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Figure 1: Framework overview: given an input image we choose points on which to make ordinal estimates (e.g. Which of

two points is closer to the camera? Which has darker surface color?). We train models to perform these estimations. We then

globalize these estimates to produce metric estimates of reflectance, shading and depth. Our approach has multiple benefits

over direct metric estimation.

Abstract

We propose a framework that infers mid-level visual

properties of an image by learning about ordinal relation-

ships. Instead of estimating metric quantities directly, the

system proposes pairwise relationship estimates for points

in the input image. These sparse probabilistic ordinal mea-

surements are globalized to create a dense output map of

continuous metric measurements. Estimating order rela-

tionships between pairs of points has several advantages

over metric estimation: it solves a simpler problem than

metric regression; humans are better at relative judgements,

so data collection is easier; ordinal relationships are invari-

ant to monotonic transformations of the data, thereby in-

creasing the robustness of the system and providing qualita-

tively different information. We demonstrate that this frame-

work works well on two important mid-level vision tasks:

intrinsic image decomposition and depth from an RGB im-

age. We train two systems with the same architecture on

data from these two modalities. We provide an analysis of

the resulting models, showing that they learn a number of

simple rules to make ordinal decisions. We apply our algo-

rithm to depth estimation, with good results, and intrinsic

image decomposition, with state-of-the-art results.

1. Introduction

Mid-level vision involves the estimation of physical

properties of pixels within an image. Examples of such

problems are depth extraction, surface normal orientation

estimation, intrinsic image decomposition, segmentation

and shadow detection/removal [23, 4, 35, 13, 20, 22, 34].

Usually, metric (continuous valued) estimates are required

at each pixel location. However, there are many cases where

such a quantity may be hard to extract, or even if estimated,

may be irrelevant to the task at hand. Consider looking at

a piece of paper on top of a table: it would be hard to say

how much closer the paper is to the observer, since the met-

ric difference is tiny. An ordinal relation between the paper

and the table, however, is clearly present. A similar case

happens in outdoor scenes: looking at a range of mountains,

it is usually easy to say which mountain is in front of which,

but metric distances between them may be hard to estimate

by sight alone. Another example is the estimation of surface

albedo (reflectance) within an image. It can be difficult to

give a precise albedo estimate, and this has been shown by

experiments on lightness perception [9]. On the other hand,

it is natural for an observer to say which of two points has

darker or lighter reflectance. Only in rare cases do humans

fail at this task, and such cases can be newsworthy, as in the

Internet controversy over the color of a particular dress [1].

Ordinal relationships and rankings have been the sub-

ject of much research in computer vision [6, 26, 27], ma-
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chine learning [7] and psychophysics [9]. There is strong

empirical evidence that people are better at estimating ordi-

nal relations between points in scenes than estimating met-

ric quantities [33]. Such relationships have several attrac-

tive properties that make them suitable for vision applica-

tions. They have a simple, discrete three way classification

structure (corresponding to the “equality”, “less than”, and

“greater than” relationships). They are invariant to mono-

tonic transformations of the data, making them more robust

than metric estimates to variations of illumination, view-

point or pose. Since humans find them easier to estimate,

they can help us collect ground truth data for cases where

metric estimates would be hard to acquire.

In this paper we propose a framework that tackles mid-

level vision problems by learning from ordinal relation-

ships. We train a deep neural net to estimate the ordinal

relationships between point pairs in a given image. These

estimates are then aggregated to provide a full explanation

of the image (see Figure 1). We demonstrate the system

on two modalities: reflectance and depth. We show that

the same system architecture can learn from these different

modalities and provide an analysis for the kind of decision

rules the system may have learnt. We show that we achieve

competitive results in depth from single image and state-of-

the-art results on intrinsic image decomposition.

2. Related Work

A characterization of mid-level vision problems is due to

Marr [23], where localized primitives such as pixel values,

edges and corners are used to provide more global descrip-

tions of a scene. The estimation of depth, reflectance and

shading, and segmentation are important mid-level vision

tasks. We refer to the reader to [38] and [31] for good re-

views.

Most work that extracts reflectance and shading from a

single image relies on engineered priors [14, 12, 28, 21].

