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Abstract

This paper addresses the problem of human visual at-

tribute recognition, i.e., the prediction of a fixed set of se-

mantic attributes given an image of a person. Previous work

often considered the different attributes independently from

each other, without taking advantage of possible dependen-

cies between them. In contrast, we propose a method to

jointly train a CNN model for all attributes that can take

advantage of those dependencies, considering as input only

the image without additional external pose, part or context

information. We report detailed experiments examining the

contribution of individual aspects, which yields beneficial

insights for other researchers. Our holistic CNN achieves

superior performance on two publicly available attribute

datasets improving on methods that additionally rely on

pose-alignment or context. To support further evaluations,

we present a novel dataset, based on realistic outdoor video

sequences, that contains more than 27,000 pedestrians an-

notated with 10 attributes. Finally, we explore design op-

tions to embrace the N/A labels inherently present in this

task.

1. Introduction

We address the problem of person attribute recognition,

where the input is an image of a person and the task is

to make predictions for a set of attributes. In contrast to

other recognition problems, attributes are based on a seman-

tic proposition, with binary (e.g., is male? wears a tshirt?

carries a bag in the left hand?) or multinomial outcome

(e.g., orientation - left, right, front, or back). Such attribute

predictions are interesting for a range of applications like

image retrieval, querying databases by semantic proposi-

tions, tracking-by-detection, re-identification applications,

and robotic applications that require semantic information

of persons for interaction.

Attribute recognition approaches have to address three

challenges: (i) Most attributes require fine-grained infor-

mation, i.e., they need to be decided based on small subre-

Figure 1. We propose a model that is jointly-trained, shares

weights among attributes, and does not rely on additional exter-

nal information like context or pose. Given an input image of a

person, our ACN model predicts multiple attributes at once. Some

attributes are labeled as not decidable (N/A) in the groundtruth.

gions of the input image. (ii) For most input images, some

attributes are not decidable. If in the given image, like in

Fig. 1, it is not possible to decide an attribute, because of

occlusion, image boundaries, or any other reason, then the

correct answer is to say “I cannot decide”. We call this out-

come the N/A label. (iii) In practice, many attributes of in-

terest are dependent or correlated. For example, if a person

is walking to the left, we often cannot decide whether she

carries a bag in her right hand (c.f . Fig. 1).

This paper proposes a method to jointly train a mono-

lithic CNN model for all attributes, allowing to share

weights and thus effectively transfer or re-use knowledge

among attributes. One problem we need to address is that

most examples have at least one N/A label. Commonly,

models are trained separately, so that this issue can be al-

leviated by filtering the training set [18, 19, 2, 22]. In con-

trast, we jointly train a model employing a loss function that

handles the partially undefined targets vectors. Our model

is much less complex than published methods relying on

parts, pose, or context information [22, 23, 19]. Still, we

show that our model outperforms all published methods in

two public benchmarks.

Previous attribute recognition approaches often take a re-

trieval viewpoint, where only two prediction outcomes are

possible. When presented with an N/A example, these mod-

els necessarily make a mistake. For some applications, such

as robotics or tracking, it is preferable to only make deci-

sions with high precision, while it is acceptable to defer a
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Figure 2. ACN Architecture. The underlying architecture is a CaffeNet that was pre-trained on ImageNet (red). For the attribute recognition

task we replace the last fully-connected layer with one loss layer per attribute (green) using the loss described in Sec. 3. We show that

introducing an additional hidden layer further improves the results (blue).

decision. This motivates us to move on to explicitly model-

ing the N/A label, resulting in an N+1 model (Sec. 6).

In detail, this paper makes the following contributions:

(i) We propose a method to jointly train a recognition model

for all attributes. The resulting approach outperforms all

published methods on two public benchmarks, to the best

of our knowledge. (ii) We investigate the effect of model-

ing the N/A class and evaluate different options for handling

it during training. (iii) We introduce a novel benchmark

PARSE-27k, which is a larger well-aligned attribute dataset,

and use it to perform extensive evaluation to examine the

performance relevant factors of our model.

The remainder of this paper is structured as follows: The

next section discusses related work. Sec. 3 details our train-

ing procedure and highlights some key concepts. Sec. 4

describes the datasets used in this work. Sec. 5 will stick to

the common evaluation protocol, based on mAP. First, we

will focus on our new dataset PARSE-27k and examine in-

dividual aspects of our model. Secondly, we will show the

efficacy of our method by evaluating on two recent bench-

marks. Finally, Sec. 6 takes the N+1-viewpoint and investi-

gates how one can leverage N/A examples.

