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Abstract

We introduce a new approach for estimating a fine

grained 3D shape and continuous pose of an object from

a single image. Given a training set of view exemplars,

we learn and select appearance-based discriminative parts

which are mapped onto the 3D model through a facility lo-

cation optimization. The training set of 3D models is sum-

marized into a set of basis shapes from which we can gener-

alize by linear combination. Given a test image, we detect

hypotheses for each part. The main challenge is to select

from these hypotheses and compute the 3D pose and shape

coefficients at the same time. To achieve this, we optimize

a function that considers simultaneously the appearance

matching of the parts as well as the geometric reprojection

error. We apply the alternating direction method of multipli-

ers (ADMM) to minimize the resulting convex function. Our

main and novel contribution is the simultaneous solution

for part localization and detailed 3D geometry estimation

by maximizing both appearance and geometric compatibil-

ity with convex relaxation.

1. Introduction

Recovering 3D geometry from 2D imaginary of an ob-

ject is one of the most fundamental and challenging prob-

lems in computer vision. Geometric features were the main

representation of objects in the 20th century and have long

been used to establish correspondence between vertices and

edges of a 3D model and their image projections [14]. Al-

though such representation was successful with geometric

invariance it could not cope with the complexity of appear-

ance of 3D object categories in the real world which could

only be learned from exemplars.

As soon as massive 2D image exemplars became avail-

able on the Internet and through tedious annotation, the

computer vision community has harnessed fruitful results

as the state of the art in detecting object categories has

improved dramatically [8, 11]. More recently, researchers
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have focused on combining such approaches with 3D ge-

ometry to build more powerful object detectors that are also

able to provide weak 3D information such as viewpoint

[29, 30, 40, 25, 19]. In this paper, we go beyond view-

point estimation to establishing the actual 3D shape of an

object for the sake of fine grained classification or 3D inter-

action such as grasping and manipulation. Very few efforts

have been devoted to such combined estimation of pose and

shape from a single image [18, 27].

Recent advances in recognition have opened doors to

better understanding of 3D in the wild, but there are three

main challenges in the marriage of 2D appearance and 3D

geometry: (1) how to learn a representation that captures

appearance variation of geometric features across instances

and poses, (2) how to establish the 3D shape of an object

without exhaustively comparing to all possible instances or

when that instance has not been seen before, and (3) how

to optimize for appearance and correspondence compatibil-

ity as well as 3D shape and pose at the same time, without

splitting the problem into subproblems.

In this paper, we propose a novel approach that marries

the power of discriminative parts with an explicit 3D geo-

metric representation with the goal to infer 3D shape and

continuous pose of an object (or pop-up) from a single im-

age. Part descriptors are discriminatively learned in train-

ing images. Such parts are centered around projections of

3D landmarks which are given in abundance on the train-

ing 3D models. To establish a compact representation we

minimize the number of needed landmarks by solving a

facility-location problem. To deal with geometric defor-

mation, we summarize the training set of 3D models into

a shape dictionary from which we can generalize by linear

combination. Given a test image we detect top location hy-

potheses of each part. The challenge is how to fit best these

parts by maximizing the geometric consistency. This entails

the selection among the hypotheses of each part and the

shape/pose computation. Unlike other approaches which

rely on local optimization and initialize pose by DPM-based

discretized pose estimation [40, 27], we compute the selec-

tion as well as the shape and pose parameters in one step

using a convex program solved with the alternating direc-
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Figure 1: Illustrative summary of our approach: 3D Landmarks on a 3D model are associated with discriminatively learned

part descriptors (left). Intra-class shape variation is captured with linear combinations of a sparse shape basis (2nd left).

Learned part descriptors produce multiple maximum responses for each part in a testing image (3rd from left). The selection

of the part hypotheses, 3D pose and 3D shape are simultaneously estimated and the result is illustrated through a popup

(right).

tion method of multipliers (ADMM).

Figure 1 illustrates the outline of our approach. In sum-

mary, the major technical contributions are:

• A convex optimization framework for joint landmark

localization, fine grained 3D shape and continuous

pose estimation from a single image.

• Our convex objective does not require viewpoint or de-

tection initialization.

• An automatic landmark selection method considering

both discriminative power in appearance and spatial

coverage in geometry.