These models usually use cues such as gradient characteri-

zations of reflectance and shading [18] or sparsity of albedo

values in a given image [28]. Smoothness priors are also

used in most reflectance models. Depth extraction from a

single image has proven to be a harder problem, and almost

all existing models make strong assumptions such as known

illumination or shading [15, 35]. A notable exception is the

recent work of Barron and Malik [4], which uses a number

of physics-based models to recover reflectance, depth and

illumination from a single RGB or RGB-D image. How-

ever, the restriction in their case is either the requirement of

an external depth map from a depth sensor, or the presence

of only a single object in the image (with a mask outlining

the silhouette).

Learning-based approaches provide an alternate mech-

anism to hand-designed priors. However, reliable models

for mid-level problems could not be learnt in the past due

to the absence of large-scale datasets, except for specific

synthetic datasets such as [10]. In the case of depth, the

availability of cheap depth sensors has given rise to datasets

such as NYU Depth [25]. These open up the possibility of

learning priors directly from the data, and recent works give

excellent results for depth estimation from a single RGB

image [8, 20, 34, 22], showing the power of learnt models.

There have been relatively few works on learning intrinsic

image decompositions [12, 32] - perhaps due to the lack of

data. However, the recently released Intrinsic Images in the

Wild (IIW) [5] provides a large amount of data, and several

works concurrent with our own have learned from this data

[24, 40].

Almost all existing models try to predict metric depth

or reflectance values given an input image. An alternative,

considered in this paper, is to predict ordinal relationships

between pairs of points and use those to recover a metric

estimate. Ordinal features have been successfully used in

many applications in previous work, such as image corre-

spondence [6], attribute prediction [27], face recognition

[29], and texture classification [26]. The concurrent works

of [24, 40] also learn ordinal classifiers for reflectance, but

do not apply their frameworks to depth.

3. Framework

Our framework has three main components. The first one

selects point pairs (i, j) from the image. The second com-

ponent performs ordinal relationship estimation for each

pair: extracting the relevant information from the image

and providing a three-way classification. Finally, the third

component takes the partial order relationship estimates be-

tween points in the image and propagates them to provide a

dense depth or reflectance map for the whole image, utiliz-

ing priors specific to the task at hand.

We shall now describe the components of our frame-

work. We use the same architecture for both the tasks

demonstrated here (intrinsic image decomposition and

depth extraction), demonstrating its generality. We note,

however, that the framework is modular and individual

components can be independently adapted to the task at

hand.

3.1. From input image to point pairs

We wish to choose N points from the image and an edge

structure Ei,j denoting which pairs of points i, j are to be

compared. Depth or reflectance discontinuities usually in-

duce changes in the measured intensity within the image,

creating strong gradients. The points we want to compare

need to be far away from such gradients so as to be centered

within relatively homogenous regions. The lines connecting

the points, however, should ideally cross such gradients, al-

lowing us to make the decision about the possible cause of

the observed change.
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Figure 2: The points and edge structure extracted from a given

image: a comparison is estimated on each edge. Note (a) that

points rarely straddle strong edges and (b) the long range connec-

tivity. (For this image we used a larger separation between the

points for display purposes).

A simple way of finding points that satisfy the above

requirements is to use the centers of superpixels [2]. Su-

perpixels naturally follow gradients within images, so their

centers tend to be locally far away from strong intensity

changes. In order to choose edge structure connecting the

points, we find for each point its adjacent neighbors in the

superpixel segmentation. The first order neighbors often lie

on opposing sides of strong gradients in the image. To al-

low for longer range interactions, we introduce connections

between higher-order neighbors: we extract superpixels at

several sizes, find their first order neighbors and snap this

edge structure to the fine superpixel grid. See Figure 2 for

an example of the resulting points and edge graph. Note

that the superpixels are used only for their centers, and no

segmentation information is utilized at this stage.

3.2. From point pairs to ordinal estimates

For each edge Ei,j connecting points i and j in the im-

age, we need to make a decision about the ordinal relation-

ship between i and j. This can be posed as a three way clas-

sification problem where the classes correspond to equality

between the points, point i being larger and point j being

larger. Here, the word “larger” has a natural interpretation

according to the task: it means “darker” for intrinsic image

decomposition, and “further away” for depth estimation, for

example. Along with this estimate we would want an asso-

ciated confidence value (namely, the normalized class prob-

abilities).