2. Related Work

Attribute Recognition. There are several interpretations

of attributes, we follow the interpretation as a categorical

(i.e., binary or multinomial) predicate [18, 19, 2, 22, 23].

Other interpretations include relative attributes defined over

a continuous scale [15] or discriminative attributes consid-

ered by Farhadi et al. [6]. The attribute task has been de-

scribed in the context of many applications, such as improv-

ing object recognition [6] and image retrieval by attribute

queries [20]. This work aims at semantic person attributes.

One main characteristic of the attribute recognition prob-

lem is its fine localization, i.e. only a small sub-region of

the input is discriminative for the decision in many cases.

This has motivated work by Sharma et al. [18] who learn

spatially-localized features similar to spatial pyramid mod-

els. With a similar objective, Bourdev et al. [2] aim at

pose-alignment with their poselets framework. Following

the same motivation, Sharma et al. [19] propose to tackle

the attribute task with a collection of localized discrimina-

tive templates. We compare to those methods in Sec. 5.

CNNs and Transfer Learning. In recent years, Convo-

lutional Neural Networks (CNN) have gained huge popu-

larity. Particularly, the success of Krizvhesky et al. [12] in

the ILSVRC-2012 classification task, has fostered a line of

work applying similar models to tasks like object recogni-

tion or detection [4, 16, 3, 14]. The work of Donahue et

al. [4] and Razavian et al. [16] shows that CNNs learn ex-

cellent feature representations, which can be directly lever-

aged for other tasks. Due to the large number of parameters,

CNNs are prone to overfit on smaller datasets. This can

be alleviated to some extent by pre-training the weights on

a large-scale task, followed by training on the target task.

This procedure, known as fine-tuning, leverages auxiliary

tasks and transfers feature representations [3, 8, 14]. A re-

cent study by Yosinksi et al. [21] shows that by transferring

models between tasks the generalization on the target task

can be significantly improved. The recent work of Bran-

son et al. [3] tackles fine-grained object recognition using a

transfer-learning approach similar to ours.

Most similar to our approach are Zhang et al. [22] and

Razavian et al. [16], both are based on CNNs. Razavian et

al. use OverFeat as a feature extractor and train SVM mod-

els, achieving competitive results on the Berkeley Attributes

of People dataset [17]. In contrast to their work, we only

perform end-to-end training to adapt the CNN’s weights.

Zhang et al. combine deep features with pose-alignment in

a multi-level pipeline, training multiple sub-models com-

bined by final SVM models (one per attribute) [22].

3. Our Method: ACN

Most current approaches train separate models for the

different attributes [2, 22, 16, 19, 18]. In contrast, we pro-
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pose to jointly train a CNN for all attributes in one model

— the Attributes Convolutional Net (ACN) — based on the

proposition that it is desirable to share parameters among

attributes (Fig. 2). We show that if performed with careful

attention to detail, this significantly improves performance.

A network can comprise multiple loss layers to target

distinct concepts (like attributes). For every training exam-

ple forwarded through the network, one then computes the

losses and backpropagates the sum of their gradients.

One particular challenge we address is that most training

examples contain at least one N/A label. Many approaches

exclude the N/A labels prior to training, but this is only fea-

sible if one trains separate models for each attribute. An-

other option would be to introduce an N/A class. But the

N/A label only expresses that the attribute’s proposition is

not decidable, while it certainly has an actual value in re-

ality. We take the view that the N/A label is not an actual

state of the attribute (hence not its own class), but it only

expresses the “undecidability” due to the limited observer.

More specifically, a person in reality either carries a bag in

her hand or not. If the observer cannot make a decision, it

is natural to say that there is simply no information avail-

able. Hence, a natural choice would be to set the gradient

to 0, muting its influence in training. We will see that this is

consistent with the KL-loss. Our models have one loss for

each attribute, which are all accumulated during backpropa-

gation. Even if some labels of a particular example are N/A,

the other labels will still help further the training process.

KL Loss. We minimize the Kullback-Leibler divergence

of two discrete distributions, our predictions Q and a binary

attribute’s state in reality P :

KL(P ||Q) =
∑N

i P (xi) log
P (xi)
Q(xi)

where our target P for example xi is specified as follows:

P (xi = yes) = ℓ;P (xi = no) = 1− ℓ,

with ℓ ∈ {0, 1} corresponding to the groundtruth annota-

tion. The empirical risk minimization of the KL-divergence

is equivalent to maximum likelihood estimation [1, p.56].

During backpropagation this definition will naturally yield

a gradient of 0 for any N/A example. Yet, for valid labels it

yields gradients equivalent to log-likelihood. This general-

izes to the multinomial case using softmax.

