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Abstract

In this paper we propose a novel approach to video sum-

marization that is based on the coherency analysis of seg-

mented video frames as represented by region adjacency

graphs. Similar segments across consecutive region adja-

cency graphs are matched and tracked using an efficient

graph matching technique. Shot boundaries are detected

based on a coherency score that measures the appearances

and disappearances of tracked segments. As such, it is pos-

sible to form a compact representation of each detected shot

based on prevalent segmented regions and their relations

- referred to as the ‘segments summary graphs’. Further-

more, the segments summary graph is amenable for further

semantic analysis and understanding of the scene. Experi-

ments on benchmark datasets demonstrate that our method

outperforms the state of the art summarization approaches.

1. Introduction

Video summarization aims to generate a compact rep-

resentation of a video sequence in order to have a more

efficient storage and processing. The partitioning of the

video is integral to its summarization. The most common

approach to partitioning is shot boundary detection as it is

intrinsically and inextricably linked to the way that video is

produced [5]. Here, a shot is defined as the longest coher-

ent sequence of frames between two cuts. Generally, shots

are separated by one of the several motion picture effects

such as cuts, fade, dissolve or camera motion such as ro-

tating or zooming. Boundary detection can be performed

by analyzing the dissimilarity of successive frames where

high dissimilarity indicates the boundary. Several different

methods have been proposed for comparing frames such as

color histogram difference [11, 28], object tracking [26, 17],

motion field [27, 3], event analysis [15] and graph similar-

ity [14]. Although these approaches can easily detect abrupt

shot changes such as hard cuts, other effects such as fad-

ing or dissolving are relatively hard to detect due to gradual

shot changes that spread over the number of frames. Slid-

ing window approaches and adaptive thresholding methods

are used in various works to detect gradual shot changes at

higher rates [21, 16, 2].

Once a shot is determined, the next step is to transform

its data into a compact representation. This is a challeng-

ing problem as this representation needs to encode all note-

worthy information in the shot. The two most common

approaches are selecting a collection of static keyframes

of video shots or composing shorter clips of shots. As

such, some of the semantic content that are crucial may be

missed or the representation may not be sufficiently com-

pact. In mosaic based approaches [1, 23], panoramic im-

ages are created from several frames and dynamic scene

contents are superimposed in a single panorama. However,

this approach requires high computation power and only ap-

plicable in static background scenes. Furthermore, most

approaches do not encode the semantic information how-

ever incorporating semantics would enhance the browsing

experience and facilitate content based video retrieval and

search. Encoding audio-visual cues [9, 8], using video an-

notations [25], object and event analysis [7, 24] are some of

the several techniques used for including semantics. These

methods, however, requires either manual annotation or

computationally expensive content analysis.

In this paper, we propose a novel approach to shot

boundary detection and graph based semantic representa-

tion of shots. Our approach is based on the coherency

of segmented regions adjacency graphs extracted at each

frame. The nodes (segments) of region adjacency graphs

are connected temporally and tracked through the video se-

quence using a simple graph matching technique. The nov-

elties of this approach are two-fold: First, shot boundaries

correspond to low coherency regions that are determined

based on the number of appearing/disappearing nodes in-

side a sliding window. As such, detecting gradual changes

become possible – in contrast to previous graph-based ap-

proaches such [14] where boundaries are determined via

comparing the similarity of consecutive frames. Second, it

not only enables shot detection but also provides a compact
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representation - referred to as segments summary graph - for

each shot. Each segments summary graph encodes the ma-

jor entities and their spatio-temporal relations in that shot.

As such, it differs from previous related work where such

an encoding is not possible - as each shot is summarized

based on only a single key graph. The outline of this pa-

per is as follows: First, the overall approach is presented

in Section 2. The construction of region adjacency graphs

is explained in Section 3. This is followed by region adja-

cency graph matching method in Section 4. Shot detection

based on region adjacency graphs is explained in Section 5.