2. Related Work

The most related work includes the family of methods

that estimate an object shape by aligning a deformable

shape model to image features. This idea originated from

the active shape model (ASM) [4], which was originally

proposed for segmentation and tracking based on low-level

image features. Cristinacce and Cootes [5] proposed the

constrained local models (CLM), which combined ASM

with local appearance models for 2D feature localization

in face images. Gu and Kanade [16] presented a method

to align 3D deformable models to 2D images for 3D face

alignment. The similar methods were also proposed for 3D

car modeling [18, 40, 19, 27] and human pose estimation

[31, 38]. Our method differs in that we use a data-driven ap-

proach for discriminative landmark selection and we solve

landmark localization and shape reconstruction in a single

convex framework, which enables a global solution.

The representation of our model is inspired by recent ad-

vances in part-based modeling [8, 33, 17, 22], which models

the appearance of object classes with a collection of mid-

sized discriminative parts. Our optimization approach is re-

lated to the previous work on using convex relaxation tech-

niques for object matching [28, 21, 24]. These methods fo-

cused on finding the point-to-point correspondence between

an object template and an image in 2D, while our method

considers 3D to 2D matching as well as shape variability.

Our paper is also related to recent work on 3D pose es-

timation which encodes the geometric relations among lo-

cal parts and achieved continuous pose estimation. Several

work leveraged 3D models to warp features or parts into

their canonical view [32, 37, 36]. Other work rendered local

appearances and depth from 3D models and subsequently

encoded in a 3D voting scheme [34, 13, 25]. DPM was

further lifted to 3D deformable models [9, 29] to predict

continuous viewpoint. Instance models were also used to

recover 3D pose of an object [26, 1]. But this line of work

focused on pose estimation and either used generic class

models or instance-based models. Our approach differs in

that we not only provide a detailed shape representation but

also consider intra-class variability.

3. Shape Constrained Discriminative Parts

Our proposed method models both 2D appearance vari-

ation and 3D shape deformation of an object class. The 2D

appearance is modeled as a collection of discriminatively

trained parts. Each part is associated with a 3D landmark

point on a deformable 3D shape.

Unlike the previous works that manually define land-

marks on the shape model, we propose an automatic se-

lection scheme: we first learn the appearance models for

all points on the 3D model, evaluate their detection perfor-

mance, and select a subset of them as our part models based

on their detection performance in 2D and the spatial cover-

age in 3D.
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3.1. Learning Discriminative Parts

One of the main challenges in object pose estimation

rises from the fact that due to perspective transform and

self occlusions, even the same 3D position of an object has

very different 2D appearances in the image observed from

different viewpoints. We tackle this problem by learning a

mixture of discriminative part models for each point in the

3D model to capture the variety in appearance. Each part

detector consists of a simple but fast HOG detector [6] and

a more sophiscated but slow deep classifiers trained with

deep Convolutional Neural Net (CNN) [23]. The HOG de-

tectors provide location proposals to deep classifiers. Such

design is chosen to balance speed versus accuracy.

Given a training set D, each training image Ii ∈ D is

associated with the 3D points of the object shape S ∈ R
3×p,

their 2D projections Li ∈ R
2×p annotated in the image.

HOG Part Detectors We bootstrap the learning of a

discriminative mixture model for each part via clustering

whitened HOG (WHO) features [17, 33]. Denote φ(Lij) as

the HOG feature of the positive image patch centered at Lij

and φbg as the mean of background HOG features. We com-

pute the WHO feature as Σ−1/2(φ(Lij) − φbg), where Σ
is the shared covariance matrix computed from all positive

and negative features. Then we cluster the WHO features

of each part j into m clusters using K-means.

A linear classifier Wcj is trained for each cluster c of

a part j. We apply linear discriminant analysis due to ef-

ficiency in training and limited loss in detection accuracy

[17, 12],

Wcj = Σ−1
(

φ(Lij ; zij = c)− φbg

)

, (1)

where zij ∈ {1, . . . ,m} is the cluster assignment for each

feature, and φ(Lij ; zij = c) is the mean feature over all

Lij of cluster c. Let x = (x, y) be the position (x, y) in

the image. The response of part j at a given location x is

the max response over all its c components: scorej(x) =
maxc{Wcj · φ(x)}.