We train a deep neural network to perform this classi-

fication. The network input is comprised of two different

contexts: the first is the local appearance of the two points

and their local surroundings, the second is a global con-

text, which provides the network the overall image struc-

ture and the region of interest (ROI) in which the points

reside. Specifically, for local context, we extract a patch

around each point, their joint bounding box and provide the

network with a mask denoting the points’ relative location

within the bounding box. For global context, we input a

downscaled version of the image, and a mask denoting the

ROI: the location of the local context bounding box within

the image. See Figure 3 for a depiction of the network in-

put. The network architecture and training procedure are

detailed in Section 4.

3.3. From ordinal to metric

The output of the deep network are 3 ordinal relationship

probabilities for each pair of considered points. We need

to propagate these estimates to all other points in the im-

age, and move from ordinal estimates to metric. To achieve

this, we must reconcile the ordering estimates for the points,

some of which may be contradictory or ambiguous. Second,

we need to find values for points which were not estimated,

these are in fact the majority of pixels in the image. For

the latter, we use superpixel segmentation and assume that

the value throughout each superpixel is constant (yielding a

piecewise constant solution in the resulting image). More

sophisticated priors such as piecewise planar assumptions

may be used [36], but we have found that as long as the su-

perpixels are of small enough size, the constancy assump-

tion gives good performance while speeding up inference.

Given this piecewise constancy assumption, we seek to

find a global solution for the values of the points (denoted

by xi), while handling ambiguities in the orderings, incor-

porating the confidence of the classifier and respecting im-

age information and problem scale. We pose this as a con-

strained quadratic optimization problem, which we explain

Figure 3: Inputs to the network: we extract a patch around each

point of interest (red and green squares on the image). These

patches, together with the bounding box (blue) of the patches

and masks denoting the relative position of the points within the

bounding box, form the “local context” for the network. The

“global context” is provided by a downscaled version of the image,

along with a Region of Interest (ROI) mask denoting the location

of the bounding box within the image.
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below. We denote the equality decision using the super-

script or subscript eq, the first inequality decision (point i

being larger than point j) by gt and the opposite inequality

decision by lt.

Our first term handles equality predictions. Since the

network predictions are uncertain, we do not want to use

hard constraints. Instead, for each edge Ei,j we wish to

minimize the l2 distance between the estimates of the corre-

sponding points, weighted by the confidence of the equality

prediction w
eq
ij . We wish to minimize:

Leq(x,R
eq) =

∑

ij

w
eq
ij (xi − xj −R

eq
ij )

2 (1)

w.r.t. x and R
eq , where R

eq
ij ∼ N (0, σ2

eq) is a scalar

slack variable for the ij-th edge. The variance σ2
eq of the

normal distribution for Req is computed from the statistics

of the training set. The above can be written in matrix form

as follows. Let Aeq ∈ R
|E|×N+|E|, where |E| is the num-

ber of edges, and N the number of points. Each row of Aeq

has the entries 1,−1 and −1 in the i, j and N + p columns,

respectively (p is the index of ij pair). The weights w
eq
ij

can be represented by a diagonal matrix Weq ∈ R
|E|×|E|

in which the (diagonal) entries are w
eq
ij . Using this, Eq. 1

can be written in matrix form as:

Leq(x,R
eq) = [x R

eq]
T
A

T
eqWeqAeq

[

x

R
eq

]

(2)

where x ∈ R
N and R

eq ∈ R
|E| are the variables xi and

R
eq
ij respectively, stacked in vector form. For clarity, here

and subsequently [x R
eq] is a row vector.