The formulation of segments summary graphs is introduced

in Section 6. The proposed approach is evaluated experi-

mentally in Open Video [6, 18] dataset and compared with

those of state of the art approaches in Section 7. The paper

concludes with a brief summary.

2. Overall Approach

Consider a sample video that is comprised of a sequence

of frames fk with k ∈ K. The proposed approach consists

of four steps as shown in Fig. 1. The first step is forming the

region adjacency graph (RAG) of each image frame fk. In

the RAG, segmented regions in the image and their spatial

relationships are expressed as nodes and edges respectively

[22]. The next step is to match any the newly formed RAG

with those that are associated with the previous frames as

to identify nodes (segments) that have appeared previously

and hence assign their labels accordingly. In the third step,

coherency score is calculated based on number of appear-

ing/disappearing nodes of RAGs through a sliding window.

In the last step, frames associated with low coherency re-

gions are assigned as shot boundaries.
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Figure 1: Shot boundary detection algorithm overview

Immediately after shot boundary is detected, a shot is

defined by a set of frames between two shot boundaries.

The frame associated with the highest coherency score is

selected as the summary keyframe and segments summary

graphs (SSG) is contructed by grouping only the long-life

segments. The resulting SSG encodes segments and theirs

spatial relations that are prevalent in the shot.

3. Region Adjacency Graphs

As the first step, each video frame fk is represented as a

RAG. This is done via segmenting the frame into Nk homo-

geneous color regions Sk = {Sk
i }

Nk

i=1
using a segmentation

method proposed in [10]. The segmented regions and their

adjacency relationships are represented by the nodes and

the edges of a region adjacency graph Gk. Thus, each RAG

is an attributed graph that consists of Gk = (N k,Ek,Ak)
where N k is the set of nodes, Ek is the edge set and Ak

is the attribute set that contains attributes related to vertices

Nk
i and Ek

ij . Each segment Sk
i ∈ Sk is associated with a

node Nk
i . If two segments Sk

i and Sk
j have common bor-

ders, edge relation Ek
ij between the respective nodes Nk

i

and Nk
j is formed. A node Nk

i is associated with a set of

attributes as given by a NA-dimensional vector a(Nk
i ) as

derived from the respective segment Sk
i such as its area,

centroid and mean color. The edge attribute wk
ij is set to a

value that is inversely proportional to mean color difference

between two segments Sk
i and Sk

j . The top three images in

Fig. 1 illustrate RAG construction. For visualization pur-

poses, the position, color and radius of nodes represent the

center of mass, mean color and total area of segments re-

spectively.

4. RAG Matching and Node Existence Matrix

In the second step, each newly formed RAG is matched

with those that are associated with the previous frames to

recognize nodes (segments) that have appeared previously

and hence assign their node labels accordingly. In this way,

the nodes of each RAG are related to nodes of previous

RAGs and connected temporally. Then, the nodes of RAG

at each frame is placed to the node existence matrix with

their associated node label and frame number. Example

node existence matrix is shown in Fig. 2.

The graph matching algorithm is an extended version of

a method based on node signatures [13]. The node signature

consists of node attributes, the number of incident edges

d(ni) and the attributes of the edges of neighboring nodes

E (Nk
i ):

s(Nk
i ) =

{

a(Nk
i ), d(N

k
i ), w

k
ij for j ∈ E (Nk

i )
}

(1)

Given two RAGs Gk and Gl, l > k, cost matrix C with

the corresponding elements cklij is defined based on node

signatures as:

cklij = δ(s(N k
i ), s(N

l
j )) (2)

=
∥

∥s(N k
i )− s(N l

j )
∥

∥
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where δ defines a weighted Manhattan distance and cklij is

the distance between two nodes N k
i and N l

j . Calculated

cost matrix, C is used as the basis for an attributed graph

matching using Hungarian algorithm with O(n3) running

time. The resulting permutation matrix P kl defines the op-

timum matching between the nodes of two given graphs.