Important Aspects. We would like to point out two im-

portant aspects at this point: (1) While it is common to fit a

CNN for multiple classes, our attribute recognition problem

is not an N-way classification like in the ImageNet chal-

lenge. Our target space is rather the cross-product of each

attribute’s individual target space, additionally complicated

by the N/A labels. So it can be seen as a structured pre-

diction problem not a multi-class problem. (2) Some other

approaches try to capture attribute correlations a-posteriori

(like [2] by fitting a kernel SVM on the initial models). In

contrast to this, our model shares a large part of its parame-

ters across all target attributes, and only uses a single train-

ing step. This enables us to capture correlations implicitly.

Implementation. Our work is based on the CAFFE-

framework [10]. We start with the CAFFENET reference im-

plementation of the SUPERVISION-CNN due to Krizhevsky

et al. [12], which is trained on the 1.2M images from the

ImageNet ILSVRC-2012 1000-way classification task1.

As mentioned above, we employ a two-stage training.

Fig. 2 shows our network’s architecture, including the

losses of both stages. We replace the original loss layers

(red box) with additional fully-connected layers and our

loss (green box). For each of the attributes in the target

task, we add a group of additional classification and loss

layers. Observe that the layout of the first layers remains

completely unchanged. Then we use stochastic gradient de-

scent to optimize both the newly introduced weights and the

pre-trained weights. In this way, the “knowledge” obtained

in training on the auxiliary task is transferred, i.e., we use

the pre-trained weights as an initialization of the network

[3, 8, 21]. Our training does update the weights in the first

layers, but at a smaller learning rate (1/10) than our newly

added weights. This is in contrast to the work of Oquab et

al. [14] who report to keep the first layers fixed during train-

ing for the target task. We find that adapting the weights

yields consistently better results on our task. Here, a signif-

icantly reduced learning rate appears to be key.

Details of the Model. We now cover the details – aiming

to enable other researchers to easily build upon our results.

We preprocess all examples by warping the input image to

256 × 256 pixels. During training, we make use of sev-

eral data augmentation techniques: We resize the original

input’s bounding box in multiple scales to add more train-

ing examples with varying degrees of background. We in-

clude horizontally mirrored duplicates during training. For

attributes that are not invariant to mirroring, we adapt the

labels accordingly. As another data augmentation tech-

nique we employ PCA jittering as proposed by Krizhevsky

et al. [12]. Here, we compute the PCA of the covariance

matrix of all RGB values in the training set, yielding three

eigenvalues ei and corresponding eigenvectors vi. Then in

each training iteration we sample a value α ∼ N (0, 0.1)
and jitter every pixel p in the example image with p̂ =
p +

∑

i α · ei · vi. Sec. 5 investigates the effect of these

data augmentation techniques.

For training, we randomly crop 227× 227 sub-windows

from the input image. At test time, we deterministically

take sub-crops and average over the individual predictions

(c.f. [12]). We find that this yields a small yet consistent

1http://caffe.berkeleyvision.org/model_zoo.html
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improvement over a single crop at the center of the window.

For training, we use a step-wise reduction of the

learning-rate, which implies a factor 10 decrease every

20,000 updates (with a batch-size of 64 examples). We

train until we see a plateau on the validation loss that is

unchanged by a further decrease in learning-rate.

We found it important to consider the regularization

through weight decay. Since we are dealing with relatively

small datasets, this regularization helps even though other

techniques like drop out were already used additionally, as

in the original SUPERVISION architecture. In practice, we

used a weight decay of 0.005, unless stated otherwise.

3.1. Forced Choice vs. Reject Option

Most work on the attribute recognition task evaluates the

models in such a way that the N/A label is discarded from

the test set, i.e., the model’s answers are excluded from

the evaluation. The reason for this is that the average pre-

cision (AP) is commonly used for evaluation, which is a

measure originating from retrieval tasks. Depending on the

application scenario this may not be appropriate. If one

is interested in retrieving all images of a collection where

persons are wearing sunglasses, then AP is an appropriate

measure. In contrast, applications in robotics, tracking-by-

detection, and intelligent vehicles need to rely on the pre-

dictions and would be better off not acting on uncertain out-

comes. The models trained in Sec. 5 follow a forced choice

principle: Despite the natural presence of N/A targets in the

ground-truth, the models, trained for N classes, cannot pre-

dict N/A labels (class N+1).

