.8 faces are included in the dataset from

each yearbook with an average of 329 faces per school

across all years. The distribution of photographs over year

and region is depicted in Figure 2. Overall, 46.4% of the

photos come from the 100 largest cities according to US

census [7].

As no dataset is bias-free, let us consider the potential

biases in our data sample as compared to the high school

age population of the United States. Since 1902 America’s

high schools have followed a standard format in terms of the

population they served [9]. Yet, this does not mean that the

population of high school students has always been an unbi-

ased sample of the youth population in the US. In the early

1900s, less than 10% of all American 18-year-olds gradu-

ated from high school, but by end of the 1960s graduation

rates increased to almost 50% [9]. Moreover, the standard-

ization of high schools in the United States left out most of

the African American population, especially in the South,

until the middle of the 20th century [10].

In our dataset 53.4% of the photos are of women, and

46.6% are of men. As the true gender proportion in the

population is only available in a census year it is difficult to

determine whether this is a bias in our data. However, the

gender imbalance may be due to the fact that historically
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girls are disproportionately more likely than boys to attend

high school through graduation [9].

3.1. Data Preprocessing

In order to turn the raw yearbooks into an image dataset

we performed several pre-processing operations. First, we

manually identified the scanned pages that included senior-

class portraits. After converting those pages to grayscale

for consistency across years, we automatically detected and

cropped all faces. We then extracted facial landmarks for

each face and estimated its pose with respect to the camera

using the IntraFace system [26]. This allowed us to filter

out all images depicting students that were not facing for-

ward. Next, we aligned all faces to the mean shape using an

affine transform based on the computed facial landmarks.

Finally, we divided the photos into those depicting males

and females using an SVM in the whitened HOG feature

space [1, 11] and resolved difficult cases by crowdsourcing

a gender classification task on Mechanical Turk.

4. Mining the Visual Historical Record

We demonstrate the use of our historical dataset in an-

swering questions of historical and social relevance.

4.1. The Quintessential Styles of Each Decade

The simplest visual-data summarization technique of fa-

cial composites dates back to the 1870s and is attributed to

Sir Francis Galton [6]. Here we use this technique to or-

ganize the portraits chronologically. Figure 1 (first page)

displays the pixel-mean of photographs of male and female

students for each decade from the 1900s to the 2010s. These

average images showcase the main modes of the popular

fashions in each time period.

We can further examine each decade in more detail by

asking what are the representative and visually discrimi-

native features of that decade. These are the things that

make us immediately recognize a particular style as “20s”

or “60s”, for example, and allow humans to effortlessly

guess the decade in which a portrait was taken. They are

also the things that are usually hard to put into writing and

require a visual aid when describing; this makes them ex-

cellent candidates for data-driven methods.

We find the most representative women’s styles in hair

and facial accessories for each decade using a discrimi-

native mode seeking algorithm [2] on yearbook portraits

cropped to contain only the face and hair. Since our por-

traits are aligned, we can treat them as a whole rather than

look for mid-level representative patches as has been done

in previous work [2, 3]. The output of the discriminative

mode seeking algorithm is a set of detectors and their de-

tected portraits that make up the visual clusters for each

decade. We sort these clusters according to how discrimina-

tive they are, specifically, how many portraits they contain

in the top 20 detections from the target decade versus other

decades. In order to ensure a good visual coverage of the

target decade, we remove clusters that include in their top

60 detections more than 6 portraits (10%) that were already

represented by a higher ranking cluster.

Figure 3 displays the four most representative women’s

hair and eyeglass styles of each decade from the 1930s until

the 2000s. Each row corresponds to a visual cluster in that

decade. The left-most entry in the row is the cluster aver-

age, and to its right we display the top 6 portrait detections

of the discriminative detector that created the cluster. We

only display a single woman from each graduating class in

order to ensure that the affinity within each cluster is not

due to biases in the data that result from the photographic

or scanning artifacts of each physical yearbook. Looking at

Figure 3, we get an immediate sense of the attributes that

make each decade’s style distinctive. Some of the emer-

gent attributes are especially interesting since they would

be hard to describe in words. For example, the particular

style of curly bangs of the 40s or the “winged” flip hairstyle

of the 60s [24]. Finding and categorizing these manually

would be painstaking work. With our large dataset these at-

tributes emerge from the data by using only the year-label

supervision.