However some of these matches may contain false or actu-

ally unrelated node-to-node assignments as node attributes

associated with segments may change greatly as the frame

changes. In order to ensure the correct assignments, the ele-

ments pklij of the permutation matrix P kl are modified based

on thresholding the cost matrix by τm so that they contain

only the correct matches:

pklij =

{

pklij if cklij < τm

0 otherwise
(3)

The result of the matching for each RAG across the frames

K is encoded in the node existence matrix M. Each col-

umn represents a frame with index k ∈ K while each row

represents a segment. Thus, it evolves as the frames are pro-

cessed. A sample node existence matrix is as shown in Fig.

2. In this case, for example, Node#10 has appeared through-

out whole sequence. This is in contrast to some nodes that

appear only for a very short period.
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Figure 2: Node existence matrix encodes the states of pres-

ence or absence of nodes through time. Nodes are labeled

with numbers and tracked through time. Black regions rep-

resent the nodes appeared at that particular frame.

5. Shot Boundary Detection

Generally, shots are separated by one of the following

motion picture methods: cut, dissolve, fade, wipe or cam-

era movements such as turning or zooming. Although some

type of transitions causes abrupt changes between the dis-

appearing and the appearing shot and can be accurately de-

tected by straightforward frame-to-frame dissimilarity anal-

ysis, most of the changes are gradual and relatively hard to

detect automatically. Here, we propose a coherency score

metric based on the number of appearing and disappearing

of nodes(segments) in the shots that can effectively identify

any kind of transition at higher rates.

Coherency score is calculated at each frame through a

sliding window of size τw. Value of τw is set depending on

the frame rate, video resolution and segmentation parame-

ters. Coherency is measured primarily based on the number

of nodes emerging and disappearing within a window where

each node is weighted with a parameter ωk∗

i by how long it

appeared across frames, how much its area and how posi-

tionally stable it is. These weights are updated accordingly

at each frame. A coherency score ϕk based on these criteria

is defined as in (4).

ϕk =

k+τw
∑

k∗=k−τw

|Nk
∗

|
∑

i=1

1

ωk∗

i (αk∗

i + βk∗

i )
(4)

αk
i =

{

1 if i ∈ Mk, i /∈ Mk−1

0 otherwise

βk
i =

{

1 if i /∈ Mk, i ∈ Mk−1

0 otherwise

The validity of calculated coherency score depends on how

accurately the nodes are tracked. Several factors as dis-

cussed in the experiments section is observed to affect track-

ing performance.

After the coherency score ϕk is calculated, it is used in

deciding whether to start a new shot or to end the current

shot or to continue with it. A simple reasoning is used in

deciding what to do: A new shot is initiated if coherency

is maintained consecutively τn times while the current shot

ends if it cannot be observed τn times. Otherwise the cur-

rent shot continues.

6. Segments Summary Graphs

Immediately after a shot boundary is detected, Segment

Summary Graph is formed of the segments that are preva-

lent in that shot. This is determined based on the spatio-

temporal coherence of the nodes of the RAGs associated

with that shot. Spatial coherence is determined depending

on the mean centroid and area of segments. Segments with

small area or having high positional variance are deleted.

Temporal coherence is determined depending on the tem-

poral persistence of nodes and edges. Nodes are tracked

throughout the sequence of frames and the ones that appear

long enough thoughout the shot period, as specified by τn,

are selected as candidate nodes. Similarly, edges that ex-

ist at least certain percentage τe are selected as candidate

edges. Node and edge attributes of selected candidates are

averaged and encoded in resulting SSGs. Fig. 5b shows

constructed SSGs for each detected shots.
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(a) Original (b) σ=0.2, k=150, δ=1000

(c) σ=0.7, k=150, δ=1000 (d) σ=0.7, k=150, δ=5000

Figure 3: Graph based segmentation result for different pa-

rameters

7. Experimental Results

Our experimental results are obtained using a dataset

that contains videos from the Open Video Project [18].