Inequalities are handled in a similar manner. First, let

us consider the inequalities corresponding to the prediction

that point i is larger than point j. For each edge, we require

the estimated difference to be some non negative number

R
gt
ij such that:

Lgt(x,R
gt) =

∑

ij

w
gt
ij

(

xi − xj −R
gt
ij

)2
(3)

where w
gt
ij is the associated confidence for this inequality

(xi > xj), and R
gt
ij ∼ N (µgt, σ

2
gt) are the positive-valued

slack variables. Note that µgt is a positive value and that all

R
gt
ij are constrained to be positive. Analogous to the equal-

ity constraints Eq. 2, this can be written in matrix form, with

a matrix Agt with entries in each row of value 1,−1 and −1
and a diagonal weight matrix Wgt:

Lgt(x,R
gt) =

[

x R
gt
]T

A
T
gtWgtAgt

[

x

R
gt

]

(4)

Finally, we have a third term, Llt(x,R
lt), for the inequality

xi < xj , with matrix Alt = −Agt, weights Wlt and slack

variables Rlt.

In addition to the above terms, we also take into ac-

count the image structure. Specifically, we want to enforce

smoothness with respect to the image. This is achieved

with an ℓ2 smoothness term between adjacent superpix-

els m and n, weighted by local image gradients (calcu-

lated over the mean superpixel luminance L) such that

ws
m,n = exp(− 1

ρ
‖Lm − Ln‖

2) where ρ controls the sen-

sitivity of the smoothness weights. For non-adjacent super-

pixels, ws
m,n = 0. We use these weights in one of two ways.

First, we either directly smooth the values x, giving rise to

a smoothness term is of the form:

Ls(x) =
∑

ij

ws
i,j(xi − xj)

2 +
∑

i

bixi (5)

where the terms bi allow more flexibility in the choice of

smoothing (see Section 4 for an example). This can again

be re-written in matrix form:

Ls(x) = x
T
A

T
s WsAsx+ x

T
bs. (6)

Combining all the above expressions, the resulting con-

strained quadratic problem is given by:

min
x,Req,Rgt,Rlt

λeqLeq(x,R
eq) + λgtLgt(x,R

gt) +

λltLlt(x,R
lt) + λsLs(x) +

∑

ij

(

(Req
ij )

2

σ2
eq

+
(Rgt

ij − µgt)
2

σ2
gt

+
(Rlt

ij − µlt)
2

σ2
lt

)

s.t x > L,x < U,Req > 0,Rgt > 0,Rlt > 0 (7)

where the lower and upper bounds (L and U) for x

are problem specific (e.g. −∞ and 0 for log reflectance).

λeq, λgt, λlt, and λs are weight parameters. Once we solve

the quadratic system for the values of x, we floodfill each

superpixel with the corresponding value, producing the final

output map.

4. Experiments

We use a common framework for both our mid-level

tasks: intrinsic image decomposition and depth estimation.

The differences in the two models are in the datasets and

some parameters, the details of which are given in subse-

quent sub-sections. The ability to use the same network

architecture and optimization model for both datasets is a

benefit of our ordinal framework. Furthermore, we can han-

dle images of any input size without rescaling, unlike many

other deep network based models.

For both models, we use a patch size of 16 × 16 pixels

around each point. The bounding box around the patches

is rescaled to 32 × 32 pixels. The location masks and ROI

are 32×32 pixels in size, and each mask is a Gaussian blob

around each of the points, with standard deviation σ = 0.2
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Figure 4: Deep neural network architecture: the numbers in the

convolutional layers denote the number of channels. Numbers in

fully connected layers denote number of hidden. The convolu-

tional layer’s weights after Patch 1 and Patch 2 are shared, forming

a small Siamese network. There is a RELU on the output of every

layer other than the bottom one, where a SOFTMAX layer is used.

All pooling was done on 2 × 2 neighborhood with a stride of 2.

See Figure 3 for details of the input data.

(in normalized 0-1 coordinates). The ROI is a rectangle at

the bounding box location within the image, rescaled to the

same size of the downscaled image. The image is always

downscaled to be 64× 64 pixels 1.

We train both the networks using the Caffe framework

[16]. The network structure is depicted in Figure 4, hav-

ing approximately 4 million parameters. Training was per-

formed over 400, 000 iterations with batch size 128. We

start with a learning rate of 0.01 and reduce it every 30, 000
iterations (with a reduction rate of 0.1). Momentum was 0.9
and weight decay 5× 10−4. We used an NVIDIA GeForce

Titan X GPU, on which training takes approximately 10
hours.