In the following, we describe three approaches to N/A-

label-prediction. Naturally, the mAP-based evaluation is

not useful for this approach, because it ignores the predic-

tions on N/A ground-truth examples, and the scores would

not reflect the performance on the target task. So Sec. 6

reports results based on the balanced error rate (BER) for

PARSE-27k.

Reject Region. A first straight-forward way to predict N/A

labels is to define a region by a threshold δ. Considering a

two class model, we observe activations in the range [0, 1].
Motivated by the uncertainty encoded by a Bernoulli vari-

able, we predict N/A for 0.5 − δ ≤ a ≤ 0.5 + δ. We fit δ
on the validation set optimizing with respect to the BER on

the N+1 class problem (c.f . Sec. 6). Any two class model

that outputs a continuous score can be extended into an N+1

predictor using this strategy.

Softmax. As a second baseline approach, we train with

a standard softmax loss function with N+1 outputs, i.e., we

simply add one output for the N/A targets. We will show that

this is surprisingly effective, even though one could argue

that the N/A labels do not form a class of their own.

Hierarchical Softmax. The softmax model assumes that

the N/A targets form their own class. From a philosophi-

cal point of view this is doubtful. There are many reasons

why a visual attribute might not be decidable, like occlu-

sion of the relevant regions. However, the attribute will

in reality still have one of the distinct states, either true or

false. This motivates the hierarchical softmax approach, in-

stead of the direct softmax model. One can think of the

N+1 class prediction as a two step procedure. Consider two

random variables A,B. Let p(A) denote whether the at-

tribute is decidable, i.e. N/A vs. not N/A. Further, let p(B)
denote the probability of the attribute being true. Then one

can naturally assume the following factorization of the joint:

p(A,B) = p(B|A) · p(A). From the network perspective

this allows to use different parameters for both losses. We

create a network with two loss layers per attribute, one a

logistic loss for A and one a softmax loss for B. The fi-

nal predictions are obtained by multiplying the probability

estimates of both p(A) and p(B|A), i.e., the two network

outputs for a given attribute.

4. Datasets

HATDB. The Database of Human Attributes originally

published by Sharma et al. [18] contains labels for 27 binary

attributes (covering age, gender, appearance, and pose). The

images have been taken from Flickr and show a consider-

able variance in resolution. Persons shown in the dataset

appear in many different poses, like sitting or standing, and

are depicted in different crops (i.e., upper-body, head-only,

full-body). The dataset proposes a train-val-test split with

3,500, 3,500, and 2,344 examples, respectively.

Berkeley - Attributes of People. This dataset was orig-

inally compiled by Bourdev et al. [2]. It comprises 4,013
training and 4,022 test examples, which are labeled with 9

binary attributes (MALE, LONG HAIR, GLASSES, HAT, T-

SHIRT, LONG SLEEVES, SHORTS, JEANS, LONG PANTS).

Several authors have evaluated their methods on this

dataset, including recent CNN-based approaches [16, 22].

Since there are many results to compare, this dataset lends

itself as a testbed. The dataset contains examples from var-

ious sources, at various resolutions. The examples feature

a large variance in pose and resolution. Additionally, some

pictures show only parts, like only the upper-body, whereas

others show the full body of a person. This, in combination

with the rather small training set, renders it challenging to

train good models.

4.1. New Dataset – PARSE27k

We created a dataset named Pedestrian Attribute Recog-

nition on Sequences containing 27k annotated examples

(PARSE-27k). The previously described datasets for hu-

man attribute recognition are both relatively small and con-

tain very general image collections, including upper-body
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binary attributes
train val test

pos neg N/A pos neg N/A pos neg N/A

male 5822 6465 1454 2876 3314 428 3109 2913 633

standing 1078 11712 951 638 5758 222 5660 563 432

hasBagOnShoulderLeft (bsl) 1873 6436 5432 1094 3614 1910 897 3851 1907

hasBagOnShoulderRight (bsr) 2064 6240 5437 990 3722 1906 1044 3739 1872

hasBagInHandLeft (bhl) 1684 6409 5648 770 3349 2499 737 3317 2601

hasBagInHandRight (bhr) 1676 6492 5573 983 3272 2363 811 3307 2537

hasBackpack (backp) 381 9989 3371 159 5166 1293 322 5279 1054

isPushing (pushing) 332 12789 620 194 6225 199 333 6043 279

ori4 left front right back N/A

train 984 5359 964 6343 91

val 450 2828 456 2876 8

test 349 2630 445 3205 26

ori8 left f-l front f-r right b-r back b-l N/A

train 526 1553 3278 1015 531 1032 4709 1082 15

val 226 823 1600 682 232 481 1994 561 19

test 203 758 1562 490 261 560 2321 465 35

Table 1. Frequencies of labels for the 10 attributes in the PARSE-27k dataset.