Videos are distributed among several genres and their dura-

tion varies from 1 to 4 min. The first step - namely the seg-

mentation of video frames into homogenous color regions

- is based on efficient graph based segmentation algorithm

[10]. This method can produce coarse segments while keep-

ing edge details in low variability image regions. The num-

ber and area of the segments depends on three parameters:

smoothing factor σ, merging threshold k and minimum seg-

ment size δ. Using smaller σ produces jagged segments that

are sensitive to small color variations as seen in Fig. 3b. It is

observed from Fig. 3c and Fig. 3d that increasing δ reduces

the total number of segments but creates oversimplified re-

gions. As such, the parameters are adjusted as to generate

segments that encircle prominent entities and coarse enough

to omit insignificant and small objects with values σ = 0.7,

k = 150 and δ = 1000.

The validity of coherency analysis depends on accurately

tracking the nodes of RAGs therefore matching the nodes of

RAG correctly is crucial. The evaluation of graph matching

performance is performed based on visual inspection. The

average match ratio of two RAGs is calculated as 87% and

correct match ratio is calculated as 80%. Here, the match

percentage is the percentage of nodes across two consecu-

tive RAGs that have been matched while the correct match

percentage is the percentage of correctly matched nodes

based on visual inspection. It is observed that match ratios

are highly related to the consistency of segmentation and

the visual difference between the contents of two frames.
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Figure 4: Node tracking accuracy

In other words, graph match ratio is higher in frames where

the content is composed of stationary, less cluttered and tex-

tureless objects. Average node tracking performance based

on visual inspection is shown in Fig. 4. It’s already ex-

pected that the tracking accuracy to decrease as the number

of frames increases. Several reasons can be stated: incon-

sistent segmentation, changing frame content and incorrect

node matching. If the segmentation is not consistent be-

tween consecutive frames that means the objects are not

segmented as same as in the previous frame, tracking will

be implausible. Similarly, if the content between frames

changes too much, maintaining an accurate tracking gets

difficult.

7.1. Sample Video Summarization Results

First, we consider the results of the proposed approach

(SSG) on a sample video ( 5th video from the Open Video

dataset). Fig. 5 explains how the coherency based shot and

boundary detection is performed. The node existence ma-

trix is depicted in Fig. 5a where the horizontal axis is for

the frame numbers and the vertical axis is for the node la-

bels. Black stripes represent the nodes that appeared at the

respective frames. It should be noted that nodes are tracked

for the whole video even if they disappear and appear again.

Coherency scores along with the detected shots and bound-

aries evolve as seen in Fig. 5c. Red regions indicate the

shots and blue regions represent the shot boundaries. It

is observed that in certain frames, the number of nodes

increase suddenly while previous nodes disappear. Such

frames are selected as the shot boundaries because the co-

herency score is below the threshold at these regions. The

most coherent frame in each shot is selected as summary

keyframe as shown in Fig. 5d in numbered circles. Finally,

SSGs of each detected shot is illustrated in Fig.5b. Colored

circles encode the nodes of SSG and they are selected based

on several criteria within a set of RAGs related to each de-

tected shots. In deciding which segments to include, tempo-

ral continuity, size and positional stability of segments are

considered. In other words, intermittent, fast moving and

small segments will be disregarded. Results demonstrate
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Figure 5: SSG: Detected shots

that SSG structure is suitable for encoding the prevalent en-

tities and hence semantic analysis.

7.2. Comparative Results

In this section, the proposed SSG approach is com-

pared with sparse dictionary (SD) based approach [4],

VSUMM [6], Open Video Project storyboard (OVP) [18],

Delaunay Clustering (DT) [20], STIMO [12] and On-

line Minimum Sparse Reconstruction (OnMSR) [19] ap-

proaches. Recorded performance results of these ap-

proaches are adopted from [19]. For comparison purposes

each video is downsampled at 5 fps and have 352x240 pix-

els resolution.

The evaluation is based on manually created user sum-

maries where each video is summarized by 5 different users.