4.2. Smiling in Portraiture

These days we take for granted that we should smile

when our picture is being taken; however, smiling at the

camera was not always the norm. In her paper, Kotchemi-

dova studied the appearance of smiles in photographic por-

traits using the traditional historical methods of analyzing

sample images manually [16]. She reports that in the late

19th century people posing for photographs still followed

the habits of painted portraiture subjects. These included

keeping a serious expression since a smile was hard to main-

tain for as long as it took to paint a portrait. Also, etiquette

and beauty standards dictated that the mouth be kept small

– resulting in an instruction to “say prunes” (rather than

cheese) when a photograph was being taken [16]. All of

this changed during the 20th century when amateur photog-

raphy became widespread. In fact, Kotchemidova suggests

that it was the attempt to make photography ubiquitous and

associate it with happy occasions like holidays and travel

that led the photographic monopoly, Kodak, to educate the

public through visual advertisements that the obvious ex-

pression one should have in a snapshot is a smile. This

century-long advertisement campaign was a great success.

By World War II, smiles were so widespread in portraiture

that no one questioned whether photographs of the GIs sent

to war should depict them with a smile [16].

To verify Kotchemidova’s claims regarding the presence

and extent of smiles in portrait photographs in a data-driven

way, we devised a simple lip-curvature metric and applied
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Figure 3: Discriminative clusters of high school girls’ styles from each decade of the 20th century. Each row corresponds to

a single detector and the cluster of its top 6 detections over the entire dataset. Only one girl per graduating class is shown

in the top detections. The left-most entry in each row displays the cluster average. Note that the clusters correspond to the

quintessential hair and accessory styles of each decade. Notable examples according to the Encyclopedia of Hair [24] are:

The finger waves of the 30s. The pin curls of the 40s and 50s. The bob, “winged” flip, bubble cut and signature glasses of

the 60s. The long hair, Afros and bouffants of the 70s. The perms and bangs of the 80s and 90s and the straight long hair

fashionable in the 2000s. These decade-specific fashions emerge from the data in a weakly-supervised, data-driven process.

it to our dataset. We compute the lip curvature by taking

the average of the two angles indicated in Figure 4 (Left)

where the point that forms the hypotenuse of the triangle is

the midpoint between the bottom of the top lip and the top

of the bottom lip of the student. The same facial keypoints

were used here as in the image alignment process (see sec-

tion 3.1). Figure 4 (Right) is a montage of students ordered

in ascending order of lip curvature value from left to right.

It demonstrates that the lip-curvature metric quantifies the

smile intensities in our data in a meaningful way.

We verify that our metric generalizes beyond yearbook

portraits by testing it on the BP4D-Spontaneous dataset that

contains images of participants showing various degrees of

facial expressions with ground truth labels of expression in-

tensity [27]. BP4D uses the Facial Action Coding System,

commonly used in facial expression analysis, for ground

truth annotations [4]. This coding system consists of Action

Units (AU) which correspond to the intensity of contraction

of various facial muscles. Following previous work done on

smile intensity estimation [8], we compared our smile inten-

sity metric with the activation of AU12 (Lip corner puller)

as it corresponds to the contraction of muscles that raise the
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Figure 4: Smile intensity metric. Left: the lip curvature

metric is the average of the two marked angles. Right:

women and men portraits sorted by increasing lip curvature.
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Figure 5: Average lip curvature correlates with AU-12 la-

bels on BP4D data (error bars denote standard deviation).

corners of the mouth into a smile. A higher AU12 value

represents a higher contraction of muscles around the cor-

ner of the mouth, resulting in a larger smile. Figure 5 dis-

plays the average lip curvature for each value of AU12 for

3 male and 3 female subjects in the dataset, corresponding

to 2,500-3,000 samples for each AU12 value (0-5). As the

simple lip-curvature metric we used correlates with increas-

ing AU12 values on BP4D images, it is a decent indicator

for smile intensities beyond our yearbook dataset.