Figure 3. Examples from our new PARSE-27k dataset — We aim

at a large well-aligned yet diverse dataset of pedestrians in realistic

scenarios.

or face shots. In addition the datasets follow a random split

routine, which leads to a few closely related training and

test examples. Recently, the CPR dataset [9] with a similar

size but only four attributes has been published.

PARSE-27k is based on 8 video sequences of varying

length taken by a moving camera in a city environment. Ev-

ery 15th frame of the sequences was processed by the DPM

pedestrian detector [7]. The obtained bounding boxes were

manually annotated with 10 attribute labels. The choice

of attributes is motivated by a robotics/automotive appli-

cation scenario and includes two orientation labels with 4

and 8 discretizations, and several binary attributes such as is

male? and has bag on left shoulder? (Tab. 1). All attributes

additionally may be labeled with an N/A value, so the bi-

nary attributes have 2+1 possible labels. Fig. 3 shows some

example images of our new dataset. Note, that the other two

datasets described previously also include N/A labels (0 in

the ground-truth). This is not specific to our dataset, but

rather induced by the definition of the attribute recognition

task. If the underlying proposal is not decidable, one cannot

sensibly give a valid ground-truth label.

PARSE-27k has a careful train (50%), val (25%) and test

(25%) split. This means that we have split only along se-

quence boundaries. Additionally, sequences taken on the

same day are either in train-val or test. This avoids highly

similar examples across splits. Further, PARSE-27k has less

variance with respect to pose and crop, since it only contains

crops of pedestrian bounding boxes obtained by a pedes-

trian detector. By both increasing the dataset size and re-

ducing this variance, we hope to improve model quality. We

will make PARSE-27k available to the research community.

5. Experimental Evaluation

In this section, we adopt the retrieval viewpoint that is

prevalent in the literature. This allows us to evaluate our

models using the common mean average precision (mAP),

which yields a fair comparison to the state-of-the-art. All

models in this section are trained to yield an N-class answer,

using the KL-loss detailed in Sec. 3. We call this a forced

choice model, because the models can only choose one of

the N labels. This is the commonly used interpretation in

the literature for evaluating attribute prediction models [18,

2, 23, 16]. In contrast to this are reject option models, which

are capable of rejecting the decision (N+1 : N/A) if none of

the N labels appears appropriate.

Throughout this paper, we use the definition of AP by

Everingham et al. in the context of the VOC object detec-

tion challenge [5]. In short, this definition averages over

11 points in regular intervals of the precision-recall curves.

However, evaluation routines used by Zhang et al. [22] dif-

fer slightly from this, leading to slightly different scores.

To allow a meaningful comparison, we adopt their publicly

available evaluation routine2 only for experiments on the

Berkeley Attributes of People dataset.

5.1. Experiments on PARSE27k Dataset

We begin our experimental evaluation by reporting re-

sults on our PARSE-27k dataset. We show the positive ef-

fects of jointly training all attributes in one CNN model as

compared to separate models. Further, we investigate the

effects of several aspects of our proposed pipeline, in order

to assess their individual contributions, such as the effects

of two data augmentation techniques. Next, we explore de-

sign variants such as an additional hidden layer for each

2
https://github.com/facebook/pose-aligned-deep-networks
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Attribute mAP male standing bsl bsr bhl bhr backp pushing ori4 ori8

ACN - jitter - aug 53.2 88.6 44.0 48.2 57.6 44.9 54.8 35.6 47.2 83.8 68.2

ACN - jitter 60.7 90.1 48.0 67.3 72.0 65.3 65.7 36.2 44.1 86.8 71.9

separate + aug + jitter 53.9 89.7 48.1 48.1 66.1 52.9 57.5 28.8 39.6 87.2 73.8

binary + aug + jitter 58.7 89.5 40.9 63.7 69.9 59.7 63.5 38.1 43.9 - -

ACN 62.4 90.4 51.3 67.6 72.7 65.2 65.7 38.8 47.4 86.9 72.9

ACN + SVM 60.9 90.5 50.6 64.0 69.8 63.5 66.3 37.4 45.0 - -

ACN + Hidden 63.6 90.1 58.3 69.6 73.2 64.6 69.2 35.8 48.3 87.9 73.8

Table 2. Detailed performance on the PARSE-27k dataset in terms of AP. For the orientations, accuracy scores are given. ACN is trained on

all attributes, binary on the binary attributes, and separate summarizes models trained on each attribute separately. The results show that

ACN outperforms both the separate and the binary baseline. Results further improve by adding an additional hidden layer.

attribute or training SVMs on the activations of the network

which have been proposed in the literature.