In this process, they are oriented to select any number of

frames to compose their summaries. Next, user gener-

ated summaries are compared with automatically generated

summaries based on three metrics including precision, re-

call and F-score as defined in [19]:

Precision =
nmAS

nAS

(5)

Recall =
nmAS

nUS

(6)

F − Score =
2× Precision×Recall

Precision+Recall
(7)

where nmAS is the number of matching keyframes in an

automatic summary, nAS is the total number of keyframes

in automatic summary and nUS is the total number of

Algorithms Precision (%) Recall (%) F-score (%)

OVP 43 64 51.4

DT 47 50 48.5

STIMO 39 65 48.8

VSUMM 42 77 54.4

OnMSR 50 66 56.9

SSG 56 75.9 64.4

Table 1: Comparative summarization performances.

keyframes in user summary. Two frames are matched only

if the visual content is similar and frame numbers are not

apart from each other. Here, visual similarity of the frames

is checked by visual inspection and maximum frame num-

ber difference is set to 60 frame (which corresponds to 2

seconds at 30fps) in order to be counted as matched. Pre-

cision reflects the percentage of matched keyframes over

all automatically selected keyframes whereas recall shows

the percentage of matched keyframes over all user selected

keyframes. Good summarization should contain as many

keyframes so that all important shots are represented and

as few frames as possible so that there is no redundant

keyframes that points to the same shot. F-score as defined

in (6) is an effective metric as it balances the precision and

the recall scores. The results are presented in Table 1. As

the summarization results point out, our approach achieved

the highest F-score rate over all other approaches.

As a case study, we present the video summaries pro-

duced by all different approaches considered for compari-
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OnMSR

Figure 6: Comparative video summarization results.

Resolution Frames/sec
Elapsed time per each step (sec/frame)

Segmentation Graph Matching Coherency Analysis

352x240 4.38 0.139 (92%) 0.0097 (6%) 0.0028 (2%)

176x120 9.51 0.085 (97%) 0.0019 (2%) 0.0011 (1%)

Table 2: Video Summarization Computation Time Results.

son in Fig. 61. We have selected the 5th video from the

Open Video dataset for comparison. US1 shows the user

summary keyframes. OVP and DT approaches selected the

least number of frames as they represent only the beginning

of the video. Our approach together with VSUMM and On-

MSR approaches produced the closest summarization result

to ground truth. All of the selected keyframes by our ap-

proach match with those of the user summary however it

misses some of the user summary keyframes. This is be-

cause of the value of threshold tuned accordingly to achieve

the best overall summarization performance.

The experiments were performed on a computer with 3.6

GHz Intel Core i7-4790. Average computation time per

frame of each step is presented in Table 2. Segmentation

is the most time consuming step whereas graph matching

and coherency analysis spends only 2% and 1% of process-

ing power, respectively. Segmentation process is directly

related to frame resolution. For example, downsampling

the video by 2 speeds up the processing by 4 times. In ap-

plications where the speed is a priority, higher frame rates

can be achieved by downsampling the video while preserv-

ing the summarization performance. Original video can be

processed at 4.89 frames/sec whereas video downsampled

1This study could not include [14] as the associated codes are not avail-

able online.

by 2 can be processed at 9.51 frames/sec which means that

our algorithm is suitable real-time processing.

8. Conclusion

In this paper, we have introduced a novel approach to

video summarization. The novelty of this approach is that

shots are detected based on the coherency of consecutive

region adjacency graphs as derived from respective video

frames. Similar segments across consecutive region adja-

cency graphs are matched and tracked using an efficient

graph matching technique. The coherency score associated

with each region adjacency graph defines an effective met-

ric to detect shots and any type of boundary with high accu-

racy. Experimental results with benchmark datasets demon-

strate that the proposed method outperforms the state of the

art approaches. Simultaneously, a novel shot representation

model - referred to as the ‘segments summary graphs’- is in-

troduced. The resulting segments summary graph encodes

the segments and spatio-temporal relations that are preva-

lent in the shot and hence is amenable for further semantic

analysis and understanding.
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