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Abstract

Color composition is an important property for many

computer vision tasks like image retrieval and object clas-

sification. In this paper we address the problem of inferring

the color composition of the intrinsic reflectance of objects,

where the shadows and highlights may change the observed

color dramatically. We achieve this through color label

propagation without recovering the intrinsic reflectance

beforehand. Specifically, the color labels are propagated

between regions sharing the same reflectance, and the

direction of propagation is promoted to be from regions

under full illumination and normal view angles to abnormal

regions. We detect shadowed and highlighted regions as

well as pairs of regions that have similar reflectance. A

joint inference process is adopted to trim the inconsistent

identities and connections. For evaluation we collect

three datasets of images under noticeable highlights and

shadows. Experimental results show that our model can

effectively describe the color composition of real-world

images.

1. Introduction

Color is a basic characteristic of visual objects. We use

colors to distinguish one object from another in our daily

life. Each human language has many words for describing

the colors. According to [5], several color names are

shared by most of the languages, which are called basic

color terms. In English, they are black, blue, brown, grey,

green, orange, pink, purple, red, white, and yellow. Color

naming usually maps the observed colors to these basic

color terms. Color names are widely used in computer

vision, e.g., Google Image Search and object detection

[22]. Recently, automatic color name labeling becomes

important for online shopping [4] and online art galleries.

Visual objects look quite different under varying illu-

minations and view angles. See Fig. 1 for an example.

Highlights make some parts of the strawberry appear white,

while shadows make some regions nearly black. Conse-
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Figure 1: The regions appear very different from their original

reflectance (in purple boxes) under highlights (in blue boxes) or

shadows (in yellow boxes). If we know which regions have the

same material (e.g., bottom three boxes), we can infer the color

names of highlights or shadows regions by propagating the labels

of normal regions to them. (Best viewed in color.)

quently, the color naming results will be totally different

for different parts of the same surface. This will limit

its usage in computer vision tasks like object detection,

which desires consistent description of the same object.

Traditional chip-based methods [3][14] generate flat color

chips under controlled lighting environment. These color

chips are totally unaware of the light condition and the

view angle, so the annotation of them cannot be migrated

to natural images directly.

Barrow and Tenenbaum proposed to decompose an im-

age into a set of intrinsic images, each containing a single

physical characteristic [2]. Typical intrinsic images include

the reflectance, shading and specular reflection [7]. Espe-

cially, the reflectance describes how the light is reflected

from the body of the object, which is invariant to the

illumination and the view angle. In this paper we label the

color of the intrinsic reflectance instead of the raw image

under shadows and highlights.

Given a natural image, our goal is to tell the color

composition of the intrinsic reflectance for each image

region. However, decomposing a single image into several

intrinsic components is an ill-posed problem. Instead of

using some prior knowledge to get the reflectance first
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Figure 2: The flow chart of our method. For the detection results, the highlighted regions are marked with green cross, and the shadowed

regions are indicated by yellow “x”. Highlight/diffuse pairs are connected by green lines, with a green circle on highlight. Shadow/non-

shadow pairs are joined by yellow lines, with a yellow circle on shadow. The similar pairs are coupled by blue lines. For the classification

of regions, normal regions are covered by yellow, highlighted regions are marked by cyan, and shadows are shown in red.

[20], we propose to propagate the color labels from normal

regions to those shadowed or highlighted regions with the

same albedo. Here the normal regions refer to those areas

of a surface that are illuminated by the natural light and

viewed at a angle that is not close to the reflection angle.

The observed colors from the normal regions are qualified

representatives of the reflectance, which are suitable sources

for label propagation.

The flow chart of our method is shown in Fig. 2. We

begin with segmenting the foreground of the image by

MeanShift [6]. Then we detect the shadows and highlights,

and identify the pairwise relations between regions sharing

the same reflectance (Sec. 2). The shadow and highlight

detection results are often noisy and inconsistent. We use a

joint inference to combine the local detection results into a

consistent labeling of the status of the regions, and rectify

the pairwise relations accordingly (Sec. 3). To ease the

color propagation, we recover the color and intensity of the

shadowed and highlighted regions roughly (Sec. 4). We

get the region-level color compositions from the pixel-level

color naming results supplied by off-the-shelf methods [3].

Finally we build a MRF model for label propagation (Sec.