We train our models with a learning rate of 0.0001. The

model without data augmentation requires a weight decay

of 0.05 to regulate the overfitting. When including data

augmentation, the higher variance in the dataset reduces the

need for regularization, and we empirically find a weight

decay of 0.0005 to work well. Unless otherwise stated,

we train our models with all augmentation techniques pre-

sented in Sec. 3, namely random cropping, mirroring, scal-

ing with three different scales, and PCA jittering. For this

experiment, we train our models on 10 attributes. Addition-

ally, we give accuracy scores for the orientation attributes,

as the AP is not defined for multinomial attributes. Note,

that we cannot give meaningful performance figures for

other methods. This would require re-training of the mod-

els. Even where code is available, this is bound to lead to

inferior performance and misleading comparisons. We do

provide meaningful comparisons, using the originally re-

ported scores, for benchmark datasets in Sec. 5.2 and 5.3.

Effect of Joint Training. Tab. 2 shows our results on the

PARSE-27k dataset. Our jointly trained ACN yields an mAP

of 62.4. If we consider models of the same architecture

trained on each attribute separately (separate), the mAP is

53.9. Combining only the binary attributes into an ACN

model improves performance to 58.7 mAP. This indicates

that sharing weights among the individual attributes is ben-

eficial and that both the binary and the orientation attributes

contribute to the performance improvement. The binary at-

tributes’ appearances are highly dependent on the orienta-

tion. The ACN model leverages this indirectly by learning

to predict the orientation. Note, this is an additional output

of the network, not an input to the binary models. Hence the

two orientation attributes, which are not even considered in

the mAP, contribute almost half of the performance increase

gained by joint training.

These results clearly show that it is advantageous to train

a combined model. While these results are in line with the

literature, it was important to point this out, because previ-

ously many models have been trained separately [2, 18, 22].

The attributes can indirectly influence each other by adapt-

ing the weights in the lower layers. Thus, the inclusion of

the orientation as target attribute especially helps the perfor-

mance of those attributes which are sensitive to the orienta-

tion (e.g. has bag in hand).

Effect of Data Augmentation. To investigate the impact

of the data augmentation techniques, we trained two ACNs,

one without data augmentation (ACN - jitter - aug) and one

with data augmentation but without PCA jittering (ACN -

jitter). The data augmentation techniques random cropping,

mirroring, and scaling increase the mAP by 7 points. Ad-

ditionally, the PCA jittering yields another 2 mAP points.

Data augmentation and especially the PCA jittering result

in very well regularized models that are not prone to overfit.

When training without data augmentation, the training pa-

rameters need to be adapted due to heavy overfitting, which

cannot be alleviated by adapting the weight decay.

Hidden Layers for each Attribute. It is possible to in-

clude an additional fully-connected layer for each attribute

as indicated in Fig. 2. This corresponds to learning a multi-

layer-perceptron with one hidden layer for each attribute

separately, allowing them to do complex adaptions based

upon the shared weights. Empirically, 64 hidden nodes

for each attribute are optimal, as the performance of mod-

els with less and more hidden nodes decreases. The intro-

duction of these hidden layers further increases the perfor-

mance of our model by 1.2 mAP points, yielding the best

performing model on PARSE-27k with an mAP of 63.6. In

the following we call this architecture ACNH.

SVM vs. FCL. Several authors have proposed to train SVM

models on top of the activations of a CNN [16, 22, 8]. Raza-

vian et al. [16] followed this approach as they were using

the Overfeat architecture as a fixed black box and sepa-

rately trained SVM models using its activations as features.

In contrast to this, we train our models end-to-end. So the

obvious question is: Does training an SVM on top of deep

features yield additional benefit? In order to investigate this,

we trained a linear SVM on the activations of the penulti-

mate layer after fine-tuning, and optimized its regulariza-

tion parameter on the validation split. This procedure is

similar to Girshick et al. [8]. Our results show that the fine-
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mAP

DSR [18] 53.8

SPM [13, 19] 55.5

EPM [19] 58.7

EPM + context[19] 59.7

ACNH 66.1

ACNH 5-ensemble 66.2

Table 3. Results on HATDB. We report results of SPM and EPM

as published in [19]. Our ACNH outperforms all published results.

For a detailed break-up of the results see supplementary material.

tuned fully connected layer (FCL) predictions outperform

the SVM models by 1.5 mAP points (ACN vs. ACN + SVM

in Tab. 2). This indicates that there is no advantage to train-

ing an SVM on top of CNN activation features. We believe

it is worthwhile to point this out, because the SVM approach

is popular in the literature.