We introduce a latent variable for each training patch,

rij ∈ R
2 to represent the relative center location to the

annotated landmark location Lij . We improve the classi-

fiers learned from (1) by repositioning the patch center in

the neighborhood ∆(Lij) of Lij and retrain the classifiers.

Note that the latent update procedure is similar to that of

DPM [8] with the difference that we do not apply general-

ized distance transform to filter responses but only consider

maximum responses within a local region. The reason is

that our model, as will be discussed in Section 3.3, is con-

strained by the 3D shape space instead of learned 2D defor-

mations. We want, thus, to obtain accurate part localization

to estimate the object pose and shape. A 2 × 2 covariance

Method HOG-SVM CNN

mAP 0.41 0.53

Table 1: Comparison of CNN and HOG-SVM in part local-

ization. Mean average precision (mAP) of localizing the 12

parts of PASCAL3D car category are shown.

matrix Dj is estimated for each landmark j from latent vari-

ables rij , to model the uncertainty of the detected landmark

position x
∗

ij relative to the ground truth.

Deep Part Classifiers HOG part detections serve as part

proposals and are subsequently re-ranked by forwarding

through a CNN and applying SVM on the extracted Pool5

layer features. During training, Pool5 features were ex-

tracted for both positive and negative patches and an SVM

is trained for each part mixture. During our experiments, we

observed that 1) fine-tuning from pre-trained AlexNet [23]

with part patches of the same object category improves part

detection accuracy, 2) Pool5 has better performance than

fully connected layers (fc6, fc7) for mid-level patches, 3)

training separate classifiers for each part mixture compo-

nent outperform a combined classifier. We used publicly

available deep learning toolbox Caffe [20] in our experi-

ments.

The performance of deep part classifiers is evaluated by

comparing against SVM trained HOG filters (HOG-SVM)

with hard negative mining. Localization accuracy is mea-

sured by the average precision of detecting the part within

the close vicinity of the groundtruth location. Table 1 shows

performance comparison of CNN and HOG-SVM on the 12

parts of PASCAL3D dataset car category.

3.2. Selecting Discriminative Landmarks

Seeking a compact representation of the object, we try to

select only a small subset of discriminative landmarks SD

among all 3D landmarks S. We want the selected landmarks

SD to be both associated with discriminative part models

and have a good spatial coverage of the object shape model

in 3D. The selection problem is formulated as a facility lo-

cation problem,

min
yu,xuv

∑

u

zuyu + λ
∑

uv

duvxuv, (2)

s.t.
∑

v

xuv = 1,

xuv ≤ yv, ∀u, v,

xuv, yu ∈ {0, 1}, ∀u, v,

where the interpretations of each symbol are presented in

Table 2.

The cost zu for a landmark u should be lower if the

associated part model is more discriminative. We model
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Symbol Interpretation

zu cost of selecting landmark u
yu binary landmark selection variable

duv cost of landmark v “serving” u
xuv binary variable for landmark v “serving” u
λ trade off between unary costs and binary costs

Table 2: Notations interpretation in (2)

Figure 2: Visualization of the landmark selection optimiza-

tion result. All 256 landmark points of a car are shown in

circle markers. The color of the markers represents the Av-

erage Precision(AP) of the landmark part detection on the

training set, red means higher AP and blue means lower AP.

The size of the landmark represents the selection result, the

larger ones are selected via the MIP optimization and the

smaller ones are not selected. The red landmarks are pre-

ferred since they have higher detection accuracy, but only a

subset of red landmarks are selected because they are close

in 3D.

the discriminativeness by evaluating the Average Precision

(AP) of detecting each landmark in the training set. For

any landmark u, we perform detection with the learned part

model in the training set S to generate a list of location hy-

potheses Hu. A hypothesis h ∈ Hu is considered as true

positive if the ground truth location Liu is within a small

radius δ. Let the computed AP for a part u be APu, we

set zu = 1 − APu. The costs of “serving” (or suppress-

ing) other landmarks are set to be the euclidean distance

between landmarks in 3D, i.e., duv = ||Su − Sv||2. The

value of λ is set to 1 in our experiments. The minimization

problem 2 is a Mixed Integer Programming (MIP) problem,

which is known to be NP-hard. But a good approximation

solution can be obtained by relaxing the integer constrains

to be xuv ∈ [0, 1], yu ∈ [0, 1], solving the relaxed Linear

Programming problem, and thresholding the solution. Fig-

ure 2 visualizes an example result of MIP optimization for

landmark selection.