5). While MRF models are undirected, we desire a one-way

propagation of color labels, i.e., from normal regions to the

shadowed or highlighted ones but not reversely. We achieve

this by setting the normal regions to be the anchor nodes

and keeping the labels of the other regions adaptive.

The main contributions of this paper are: (1) We build

a MRF model to propagate the color labels from normal

regions to shadowed or highlighted regions, which can

robustly estimate the color names of the intrinsic reflectance

of natural images; (2) we use a joint inference process

to make the shadow and highlight detection results con-

sistent, which gives reliable paths and directions for label

propagation; and (3) we collect three datasets of natural

images under shadows and highlights, and annotate them

with region-level intrinsic color labels for evaluation.

1.1. Related Work

Serra et al. [20] proposed to infer the pixel-wise color

names of the intrinsic image from label propagation. Their

method is based on the segmentation results of the Ridge

Analysis of the color Distributions (RAD) [25], which is

robust to shadows and highlights. They built a MRF model

to encourage the pixels connected by a ridge to have same

color name. But their model did not specify the direction

of the propagation. It may fail when the shadow and

highlight cover a bigger portion of the surface than the

normal regions. In contrast, our model is aware of which

regions are shadowed or highlighted, and the labels will be

propagated in the desired way.

Liu et al. [10] labeled the color composition of visual

objects. They inferred the region-level and image-level

color distribution from pixel-level color naming results,

taking the human preference and color assimilation effect

into consideration. Van de Weijer et al. [24] learned color

names from natural images. They used a PLSA model to

capture the color composition of the image and the color

name distribution over pixels. The learned color names

show good robustness to shadows and shadings since the

training data contain such variations. But these variations

made the color name distribution flat, i.e., there are several

reasonable explanations for one observed pixel. Mojsilović

[14] presented a computational model for color naming.

She built a syntax for multi-level color description. For

extracting the color composition of an image, she computed

the color name histogram of the pixels in uniform or

textured regions. This work addressed the issues of color

constancy, image smoothing and segmentation, but not the

shadows or highlights.
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Shadow detection [1, 29, 8] and highlight removal [23,

13, 27, 11] have already been widely studied. Their re-

sults are the basis of identifying shadowed and highlighted

regions as well as constructing the connections between

regions. Especially, Guo et al. detect unary shadowed

regions as well as pairs of shadow/non-shadow regions

[8], and determine the status of regions jointly from the

detection results. We extend their inference of shadows to

incorporate highlights inside.

2. Shadows and highlights

In this section, we calculate the probability of being

normal, shadowed or highlighted for each region. We

also extract the shadow/non-shadow pairs Esn, the high-

light/diffuse pairs Ehd and the similar pairs Esim. A region

pair is regarded as a shadow/non-shadow pair if they have

the same reflectance but only the former region is blocked

from the direct illumination. A highlight/diffuse pair is

composed of a highlighted region and a diffuse region that

have the same diffuse reflectance. Two nearby regions

have similar appearance can form a similar pair. They

are the basis to determine the path and direction of label

propagation in Sec. 5.

2.1. Shadow detection

The shadows cause some regular changes to the color

and texture, and we call them “shadow jump”. Intuitively,

the shadowed regions get lower intensity and weaker tex-

ture than the lit regions [29]. In the penumbra area the

illumination changes continuously, which results in a soft

shadow edge. We use these properties to detect shadows

and shadow/non-shadow pairs.

Region-based shadow detection. We use the frame-

work of Guo et al. [8] to detect shadowed regions and

shadow/non-shadow pairs of regions. Especially, we pro-

pose a new shadow invariant feature, which measures

the color/texture similarity robustly under shadow jump.

For the color/texture histograms of a pair of regions, we

calculate their Earth Mover’s Distance (EMD) [17]. The

shadow jump patterns are embedded into the ground dis-

tance between histogram bins. First we count the frequency

of one color/texton bin being transported to another col-

ors/texton bin by shadows in a training set. We assume that

the transportation with higher frequency is more probably

caused by a shadow jump, so we assign a smaller distance

to it. In implementation, the distance is set to be inversely

proportional to the frequency of the transportation. The

resulted EMD captures the patterns of shadow jump on

both color and texture. It is also robust to small variations

of the image. Since the shadow jump is asymmetric, it

can separate shadow/non-shadow pairs from similar pairs

as well as non-shadow/shadow pairs. We use Pele and

Werman’s version of EMD with non-symmetric ground

Figure 3: The shadow and highlight detection results. (a) The

original detection results. (b) The joint inference result. See Fig.