Using our verified lip-curvature metric we plot the trend

of average smile intensities in our data over the past century

in Figure 6. Corresponding montages of smile intensities

over the years are included in Figure 7, where we picked

the student with the smile intensity closest to the average for

each 10-year bucket from 1905 to 2005. These figures cor-

roborate Kotchemidova’s theory and demonstrate the rapid

increase in the popularity and intensity of smiles in portrai-

ture from the 1900s to the 1950s, a trend that still contin-

ues today; however, they also reveal another trend—women

significantly and consistently smile more than men. This

phenomenon has been discussed extensively in the litera-

ture (see the meta-review in [17]), but until now required

intensive manual annotation in order to discover and ana-

lyze. For example, in her 1982 article Ragan manually an-

alyzed 1,296 high school and university yearbooks and me-

dia files in order to reveal a similar result [22]. By use of a

large historical data collection and a simple smile-detector

we arrived at the same conclusion with a minimal amount

of annotation and virtually no manual effort.
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Figure 6: Smiles increasing over time, but women always

smile more than men: Male and female Average lip curva-

ture by year with one standard deviation error bars. Note

the fall in smile extent from the 50s to the 60s, for which

we did not find prior mention.

Figure 7: Images selected as having the closest smile to the

mean of that period (10-year bins from 1905 (left) to 2005

(right)). Note the increasing extent of smiles over time.

5. Dating Historical Images

One practical use for such a large historical dataset is to

develop models for dating historical images. We extend the

work of Palermo et al. [21] in dating color photographs to

the realm of black and white portraiture photography where

we cannot rely on the changes in image color profiles over

time. We chose to train a deep neural network classification

model for dating photographs based on the recent success

of such models in other areas of computer vision. Here we

pose the task of dating the portraits of female students as an

83-way year-classification task between the years 1928 and

2010, for which we have more than 50 female images per

year. Again, we use portraits that were cropped to the face

and hair alone. We set aside 20% of the portraits taken be-

tween 1982 and 2010 as the yearbook test set and use the re-

maining 80% for training. We deliberately exclude from the

test set images from the schools we train on within a period

of 10 years, in order to minimize photographic and scanning

training biases. To minimize training biases due to photo-

graphic and scanning artifacts, we separate test and training

images drawn from the same school by at least a decade.

To further minimize these biases, we use the built-in Photo-

shop noise reduction filter on all the yearbook images and

resize them to 96 by 96 pixels. To evaluate the generaliz-

ability of our fine-tuned models to non-yearbook portraits,
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Yearbook Yearbook Celebrity Celebrity

Model Accuracy L1 Med Accuracy L1 Med

Chance 1.20% - 1.20% -

Baseline 6.18% 6 [yr] 1.79% 14.50 [yr]

FT on YB 11.31% 4 [yr] 1.79% 9 [yr]

Table 1: Classification accuracy and L1 average and me-

dian distance from the ground truth year for the yearbook

and celebrity test sets. Note that fine-tuning on yearbooks

improves the classification results on the yearbook test data,

but only improves the L1 median distance between the pre-

dictions and the ground truth for the celebrity dataset.

we further evaluate them on the celebrity test set – a small

test set of 56 gray-scale head shots of female celebrities, an-

notated with year labels, that we cropped and aligned to the

yearbook images.