3.3. 3D Shape Model

We start our description by explaining how we would

estimate the shape of an object if 2D part - 3D landmark

correspondences were known. We represent a 3D object

model as a linear combination of a few basis shapes to

constrain the shape variability. This assumption has been

widely used in various shape-related problems such as ob-

ject segmentation [4], nonrigid structure from motion [3]

and single image-based shape recovery [16, 40]. We use

a weak-perspective model, which is a good approximation

when the depth of the object is smaller than the distance

from the camera. With these two assumptions, the 2D shape

P ∈ R
2×p can be described by

P = R

k
∑

i=1

ciBi + t1
T , (3)

where Bi ∈ R
3×p denotes the i-th basis shape, R ∈ R

2×3

represents the first two rows of camera rotation, and t ∈ R
2

is the translation vector. In model inference, the reprojec-

tion error is minimized to find the optimal parameters.

However, the model in (3) is bilinear in R and cis yield-

ing a nonconvex problem. In order to have a linear represen-

tation, we use the method proposed in [39], which assumes

that the unknown shape is a linear combination of scalable

and rotatable basis shapes:

P =

k
∑

i=1

TiBi + t1
T , (4)

where Ti ∈ R
2×3 denotes the first two rows of a similarity

transformation matrix. In order to enforce Ti to be orthog-

onal, the spectral norms of Tis are minimized during model

inference. The spectral norm is the largest singular value of

a matrix, and minimizing it enforces the two singular val-

ues of Ti to be equal, which yields an orthogonal matrix

[39]. After Tis are estimated, the third rows of Tis can be

recovered from the orthogonality and then the estimated 2D

shape can be lifted to 3D.

4. Model Inference

Finally, we obtain global geometry-constrained local-

part models, in which the unknowns are the 2D part loca-

tions as well as the 3D pose and shape. In model inference,

we maximize the detector responses over the part locations

while minimizing the geometric reprojection error.

4.1. Objective Function

We try to locate a part by finding its correspondence in

a set of hypotheses given by the trained detector. The cost

without geometric constraints is

fscore(x1, · · · ,xp) = −

p
∑

j=1

r
T
j xj , (5)

where xj ∈ {0, 1}
l is the selection vector and rj ∈ R

l is

the vector of the detection scores for all hypotheses for the

j-th part.
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Geometric consistency is imposed by minimizing the

following reprojection error:

fgeom(x1, · · · ,xp, T1, · · · , Tk, t) =

1

2

p
∑

j=1

∥

∥

∥

∥

∥

∥

D
−

1

2

j



LT
j xj −

[

k
∑

i=1

TiBi

]

j

− t





∥

∥

∥

∥

∥

∥

2

, (6)

where we concatenate the 2D locations of hypotheses for

part j in Lj ∈ R
l×2 and denote the covariance estimated in

training as Dj .

As introduced in Section 3.3, we add the following reg-

ularizer to enforce the orthogonality of Ti:

freg(T1, · · · , Tk) =

k
∑

i=1

‖Ti‖2, (7)

where we use ‖Ti‖2 to represent the spectral norm of Ti,

i.e., the largest singular value.

To simplify the computation, we relax the binary con-

straint on xi and allow it to be a soft-assignment vector

xi ∈ A, where A = {x ∈ [0, 1]l|
∑l

i=1
xi = 1.}.

Finally, the objective function reads

min
X,T ,t

fgeom(X,T , t) + λ1fscore(X) + λ2freg(T ), (8)

s.t. xj ∈ A, ∀j = 1 : p,

where X and T represent the unions of x1, · · · ,xp and

T1, · · · , Tk, respectively. After solving (8), we recover the

3D shape S and pose θ = (R, t) from Tis, as introduced in

Section 3.3.