2 for the meaning of the marks and lines.

distance [15]. The texture distance are very useful for

achromatic surfaces. We use texton histograms [12] to

represent the texture.

We translate the output scores Ssn of the shadow/non-

shadow pair detectors into probabilities by sigmoid func-

tions psn = 1/(1+exp(−γsn∗Ssn+ηsn)) [16], where γsn
and ηsn are parameters. Similarly we can get the probability

ps of being shadowed with parameters γs and ηs.

Edge-based shadow detection. We use the method of

Lalonde et al. [9] to detect shadow edges. An oriented

gaussian derivative filter is convolved with the image area

near the region boundaries. The filter responses are fed

into a decision tree classifier to decide if the boundary is a

shadow edge. Since the shadow edges are not closed in most

cases, we still do not know which regions are shadowed.

Here we label the regions on the darker side of the edges

as being shadowed with a probability of ps = 1. We

further extend the shadow label to similar regions nearby.

In addition, if two regions with similar chromaticity are

separated by a shadow edge, they probably come from the

same surface. Therefore the probability of a shadow/non-

shadow pair psn can be determined by the similarity of

chromaticity.

The outputs of the region-based method and the edge-

based method are fused by taking the maximum of corre-

sponding values. Note that, most highlighted regions will be

classified as non-shadow regions, and they may also appear

in the shadow/non-shadow pairs.

2.2. Highlight Detection

In this section, we measure the probability phd of two

adjacent regions being a highlight/diffuse pair. We also

calculate the probability of highlights ph for chromatic and

achromatic regions separately.

Highlight/diffuse pairs. According to the Dichromatic

Reflection Model [21], the reflectance R is calculated by

R(p, γ) = wd(p)Rd(p) + ws(p, γ)Rs (1)

where Rd(p) is the chromaticity, i.e., the normalized RGB,

of diffuse body reflectance at the pixel p. Rs is the
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chromaticity of the specular interface reflectance, which

is assumed to be always white ([1/3, 1/3, 1/3]). wd(p)
and ws(p, γ) are the intensities of diffuse reflectance and

specular reflectance, respectively. γ is the viewing angle.

The diffuse intensity wd does not vary with the viewing

angle. In contrast, the specular intensity ws is very high

in certain viewing angles, where the highlights occur. It

should be mentioned that there are still specular reflections

in other viewing angles, although their intensities are much

lower.

A highlight/diffuse pair is formed by two adjacent re-

gions that have the same hue but different saturation. The

specular reflections are achromatic, so the highlights will

retain the hue of the body reflectance but reduce the satura-

tion [23]. Based on these properties, we measure the proba-

bility phd of a highlight/diffuse pair by the similarity of hue

histograms and the difference of saturation. For achromatic

regions, the hue is unstable. Instead we measure the

strength of the boundary between the highlighted regions

and their diffuse neighbors. The weaker the boundary is, the

higher the probability of being a highlight/diffuse pair will

be. The underlying assumption is that the reflection angle

changes smoothly over the surface, so does the intensity of

specular reflection.

Chromatic highlights. To remove the specular reflec-

tion on chromatic surfaces, we use the method of [23]. It

iteratively reduces the achromatic component ws of each

pixel until all the surfaces become specular-free. That is,

the saturation of the highlighted pixels gets close to that of

the diffuse pixels. See [23] for details. We regard a pixel

in the original image as highlighted if its saturation drops

more than a threshold Th after highlight removal.

Achromatic highlights. We use the method of [13]

to detect the achromatic highlights, including those near-

white highlights on chromatic surfaces. There are two

assumptions: (1) Highlights on a smooth shining surface

tend to have a profile of a sharp spike overlaying on a

smooth line, and (2) on each side of the spike, the intensity

profile is close to a straight line. Accordingly, when we

use different thresholds T for the intensity of highlights, the

perimeters of the resulted highlight regions will approxi-

mate a straight line. In contrast, the perimeters of a bright

diffuse region under different thresholds will be roughly

piecewise constant. Since the reflectance ratio varies across

surfaces, the threshold T should be different. We first find

out bright achromatic regions using an intensity threshold

and a saturation threshold. Then we find a threshold T for

each region.

After detecting both achromatic and chromatic high-

lights, we count the proportion of the highlighted pixels in

each region, which is taken to be the probability ph of being

a highlighted region.