5.2. Experiments on HATDB

We next turn to the publicly available HATDB (c.f .

Sec. 4). We follow the training procedure detailed in Sec. 3.

Some of the attributes in this dataset would form a multino-

mial attribute if combined. However, they are separately

annotated and have been treated individually by related

work [18, 19]. Hence, we follow the same view and train

models to predict 27 separate binary attributes. The dataset

proposes a train-val-test split, which we follow. Training

continues until there is no further improvement in validation

loss. In our experiments, we set the learning rate to 0.001
and the weight decay to 0.005, which gave best results.

We use the setup as explained in Sec. 3. We do not use

the PCA jittering based data augmentation, as a quick ex-

periment showed worse performance. This is likely related

to dataset size, which is so small that the additional noise

overlays the signal. We still use the other data augmenta-

tion techniques. Due to the stochastic nature of the CNN

training it is a common final tweak to build an ensemble

of several independently trained models. We report both

ACNH, a single model, and ACNH 5-ensemble, an ensem-

ble of 5 models trained with identical learning parameters.

Results & Discussion. Sharma et al. [18] propose their

Discriminative Spatial Representation (DSR) approach,

which learns fine-localized features from data. The Ex-

panded Parts Model (EPM) [19] learns a set of discrim-

inative templates and corresponding locations particularly

aiming at classification of fine-localized attributes. Further,

their EPM+context model even includes additional context

information, which reportedly yields an additional improve-

ment. Our ACNH model does not rely on modeling parts

or context explicitly. In contrast, we use a single holistic

model trained end-to-end (in the sense that the whole in-

put window is processed at once, instead of individual sub-

models for separate parts). Tab. 3 shows that our approach

outperforms, to the best of our knowledge, all published re-

sults on this dataset, improving to 66.1 mAP compared to

the previous best at 59.7 mAP. This indicates that our CNN

model is able to capture the finely-localized information.

Overall, these are promising results that show the efficacy

of our approach.

5.3. Experiments on Berkeley Attributes of People

One might argue that while the baselines we compared to

in the previous section also learn representations from data,

they are not based on CNNs. Hence, we next turn to the

Berkeley Attributes of People dataset [2], because several

CNN-based methods have been published on this dataset. It

is particularly interesting to investigate how our model per-

forms relative to elaborate methods such as PANDA [22].

As we will show, our approach is able to outperform all

published results on this dataset, although it does not rely

on any additional pose or context information. We use the

same training setup as for the training on HATDB.

Results & Discussion. Tab. 4 compares to all published

results we are aware of. Our ACNH model outperforms all

previous results, and ACNH 5-ensemble yields an additional

improvement. This final improvement comes at the extra

cost of training and evaluating five models. Note, that this

still involves less computational effort than the runner-up

(PANDA), with its CNN-per-poselet computation.

Note that our method performs very well even for at-

tributes like LONG HAIR, where one would expect local-

ized or aligned models to be in advantage. PANDA appar-

ently benefits from its alignment for the GLASSES attribute,

where it outperforms our method as well as Razavian et

al. [16], the latter also being a single global model. It is

also remarkable that for T-SHIRT both our model and Raza-

vian et al. outperform PANDA by a large margin. Overall

our model performs best with 80.02 mAP.

Our training pipeline learns all attributes at once, without

intermediate steps. This is less complex than the PANDA

approach [22], which exploits poselet activations. Compar-

ing to the other CNN-based approaches, namely Razavian

et al. and PANDA, our approach achieves better results de-

spite its holistic model. An interesting question for future

work is whether a pose-aligned model could again improve

results when combined with our ACN model.

6. Evaluation – Reject Option

The previous section focused on models from the re-

trieval viewpoint and thus effectively excluded the N/A la-

bels. However, as motivated in Sec. 3.1, for many appli-

cations the retrieval viewpoint does not make sense. A

model which does well in retrieving all males from a per-

son database, does not necessarily perform well in deciding

on one particular person that a robot encounters. The com-

93



Attribute mAP male long hair glasses hat tshirt longsleeves shorts jeans long pants

Poselets [2] 65.18 82.4 72.5 55.6 60.1 51.2 74.2 45.5 54.7 90.3

DPD [23] 69.88 83.7 70.0 38.1 73.4 49.8 78.1 64.1 78.1 93.5

Joo et al. [11] 70.7 88.0 80.1 56.0 75.4 53.5 75.2 47.6 69.3 91.1

Razavian et al. [16] 73.0 84.8 71.0 42.5 66.9 57.7 84.0 79.1 75.7 95.3

PANDA [22] 78.98 91.7 82.7 70.0 74.2 49.8 86.0 79.1 81.0 96.4

ACNH 79.71 87.64 80.72 49.34 74.54 62.61 87.90 86.69 90.02 97.95

ACNH 5-ensemble 80.02 87.83 81.49 48.75 75.32 64.07 88.06 87.08 89.51 98.05

Table 4. Berkeley Attributes of People Dataset - Our ACNH models outperform all published methods in terms of mAP , while our approach

is trained end-to-end and does not rely on any additional external information (such as pose).