4.2. Optimization

The problem in (8) is convex since fscore is a linear term,

fgeom is the sum of squares of linear terms, and freg is the

sum of norms of unknown variables. We use the alternat-

ing direction method of multipliers (ADMM) [2] to solve

the convex problem in (8). Since freg is nondifferentiable,

which is not straightforward to optimize, we introduce an

auxiliary variable Z and reformulate the problem as fol-

lows:

min
X,T ,t,Z

fgeom(X,T , t) + λ1fscore(X) + λ2freg(Z),

s.t. T = Z, xj ∈ A, ∀j = 1 : p. (9)

The corresponding augmented Lagrangian is:

L = fgeom(X,T , t) + λ1fscore(X) + λ2freg(Z)

+
〈

Y, T − Z
〉

+
ρ

2
‖T − Z‖2F . (10)

The ADMM algorithm iteratively updates variables by the

following steps to find the stationary point of (10):

t← argmin
t

L, (11)

X ← argmin
X
L, (12)

T ← argmin
T
L, (13)

Z ← argmin
Z
L, (14)

Y ← ρ(T − Z). (15)

It can be shown that (11), (12) and (13) are all quadrat-

ical programming problems, which have closed-form so-

lutions or can be solved efficiently using existing convex

solvers. (14) is a spectral-norm regularized proximal prob-

lem, which also admits a closed-form solution [39].

4.3. Visibility Estimation

In model inference, only visible landmarks should be

considered. To estimate the unknown visibility, we adopt

the following strategy. We first assume that all landmarks

are visible and solve our model in (8) to obtain a rough es-

timate of the viewpoint. Since the landmark visibility of a

car only depends on the aspect graph, the roughly estimated

viewpoint can give us a good estimate of the landmark vis-

ibility. We observed that our model could reliably estimate

the coarse view by assuming the full visibility, which might

be attributed to the global optimization. After obtaining the

visibility, we solve our model again by only considering the

visible landmarks. The full shape can be reconstructed by

the linear combination of full meshes of basis shapes after

the coefficients are estimated.

4.4. Successive Refinement

The relaxation of binary selection vectors xjs in (8) may

yield inaccurate localization, since it allows the landmark

to be located inside the convex hull of the hypotheses. To

improve the precision, we apply the following scheme: we

solve our model in (8) repeatedly, and in each iteration we

define a trust region based on the previous result for each

landmark and merely keep the hypotheses inside the trust

region as the input to fit the model again. We use three

iterations. We can start from a large trust region to achieve

global fitting and gradually decrease the trust region size

in each iteration to reject outliers and improve localization.

This successive refinement scheme has been widely-used

for feature matching [24, 21].

5. Experiments

In this section, we evaluate our method (PopUp) in terms

of both shape and pose estimation accuracy. The experi-

ments are carried out on the Fine Grained 3D Car dataset

(FG3DCar) [27] and PASCAL3D [35]. Both datasets have

landmark locations in the image and pose annotation for 3D

objects.
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Method meanAPD (SL) meanAPD

PopUp Mean shape 16.5 20.6

PopUp Class mean 15.4 18.9

PopUp Shape space 14.6 17.7

FG3D Class mean - 18.1

FG3D Shape space - 20.3

Table 3: Model fitting error of PopUp versus FG3D in terms

of mean APD in pixels evaluated on 52 selected landmarks

(SL) and 64 landmarks provided in the dataset.

5.1. FG3D Car Dataset

FG3DCar dataset consists of 300 images with 30 differ-

ent car models of 6 car types under different viewing angles.

Each car instance is associated a shape model of 256 3D

landmark points and their projected 2D locations annotated

in the image as well as 3D pose annotation. We perform

the following evaluations: First, we compare the accuracy

of pose and shape estimation to the iterative model fitting

method of [27] (FG3D) in terms of 2D landmark projection

error. Second, we compare the coarse viewpoint estima-

tion error to viewpoint-DPM (VDPM) [15, 35]. In addition,

since our viewpoint estimation is continuous, we also show

the angular errors comparing to the groundtruth annotation.

Through out the experiments, we follow the same training-

testing split as [27].

We learn a mixture of discriminative part models of three

components for each of 256 landmark points as described

in Section 3. The Average Precision (AP) of the landmark

detection is evaluated on the training set. We count a de-

tection as true positive only if the detected location is close

to the annotated location. We optimize the landmark selec-

tion with unary cost as 1 - AP of each landmark and pair-

wise cost as the average pairwise 3D distance over all the

3D models. 52 out of 256 landmark points are selected with

MIP optimization while FG3DCar provides 62 manually se-

lected landmark. To build the shape models, we learned a

dictionary consisting of 10 basis shapes from the 3D models

provided in the FG3DCar dataset.