2.3. Similar pairs

We use the detectors of Guo et al. to find out similar pairs

[8]. Similar to the shadow/non-shadow pairs in Sec 2.1, the

output scores Ssim are translated into probabilities psim by

a sigmoid function with parameters γsim and ηsim.

3. Joint Inference of Shadows and Highlights

The detection results of shadows and highlights are often

noisy. In addition, detections based on different features

may conflict. For example, in the left part of Fig. 3

two shadowed regions on the car rear form a shadow/non-

shadow pair since they have the same color but different

intensity. Also, a highlighted region on the right side of the

car roof was connected to a normal region of the window

since they are both nearly achromatic. Here we compromise

the detection results in a MRF model.

We label the image regions X = {xi}
N
i=1 with labels

Y = {yi}
N
i=1, where each yi could be shadowed (-1),

highlighted (1), or normal (0). Here we assume that a

region cannot be both shadowed and highlighted at the same

time. Note that the shadowed regions may also contain

weak specular reflection that are negligible for the color

naming task. We further enforce the consistency between

pairwise relationship and labels of individual regions, and

the rules are: (1) A similar pair of regions should have the

same label; (2) a shadow/non-shadow pair is formed by a

shadowed region and a normal or highlighted region in the

right order; and (3) a highlight/diffuse pair begins with a

highlighted region and ends in a normal or highlighted one.

The score function is defined as follows:

S(X,Y ) =
∑

i

Φu(xi, yi) +
∑

(i,j)

Φb
i,j(yi, yj) (2)

Here the unary term is defined as follows:

Φu(xi,−1) = ps(i)

Φu(xi, 1) = ph(i)

Φu(xi, 0) = 1−max (ps(i), ph(i))

(3)

where ps and ph are the probabilities of being shadowed

and highlighted, respectively. The binary term is designed

based on the rules of pairwise relationships:

Φb
i,j(yi, yj) =



















psim(i, j) if (i, j) ∈ Esim, yi = yj

psn(i, j) if (i, j) ∈ Esn, yi = −1, yj ̸= −1

phd(i, j) if (i, j) ∈ Ehd, yi = 1, yj ̸= 1

0 otherwise

(4)

where psim, psn and phd are the probabilities of being

a similar pair, a shadow/non-shadow pair, and a high-

light/diffuse pair, respectively. All these probabilities are

got from shadow and highlight detection in Sec. 2.
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The score function in Eq. 2 can be converted to an energy

function by simply adding a negative sign to all the terms.

Then we use the method of Alpha-Beta swap implemented

by the UGM software [19] to find out the optimal label Y ∗.

After that, we prune the region pairs that are inconsistent to

the new labels. The remaining shadow/non-shadow pairs,

the highlight/diffuse pairs and the similar pairs are denoted

by E∗

sn, E∗

hd, and E∗

sim, respectively. The new labels and

connections are more reliable than the initial detection in

Sec. 2. See Fig. 3 for an example. The optimal label

sequence and edge sets are used for color propagation in

Sec. 5.

4. Color and intensity recovery

The connections between regions are sparse after we

prune the inconsistent connections in Sec. 3. Fig. 4

gives an example. In this image there is only a very small

portion of the object exhibiting canonical lighting. If we

apply the label propagation described in Eq. 5 shortly,

it might fail because the labels of normal regions cannot

be sufficiently propagated to the highlighted and shadowed

regions. This problem has been well-addressed in the

domain of constrained segmentation [28]. To alleviate the

problem we roughly recover the colors according to the

shadow and highlight detection results, as follows.

For chromatic surfaces, the highlight removal process in

Sec. 2.2 removes the specular reflection to generate diffuse

surfaces. If there are some highly saturated diffuse pixels,

which happens a lot in natural images, the achromatic

component of adjacent pixels will be totally eliminated

after highlight removal (See Fig. 5 for an example). That

is, the intensity will be reduced until one color channel

nearly drops to 0. It will appear darker than those normal

regions. Here we propose to transfer the specular reflection

from the normal regions to the highlighted region when

they form a highlight/diffuse pair. In implementation, we

take the median value if there are more than one normal

regions connected to the highlighted region. Under strong

specular reflection, some channels of the camera sensors

may saturate. It will decrease the differences between

channels and thus change the hue. Fortunately, most

highlighted regions still have several unsaturated pixels

on their smooth borders. We propagate the color from

the unsaturated pixels to the saturated ones. The totally

saturated regions cannot be handled here, since nearly all

the color information has lost. We left these regions to label

propagation in Sec. 5.