4.1. Intrinsic image decomposition

We train our intrinsic image decomposition network on

the Intrinsic Images in the Wild (IIW) dataset [5]. Each

image in this dataset (5430 images in total) is associated

with human annotations for selected pairs of points (i, j).
The annotators were asked the question “which of the two

points have darker surface reflectance?” and provided one

of three responses “i is darker than j” (gt), “i is lighter than

j” (lt) or “Equal” (eq). We use these points and annotations

as ground truth data for our network. Since the dataset is

not split into train and test sets, we generate train, test and

validation sets. The test and validation sets have 500 im-

ages each, and the rest of the images are put in the training

set (4230 images). For each point pair, we extract patches

1All code, datasets and models are at https://dilipkay.

wordpress.com/ordinals/

around each point in the pair, location masks, a bounding

box covering both patches, a region of interest (ROI) mask

within the image and, finally, the downscaled image. To-

gether, this forms the input to our network (see Figure 3).

After training, we solve for reflectance and shading for

each image in the IIW test split. We assume grayscale shad-

ing and solve for scalar reflectance (as is done in [28, 5]).

We use superpixels which are approximately 3% of the

image width with long range connectivity (see Figure 2).

Weights for the different terms are λeq = 5, λgt = 1, λlt =
1 and λs = 0.5. We set σeq = 0.001, σgt = 0.001 and

σlt = 0.001. We set µgt = log(2) and µlt = log(2). The

smoothness term is applied to the log shading, that is, we

smooth log Ii − log xi. This gives a non-zero bs smooth-

ness term in Eq. 7. Parameters were adjusted using the val-

idation set. Since we solve for log reflectance values, the

lower bound in Eq. 7 is set to −∞ and the upper bound to

0. After the solution is found we take the exponent of the

result to obtain the final reflectance values (between 0 and

1).

For evaluation we follow the procedure introduced in [5]

and use the Weighted Human Disagreement Rate (WHDR),

the average disagreement rate with human annotators,

weighted by their confidence:

WHDRδ(ℓ,x) =

∑

ij wij✶(ℓi 6= ℓ̃i,δ(x))
∑

ij wij

(8)

ℓ̃ij,δ(x) =











1 if xi

xj
> 1 + δ

2 if
xj

xi
> 1 + δ

E else

(9)

where x is the estimated reflectance map, δ is the tolerance

level (we use 0.1, as in [5]) and ℓij and wij are the ground

truth human annotations and human confidence weights for

the ij-th pair. Table 1 shows the performance for our frame-

work, compared to a number of other state-of-the-art meth-

ods. We have used the results provided by [5] for com-

parison to other methods; the parameters for the competing

methods were optimized with respect to the whole data set

including the test images, while ours was fitted only on the

train and validation sets). Note that our method significantly

outperforms other methods, demonstrating more than a 10%
relative decrease in error. Figure 5 shows the recovered re-

flectance/shading pairs for some images from the test set,

along with the results of some of the other methods. Our

recovered reflectance maps largely ignore illumination and

texture related changes (such as the wooden cabinets and

the ceilings).

4.2. Depth from single image

For depth recovery, we train our model on the NYU

Depth v2 dataset [25]. Since we cannot directly train on the
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Input Image Our Reflectance Our Shading Reflectance [5] Shading [5] Reflectance [39] Shading [39]

Figure 5: Intrinsic image decomposition results: our recovered reflectance maps largely ignore illumination related changes.

metric estimates provided in the dataset, we have created a

set of ordinal relationship annotations for it, analogous to

the IIW dataset. For each image in the training set, we ex-

tract points and point pairs as described in Section 3. We

set the ground truth label ℓij for the ij-th pair as follows:

ℓij,δ(Z) =











1 if Zi

Zj
> 1 + δ

2 if
Zj

Zi
> 1 + δ

E otherwise

(10)

where Z is the ground truth depth, and δ = 0.02 is an

empirically chosen threshold. After the annotated points

and pairs are created, we extract local and global contexts

from the RGB images. No metric information is provided

during training.