We use the Caffe [14] implementation of the VGG net-

work architecture (modified to allow for 96px inputs) [25]

that was pre-trained on the ILSVRC dataset [23] in all our

experiments. As a baseline, we fine-tune only the last clas-

sification layer (fc8) of the ILSVRC-trained network on our

yearbook training data to predict the year at which a year-

book photograph was taken in an 83-way classification task.

In Table 1 we refer to this result as the baseline. We com-

pare this baseline to the classification performance of the

same network that we trained by fine-tuning all the layers

for the same classification task. We train the network in

both conditions for 100K iterations using SGD with image-

mirroring during training, learning rate of 0.001 (γ = 0.1,

stepsize = 20K) and momentum of 0.9. As expected, fine-

tuning on the yearbook data improves the classification ac-

curacy on the yearbook test set by a large margin. We

further compare our classification performance to chance,

which we define as the inverse of the number of classes.

The confusion matrix for the fine-tuned classification model

on the yearbook test set is shown in Figure 8. The diago-

nal structure of the matrix indicates that most of the con-

fusion occurs between neighboring years which matches

our expectations that visual trends transcend the single-year

boundary.

Given the success in dating yearbook portraits, we try

using our model to date the images in the celebrity test

set. Unfortunately, the classification model which was fine-

tuned to the yearbook data does not generalize well to

the images in the celebrity test set. This may be because

celebrity glamour shots may not be the best validation set

for portraiture dating as celebrity hairstyles can be quite

different than those of the general public, or because our

celebrity test set is simply too small. However, we do find

that fine-tuning on the yearbook data reduces the median L1

Figure 8: Normalized soft confusion matrix, fine-tuned and

tested on yearbooks. The diagonal structure demonstrates

that confusion mostly occurs between neighboring years.

distance between the predicted and ground truth year for the

celebrity portraits (Table 1).

6. Conclusion

In this paper, we presented a large-scale historical image

dataset of yearbook portraits, which we have made publicly

available. These provide us with a unique opportunity to

observe how styles and portrait-posing habits change over

time in a restricted, fixed visual framework. We demon-

strated the use of various techniques for mining visual pat-

terns and trends in the data that significantly decrease the

time and effort needed to arrive at the type of conclusions

often researched in the humanities. Moreover, we showed

how this dataset can be used along with deep learning tech-

niques to date black and white portraits.

Much remains to be done with visual historical datasets,

and in particular the one at hand. For example, historical

yearbook portraits can be used to discover the cycle-length

of fashion fads and can be used as a basis of data-driven

style transfer algorithms. In addition, while our dating re-

sults are promising for similarly posed yearbook portraits,

generalizing our models to other types of portraits remains

for future work. Ultimately, we believe that the use of large-

scale historical image datasets such as ours in conjunction

with data-driven methods, can radically change the method-

ologies in which visual cultural artifacts are employed for

humanities research.

7. Acknowledgments

The authors would like to thank Bharath Hariharan, Carl

Doersch and Evan Shelhamer for their insightful comments.

This material is based upon work supported by the NSF

Graduate Research Fellowship DGE 1106400, ONR MURI

N000141010934 and an NVidia hardware grant.

6



References

[1] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In CVPR, pages 886–893, 2005.

[2] C. Doersch, A. Gupta, and A. A. Efros. Mid-level visual

element discovery as discriminative mode seeking. In Neural

Information Processing Systems (NIPS), 2013.

[3] C. Doersch, S. Singh, A. Gupta, J. Sivic, and A. A. Efros.

What makes paris look like paris? SIGGRAPH, 31(4), 2012.

[4] P. Ekman and W. V. Friesen. Facial action coding system: A

technique for the measurement of facial movement, 1978.

[5] Flappers flaunt fads in footwear. The New York Times,

page 34, Sunday, January 29, 1922.

[6] F. Galton. Composite portraits made by combining those

of many different persons into a single figure. Nature,

18(447):97–100, 1878.

[7] C. Gibson. Population of the 100 largest cities and

other urban places in the united states: 1790 to 1990.

https://www.census.gov/population/www/

documentation/twps0027/twps0027.html.