The ratio of intensity r between shadow and non-shadow

regions are needed for shadow removal [8]. We get an

estimate of r from the ratio of the average intensity between

each pair of shadow/non-shadow regions. The median of

these ratios is taken to be the final estimation r̃. The

shadows are removed by dividing the intensity by r̃.

Figure 4: An example of color and intensity recovery. Left: The

original image. Middle: The shadow and highlight detection

results, which are sparse. See Fig. 2 for the meaning of the marks

and lines. Right: The image after color and intensity recovery.

1 2

3

Figure 5: Color and Intensity recovery for highlighted regions.

Left: The original image. The top left corner of Region 1 turns

achromatic due to highlight. Region 2 is a highlighted region.

Region 3 is a normal region. Region 1 and Region 3 form

a highlight/diffuse pair. Region 2 and Region 3 form another

highlight/diffuse pair. Middle: The specular-free image after

highlight removal. All three regions are darker than the original

image. Moreover, the achromatic pixels in Region 1 become

black. Right: The recovered image.

Although the recovered image in this section is not

exactly the intrinsic reflectance, it gets much closer to the

real color of the surfaces. Using the recovered image

instead of the raw image to calculate the region-level color

distribution (Sec. 5) will ease the color label propagation.

5. Color Labeling

In this section we infer the region-level color composi-

tions through label propagation. Formally, the input is a set

of image regions X = {xi}
N
i=1, and the output is their color

distribution Z = {zi,c}
(N,K)
(i,c)=(1,1). Here K is the number

of basic color terms. A region xi is specified by its color

distribution f(xi) got from averaging the pixel-level color

distribution. We use the method of Parametric Fuzzy Sets

(PFS) [3] to get the pixel-level color naming results, i.e.,

the probability of each pixel belonging to the 11 basic color

terms. To make the label space tractable, we quantize zi,c
to be within {0, 0.25, 0.5, 0.75, 1}. We further limit the

number of colors in a single region to be no more than 2,

since people tend to use a small number of colors to label

a uniform region 1. There are 176 feasible states for the

region-level color label zi. Among them, there are 11 states

that only one color occurs in the region. The number of

combinations of two colors is 3 ·C2
11 = 165, where 3 is the

1Some researchers [20] also use 3 colors to describe a region, but we

found that it will be hard to estimate the proportion of them consistently

by human annotators.
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number of choices among {0.25, 0.5, 0.75}.

Illumination robust color naming requires that all the

regions of the same reflectance should be labeled with the

same color names, no matter how different the illumination

and the specular reflection are from place to place. We

consider 3 types of region pairs: the highlight/diffuse pairs

in E∗

sn, the shadow/non-shadow pairs in E∗

hn, and the

similar pairs in E∗

sim (Sec. 3). All these pairs of regions are

composed of regions with the same reflectance, so we can

propagate the labels between them. We combine different

types of region pairs into E = E∗

sn

∪
E∗

hn

∪
E∗

sim.

We build a MRF model for color name propagation. The

energy of labeling regions X with color distribution Z is

defined as follows:

P (X,Z;Y ∗) =
∑

i

Ψu(xi, zi; y
∗

i ) +
∑

(i,j)∈E

Ψb
i,j(zi, zj) (5)

with
Ψu(xi, zi; y

∗

i ) = α(y∗

i )d(f(xi), zi)

Ψb
i,j(zi, zj) = β(i, j)d(zi, zj)

where α(y∗i ) is the weight of each region decided by its

type. We assign much smaller weights to the highlighted

or shadowed regions than the normal ones. Therefore the

highlighted regions and the shadowed regions are more

adaptable, which means the binary terms of MRF will

change their labels to those of the normal regions more

often than in the reverse way. In addition, we set the weights

of achromatic highlighted regions to be the lowest, since

the observation on them are the most unreliable. β(i, j)
is the strength of the connection between node i and j,

which is set to be the probability of the pairwise connection

pt(i, j) of type t. We adopt the histogram intersection to

measure the similarity of different labels, so d(zi, zj) =
1 −

∑
c min(zi,c, zj,c). We use Alpha-Beta swap of UGM

[19] to minimize the energy in Eq. 5.

6. Experiments

In our experiments, we evaluate the accuracy of region-

level color naming performance. We also analyze the

impact of joint inference of shadows and highlights, and the

color and intensity recovery.