After training, we solve for depth for each image in

the NYU test set. We use superpixels which are approxi-

mately 3% of the image width with long-range connectiv-

Method WHDR WHDR= WHDR6=

Ours 17.86% 15.99% 24.21%

Dense CRF [5] 20.30% 18.06% 28.66%

Nonlocal [39] 23.26% 17.82% 35.55%

Clustering [11] 25.12% 24.47% 29.09%

RetinexG [12] 26.01% 29.75% 25.99%

RetinexC [12] 26.31% 30.93% 24.47%

Optimization [30] 31.54% 37.29% 24.37%

Table 1: Weighted human disagreement rate (WHDR) for differ-

ent algorithms. This is the mean disagreement rate of reflectance

ratios weighted by human confidence as calculated on the test set.

We use δ = 0.1 for the ratio threshold as in [5]. Note that our

method outperforms the previous state of the art significantly. The

left column is the average over all edges, the middle is over equal-

ity edges only and the right column is over inequality edges only.

Numbers are somewhat different from [5] because of the train/test

split (see text for details).

ity. Weights for the different terms are λeq = 1, λgt = 1,

λlt = 1, and λs = 10. We set the upper and lower bounds

in Eq. 7 to 0 and 10. Unlike in the case of reflectance esti-

mation, there is no constraint on the inequality magnitudes

for depth differences. Therefore, we set a large variance for

σgt = 4, σlt = 4, and set σeq = 0.1. The relatively larger

value of λs encourages the global solution to be smooth

where the image is smooth.

We compare our metric results on the NYU test set, to

that of [17, 3, 8]. The results on the standard benchmarks

are reported in Table 2. We also compare our method with

outputting just the mean over the training set, and using the

mean as the prediction for any test image. The paper of

[8] gives details on how the error measures are computed.

Due to the specific nature of this dataset, the mean image (a

cone of depth, depicted in the supplementary material) has

reasonable performance.

Since our network was trained on ordinal measurements,

we also introduce an ordinal error measure analogous to

WHDR, (Eq. 8), which we dub WKDR (Weighted Kinect

Disagreement Rate). WKDR is computed in exactly the

same way as WHDR, but with the ground truth and recov-

ered depths maps, from which labels are computed using

Eq. 10. We compare our performance under this measure

to that of [8], and the results are given in Table 3. Under

this measure, our performance gap with [8] is considerably

reduced. This suggests that with a different globalization

method and more powerful priors, our metric performance

on depth estimation could be improved.

In Figure 6, we show some example depth maps from

our globalization, on images from the NYU dataset. In the

grayscale depth maps, darker intensities are closer (smaller

depth value) and lighter intensities are further. We note

that we recover the overall subjective depth structure of the

scene quite well, often with crisp edges at depth discontinu-

ities.
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Input Image Our Depth [8] Depth Ground Truth

Figure 6: Recovered depth from single images. From left to right: input image, our result, result of [8] and ground truth. While the results

of [8] are qualitatively superior, our results do capture major structures of the image, and have crisper edges.
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Figure 7: The results of the network analysis experiments: the left two columns measure the dependency of the networks’ output to local

appearance differences. It can be seen that both networks are invariant to texture deformations (left column) such as blur and rotation. The

reflectance network learns that a strong intensity difference means a reflectance change (a “Retinex”-like rule [18], with threshold of about

0.3), though it is sensitive to the polarity of the change. It also predicts that “red” hues are darker than than “green” and that saturated

colors are darker than unsaturated, even though there is no intensity difference. Finally, on the right column we see the dependency of the

network output as a function of relative distance and orientation of the patches. We see that both the depth and reflectance network have

learnt that nearby points tend to be the same reflectance/depth. Additionally, the depth network learns that points closer to the bottom of

the image tend to be closer, and that axis aligned pairs tend to be equal. The reflectance network does not show this behavior. See text for

further details.

4.3. Network analysis

Deep networks have a large number of parameters, and

often, understanding what they learn from data has proven

to be challenging. Some recent progress has been made in

this aspect [37]. While we can gain partial understanding

by looking at learned filters and “network inversions”, an-

other approach is to perform controlled experiments on the

network outputs.