Attribute mBER male standing bsl bsr bhl bhr backp pushing ori4 ori8

Reject Region 51.7 42.3 52.4 48.3 51.0 53.3 52.4 56.4 57.6 34.5 38.5

Softmax N+1 45.5 41.8 54.4 37.0 39.9 40.1 40.6 49.9 60.4 35.3 38.1

Softmax N+1 + Hidden 43.9 39.9 51.4 36.5 38.1 39.8 40.0 48.7 56.5 34.6 37.5

Hier. Softmax + Hidden 43.9 39.6 51.5 37.2 38.8 39.5 39.9 48.0 56.4 34.1 38.1

Table 5. Evaluation of the models trained with a reject option on the PARSE-27k dataset in terms of BER (lower values are better). The

mean BER is taken over the binary attributes. Softmax N+1 + Hidden is the best model with the smallest BER.

mon evaluation procedure, based on average precision, dis-

regards test examples labeled N/A, i.e., the models’ perfor-

mances on these are not reflected at all. To avoid wrong pre-

dictions, a reject option is helpful. If one allows the model

such an outcome as the N+1 option, then it is natural to in-

clude the N/A examples in the test set.

The models considered in this section are designed to in-

corporate the reject option. Thus, evaluation with the AP

score is not appropriate. Due to the imbalanced label fre-

quencies, the accuracy also is not suitable as an evaluation

score. Instead, we propose to use the balanced error rate

(BER), defined as the mean of the per-class errors. Let K
be the number of classes, and C be the confusion matrix

such that the row Cj∗ holds the predictions for groundtruth

class j, then

BER = 1
K

∑K

i

(

1− Cii∑
j
Cij

)

.

We evaluate the mean BER (mBER) only on the binary at-

tributes, as the ranges of the orientation BERs differ and

would distort the mean.

Results & Discussion. Tab. 5 shows the performance in

terms of BER for the three methods proposed in Sec. 3.1

(lower values are better). One could argue that a well-

performing approach in terms of AP could easily be trans-

formed into an N+1 classifier by introducing a reject region

thresholding the Bernoulli probabilities. We fit such a reject

region on the best-performing model from Sec. 5. However,

it can be seen that this Reject Region approach is clearly in-

ferior to the softmax approach, which is a classifier on the

N+1 classification problem. Thus, it is not easily possible

to transform the binary models to N+1 models. One rea-

son might be the model’s over-confidence, which does not

properly reflect the uncertainty appropriately. This moti-

vates the use of models, a priori designed to predict N/A la-

bels. In this work, we discuss two rather simple approaches:

Softmax N+1 and Hierarchical Softmax. Similar to the re-

sults in Sec. 5, the additional hidden layer improves per-

formance also for the Softmax N+1 and Hierarchical Soft-

max approaches. While the Hierarchical Softmax allows a

fine-grained control of the N/A-vs-all component, it does

not show a quantitative improvement over Softmax N+1 in

our experiments. Hence, we suggest to use the latter for pre-

dictions with reject option. The similarity in BER score for

the two models is related to the fact that BER weighs errors

equally. It is an unbiased measure that can serve as a bench-

mark for more elaborate methods. For future work, it will

be interesting to reflect the uncertainty more appropriately.

7. Conclusion

We have proposed a method to jointly train a CNN model

for multiple attributes that naturally handles N/A labels in

the ground-truth. Our model (Sec. 5) achieves better re-

sults than previous best methods on two public benchmarks.

At the same time, it is less complex, i.e., does not rely on

multi-level pipelines or external information. Additionally,

we reported results on the new PARSE-27k dataset, enabling

other researchers to build on our dataset and compare to

our method. Secondly, we have pointed out that the com-

mon mAP evaluation for attributes is only suitable for some

target applications. Sec. 6 proposed an alternative evalua-

tion scheme, which also reflects prediction quality on the

N/A labels. We hope that this, in combination with our new

dataset, will serve as a starting point for future research.
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