6.1. Datasets

To our best knowledge, there is no public dataset avail-

able for region-level color naming. So we built 3 datasets

for evaluation. The first one is a set of 30 car images. The

original images are from the MSRC Object Categorization

v2 dataset [26]. We add the region-level color annotation

using the Labelme toolbox [18]. For each surface with

a uniform color, we draw its boundary and add a label

of the proportions of the basic color terms. To facilitate

the annotation, the number of colors on a single region is

limited to be no more than 2. The color proportion is chosen

from 5 discrete values {0, 0.25, 0.50, 0.75, 1}. To make the

label consistent, all the images are annotated by one author.

These images contains intensive highlights due to glass,

plastic and metal surfaces. Shadows are also common due

to self-occlusion.

To test the robustness on different object class and

materials, we built another dataset called Multiclass Color

Naming dataset (MCN). It contains 17 object categories

e.g., horse, jewelry and shoes. It has 20 images in total.

Most of the images are collected from the internet, and

the others are from the dataset of [8]. This dataset covers

many materials including glass, stone, wood, fruit, cloth,

fur and so on. In addition, the strength of the highlights and

shadows vary a lot across images.

We build a larger dataset of small objects. It contains

300 images taken by the Canon 7D camera in raw mode.

Each color channel is stored in 16 bits when we export

the images in TIF format. The images are cropped and

resized to be 1M pixels each. The materials of the objects

range from paper, plastic, metal, leather, wood, leaf and so

on. We put the objects on the table and arrange them in

different layout. For some images we intentionally block

the sunshine partially to generate shadows. We then capture

the images from different view angles.

6.2. Evaluation

We evaluate the region-level color naming results by

their histogram intersection with the ground-truth:

Sr =
∑

i

ai

∑

c

min(zpredi,c , z
gt
i,c) (6)

where zpredi,c and zgti,c are the prediction and ground-truth

annotation of the proportion of color c on region i, re-

spectively. The weight ai is the area of region i. The

evaluation is based on the ground-truth segmentation. Since

the predicted color names are labeled on regions from the

Meanshift segmentation, we need to reorganize them at first.

We distribute the region-level prediction to the pixel-level,

and calculate the color name histograms of the regions from

the ground-truth segmentation.

To reduce the influence of segmentation, we also evalu-

ate the pixel-level performance Sp. Both the ground-truth

annotation and the predicted labels are distributed to the

pixels. We calculate the pixel-level histogram intersection

and then average them over the pixels of the whole object.

We set the weights α in Eq. 5 of normal regions,

shadows, chromatic highlights and achromatic highlights to

be 1, 0.2, 0.5 and 0.1, respectively. The parameters of the

sigmoid functions in Sec. 2 are set to be: γns = 5, ηns =
3, γsim = 5, ηsim = 6, γs = 5, ηs = 2. The threshold of

chromatic highlight is set to be Th = 0.2.
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Datasets Car Dataset MCN Dataset

Algorithm S̄1
r S̄2

r S̄r S̄1
p S̄2

p S̄p S̄r S̄p

RAD [20] 22.3 23.8 22.5 22.0 23.1 22.2 19.4 19.0

PLSA [24] 37.6 29.0 36.2 37.1 28.7 35.7 41.7 40.9

PFS [3] 60.5 50.5 58.8 55.1 46.1 53.6 54.0 50.1

Ours(W/O JID) 62.2 48.4 60.0 60.0 46.5 57.7 53.8 51.4

Ours(W/O CIR) 62.8 49.0 60.5 60.8 47.1 58.6 54.6 52.2

Ours 63.8 47.4 61.1 61.4 45.8 58.8 56.5 55.4

Table 1: The average percentage of corrected labeled regions S̄r

and pixels S̄p over the images of the car and the MCN dataset. The

superscript 1 indicates group G1 and 2 for G2. Ours W/O CIR is

the version without color and intensity recovery. Ours W/O JID

is the version without both CIR and joint inference of shadow and

highlight detection results.

Table 2: The results on the

small object dataset. Ours-

PFSfeat refers to our model

using PFS for the pixel-level

color naming, while Ours-

PLSAfeat uses PLSA as the

baseline.