Our analysis is somewhat analogous to experiments in

human psychophysics, where responses to controlled stim-
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Method RMSE RMSE RMSE absrel sqrrel

(log) (log s. inv)

Ours 1.20 0.42 0.47 0.40 0.54

Eigen [8] 0.75 0.26 0.27 0.21 0.19

Wang [34] 0.75 - - 0.22 -

Liu [22] 0.82 - - 0.23 -

Li [20] 0.82 - - 0.23 -

Karsch [17] 1.20 - - 0.35 -

Baig [3] 1.0 - - 0.3 -

Mean 1.22 0.43 0.48 0.41 0.57

Table 2: Metric error measures on the NYU test set [25] (lower

is better). Some error measures are not available for some of the

methods. We refer the reader to [8] for details on the measure

computation.

Method WKDR WKDR= WKDR6=

Ours 43.5% 44.2% 41.4%

Eigen [8] 37.5% 46.9% 32.7%

Mean 47.4% 47.0% 47.6%

Table 3: Ordinal error measures on the NYU dataset (lower is

better). On these measures, our method achieves competitive per-

formance with [8] and significantly better than the mean image.

uli are measured. We present a set of experiments which

attempt to uncover some of the different rules the networks

have learned from both datasets. This is by no means an

exhaustive set, but it sheds light on some simple rules. In-

terestingly, some of the rules correspond to previously pro-

posed algorithms [18, 19].

We measure the response of the network to different ap-

pearances of the two input patches. We zero the input of all

other channels to measure the effect of the local appearance

in isolation. Figure 7 shows the response of the network to

differences in intensity, saturation and hue of the patches.

The figure shows the different class probability assignment

as a function of the parameter changes.

It seems that the reflectance network has learned a

“Retinex”-like rule [18] where intensity changes above a

certain threshold (0.3 here in [0,1] scale) are considered a

reflectance change. We can repeat the experiment on hue

and saturation differences: here, it would seem that the re-

flectance network learned that saturated colors (even though

the intensity difference is 0) appear “darker” than unsat-

urated colors to humans (as provided in the ground truth

data) and that some hues appear darker than others. The

depth network’s response is invariant to these changes, as

would also be expected. We also test the dependence of the

network output on rotated and blurred copies of the same

textures. Both networks are invariant to this kind of trans-

formation.

We can measure the dependence of the network outputs

to the relative location and orientation of the points of in-

terest. We marginalize the response of the network on all

Input Image Our Depth Our Reflectance Depth [8]

Figure 8: Generalization results on images significantly different

than the ones in the dataset. From left to right: input image, our

depth map, our reflectance map and depth recovered by [8]. For

the depth maps, darker is closer (smaller depth).

pairs of points in the tests, and plot the results as a function

of relative orientation and distance. Results can be seen in

Figure 7. While the reflectance network is largely invariant

to orientation, the depth network learns two rules: the bot-

tom point tends to be closer (a prior that has been used in

the literature [19]) and points that are axis aligned (vertical

or horizontal) tend to be at the same depth (which is a re-

sult of the indoor dataset we used, where walls and cabinets

are ubiquitous). A final experiment is the dependence on

the distance between the points: as expected, both network

learn that nearby points tend to be equal, inline with widely

employed smoothness priors.

4.4. Generalization

To test subjectively the generalization capability of the

framework, we used images which are quite different from

the training sets, such as close up objects and outdoor

scenes. In Figure 8, we show our recovered reflectance and

depth maps, and the depth map recovered by [8]. Since

ground-truth depth and reflectance maps are not available

for these images, no quantitative measure is available.

5. Discussion

We propose a framework that tackles mid-level vision

problems by making ordinal decisions about points in an

image. We demonstrate that such a system is able to provide

good performance while still being interpretable. We are

able to utilize the same framework for different modalities

such as reflectance and depth. Since the output dimension-

ality of the classifier is tiny, a small set of “psychophysics”

experiments sheds some light on the inner workings of the

system. Globalizing these decisions allows to build a full

metric explanation of the image to output reflectance, shad-

ing and depth maps. Future work will involve allowing dif-

ferent systems to interact to reinforce their decisions.
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