Accessed: 2014-12-11.

[8] J. M. Girard. Automatic Detection and Intensity Estimation

of Spontaneous Smiles. PhD thesis, University of Pittsburgh,

2014.

[9] C. Goldin. America’s graduation from high school: The evo-

lution and spread of secondary schooling in the twentieth

century. Journal of Economic History, 1998.

[10] C. Goldin and L. F. Katz. The race between education and

technology: The evolution of u.s. educational wage differen-

tials, 1890 to 2005. Working Paper 12984, National Bureau

of Economic Research, March 2007.

[11] B. Hariharan, J. Malik, and D. Ramanan. Discriminative

decorrelation for clustering and classification. In ECCV,

2012.

[12] S. C. Hidayati, K.-L. Hua, W.-H. Cheng, and S.-W. Sun.

What are the fashion trends in new york? In Proceedings

of the ACM International Conference on Multimedia, MM

’14, pages 197–200, New York, NY, USA, 2014. ACM.

[13] M. T. Islam, C. Greenwell, R. Souvenir, and N. Jacobs.

Large-Scale Geo-Facial Image Analysis. EURASIP Journal

on Image and Video Processing (JIVP), 2015(1):14, 2015.

[14] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-

tional architecture for fast feature embedding. arXiv preprint

arXiv:1408.5093, 2014.

[15] M. H. Kiapour, K. Yamaguchi, A. C. Berg, and T. L. Berg.

Hipster wars: Discovering elements of fashion styles. In

ECCV (1), pages 472–488, 2014.

[16] C. Kotchemidova. Why we say “cheese”: Producing the

smile in snapshot photography. Critical Studies in Media

Communication, 22(1):2–25, 2005.

[17] M. Lafrance, M. A. Hecht, and E. L. Paluck. The contin-

gent smile: A meta-analysis of sex differences in smiling.

Psychological Bulletin, pages 305–334, 2003.

[18] S. Lee, N. Maisonneuve, D. Crandall, A. Efros, and J. Sivic.

Linking past to present: Discovering style in two centuries

of architecture. In IEEE International Conference on Com-

putational Photography (ICCP), 2015.

[19] Y. J. Lee, A. A. Efros, and M. Hebert. Style-aware mid-level

representation for discovering visual connections in space

and time. In ICCV, pages 1857–1864, 2013.

[20] J.-B. Michel, Y. K. Shen, A. P. Aiden, A. Veres, M. K. Gray,

T. G. B. Team, J. P. Pickett, D. Holberg, D. Clancy, P. Norvig,

J. Orwant, S. Pinker, M. A. Nowak, and E. L. Aiden. Quan-

titative analysis of culture using millions of digitized books.

Science, 331(6014):176–182, 2010.

[21] F. Palermo, J. Hays, and A. A. Efros. Dating historical color

images. In ECCV (6), pages 499–512, 2012.

[22] J. M. Ragan. Gender displays in portrait photographs. Sex

Roles, 8(1):33–43, 1982.

[23] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge, 2014.

[24] V. Sherrow. Encyclopedia of Hair: A Cultural History.

Greenwood Press, 2006.

[25] K. Simonyan and A. Zisserman. Very deep convolu-

tional networks for large-scale image recognition. CoRR,

abs/1409.1556, 2014.

[26] X. Xiong and F. De la Torre. Supervised descent method and

its applications to face alignment. In CVPR, 2013.

[27] X. Zhang, L. Yin, J. F. Cohn, S. Canavan, M. Reale,

A. Horowitz, P. Liu, and J. M. Girard. BP4D-spontaneous:

a high-resolution spontaneous 3d dynamic facial expression

database. Image and Vision Computing, 32(10):692–706,

2014.

7

https://www.census.gov/population/www/documentation/twps0027/twps0027.html
https://www.census.gov/population/www/documentation/twps0027/twps0027.html