Algorithm S̄r S̄p

PLSA [24] 52.6 52.1

PFS [3] 68.3 66.6

Ours-PLSAfeat 61.1 60.7

Ours-PFSfeat 68.7 67.9

6.3. Results

We divide the Car dataset into 2 groups: images with

only one car (G1) and images with multiple cars (G2).

The average Sr and Sp for both groups are given in the

left part of Table 1. The chip-based color naming method

of [3] is taken as the baseline. It supplies the pixel-

level color distribution, which is the source of our region-

level color distribution. It reflects the performance of

color naming without any color label propagation. We

compare our algorithm to the RAD-based method [20],

which also adopts color label propagation. We also compare

to the PLSA model [24], which learned pixel-level color

distribution from weakly labeled real images. For group

G1, our method achieves an improvement of 5.5% for S̄r

and 11.4% for S̄p over the baseline of PFS [3]. In detail,

the joint inference of detection results contribute 18% and

13% for the improvement of S̄r and S̄p, respectively. The

numbers for color and intensity recovery are 30% and 10%.

For group G2, our method without color and intensity

recovery gets the best performance.

The results on the MCN dataset are shown in the right

part of Table 1. Our method outperforms the other methods

in both S̄r and S̄p. It suggests that our method is effective

for various materials and lighting conditions.

The results on the small objects dataset are shown in Tab.

2. Our method still performs best. Since the images in this

dataset have high quality, all the methods achieved much

better results than on the other two datasets.

Figs. 6 and 7 give some examples. The chip-based

method PFS [3] suffers the shadows and highlights a lot.

For example, some part of the red car under highlights are

label with pink or even white (in the second and third row

Figure 8: Some failed cases.

of Fig. 6), and the orange wall under shadows is labeled

with brown (in the fifth row of Fig. 6). PLSA learned

the color names from natural images [24], so the color

names cover colors generated from various illuminations

and view angles. Hence this method got slightly better

robustness to the shadows and highlights. For example,

the red surfaces with a few specular reflection are correctly

labeled (in the second and third row of Fig. 6), but it

fails when the specular reflection gets stronger. Our model

explicitly accounts for the shadows and highlights, so the

influence of these factors are greatly reduced. Although the

blue car in the fourth row of Fig. 6 is under severe highlight,

our model still labeled the color names correctly. In the fifth

row of Fig. 6, more than half of the wall is shadowed, and

the label propagation recovered most regions.

RAD also propagates labels between the pixels sharing

the same reflectance, but they do not specify the direction of

the propagation [20]. Therefore the results may get worse

after label propagation in the wrong directions. Moreover,

the RAD segmentation do not consider the spatial relation

between pixels, so they may connect the highlighted and

shadowed pixels to the bright and dark achromatic surfaces,

respectively. Therefore the labels may be propagated from

the black/white regions or shadowed/highlighted regions to

the normal regions if the former ones are much larger than

the later ones. As a result, many regions are mistaken to be

black or white by RAD.

Fig. 8 shows some failed cases. In the top row of

Fig. 8, the inter-reflection between multiple cars changes

the local illumination. In this case the highlight removal

will make mistakes since the local chromaticity variations

of illumination are not captured by the reflection model

in Eq. 1. This also explains why most methods get

worse performance on group G2 (in which images contain

more than one car) than on G1 of the Car dataset, and

the version without color and intensity recovery achieves

better results than our full model. In the bottom row of Fig.

8, some shadowed regions are not identified, so the label

propagation does not work for them. Another limitation is

that most segmentation algorithms require a minimal size of

regions, so small groups of pixels will be merged with their

neighbors, e.g., the numbers on the licence plate.
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Figure 6: Typical results on the car dataset and the MCN dataset. Each region/pixel is colored with the dominant color name that gets the

highest proportion. The background pixels are set to be light gray according to the foreground/background annotation of the datasets.

Image Groundtruth PLSA PFS Ours

Red
Orange
Yellow

Blue
Green

Pink
Voilet

White
Gray
Brown
Black

Figure 7: Representative results on the dataset of small objects. See Fig. 6 for the settings of the colors.

7. Conclusion

We built a MRF model to propagate the color labels from

normal regions to shadowed or highlighted regions. The

resulted color names are robust to illumination variation

and specular reflection. Our method relies on shadow and

highlight detection, which may fail sometimes. We use a

joint inference process to infer the optimal status of the

regions and trim the pairwise connections.

The traditional reflection model in Eq. 1 and the

highlight detection methods based on it cannot handle the

inter-reflections. We leave it for future work.
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