Note that, unlike FG3D, our method does not need an

external object detector to initialize either the location and

scale in the image or coarse landmark locations. We per-

form pose and shape estimation on the original image with

background clutter.

3D Shape Estimation 3D Shape estimation accuracy is

evaluated in terms of meanAPD which is the average land-

mark projection error in pixels over the landmarks and the

test instances. In the following experiments, we investigate

the effect of using different 3D shapes on the model fitting

error. We compare three setups with different basis shapes:

only the mean shape, class-mean shapes and the learned
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Figure 3: Car type specific meanAPD of PopUp versus

FG3D with mean prior and class prior. Comparing to the

FG3D method, our method achieves lower meanAPD on

most car types. For the type of pickup truck, our method

significantly outperforms FG3D.

Accuracy

Method 40◦ per view 20◦ per view

VDPM 82.7% 71.3%

PopUp 89.3% 84.7%

Table 4: Coarse viewpoint estimation accuracy versus

VDPM evaluated on the FG3DCar dataset. Accuracies are

compared with two discretization schemes, 20 degrees per

coarse viewpoint and 40 degrees per coarse viewpoint.

0 10 20 30 40 50 60 70 80
Degree

Figure 4: Continuous viewpoint (azimuth) error comparing

to the groundtruth on all 150 test images in the FG3DCar

dataset. The mean error is 3.4 in degrees.

shape space (10 basis shapes). The middle column of Ta-

ble 3 shows the fitting error on selected discriminative land-

marks. The fitting error decreases when we use the shape

space instead of the mean shape or the class mean, which

validates the use of shape space to express intra-class shape

variation.

Since the selected discriminative landmarks are not iden-

tical to the landmarks provided in the FG3DCar dataset, we

also compare the meanAPD on the landmarks provided in

the dataset. Our method outperforms FG3D using the shape

space without knowing the class type. Note that, their de-

tectors are trained on the manually selected 64 landmarks

provided in the dataset while our detectors are trained on

the 52 automatic selected discriminative landmarks.

Although our objective is to optimize the projection er-

ror on the discriminative landmarks, the fitting error on the

dataset provided landmarks is also minimized. This shows
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Method Views bicycle bus car mbike

PopUp (ours) 4 42.6 49.3 29.8 39.9

8 33.2 36.7 27.4 24.4

16 16.9 40.7 21.4 16.6

24 13.0 31.5 16.0 11.3

VDPM[35] 4 41.7 26.1 20.2 30.4

8 36.5 35.5 23.5 25.1

16 18.4 46.9 18.1 16.1

24 14.3 39.2 13.7 10.1

Ghodrati et al.[10] 4 34.4 50.7 28.9 29.4

8 27.6 50.3 26.6 24.7

16 18.0 42.9 19.6 15.9

24 12.6 40.2 15.9 13.2

DPM-3D[30] 4 43.9 50.7 36.9 31.8

8 40.3 50.3 36.6 32.0

16 22.9 42.9 29.6 16.7

24 16.7 42.1 24.6 10.5

Table 5: Average (discrete) Viewpoint Accuracy on four

categories of PASCAL3D dataset.

the effectiveness of the landmark selection process. The er-

ror is reported on the same scale as FG3D. Figure 3 shows

the per class 3D model fitting error. Our method outper-

forms FG3D on most class types with particular success on

the pickup trucks.

Viewpoint Estimation We compare PopUp to VDPM in

discrete viewpoint estimation accuracy. For VDPM we train

two sets of baseline VDPM with coarse viewpoints (az-

imuth) of every 20 degrees and every 40 degrees for each

view. Each component of VDPM corresponds to a view-

point label. During inference, the viewpoint of the test car

instance is predicted as the training viewpoint of the max

scoring component. For PopUp, the estimated continuous

viewpoint is discretized in the same way as VDPM. Table

4 shows the comparison of the two methods. In both two

cases, PopUp outperforms VDPM. We further analyze the

estimation error of PopUp by looking at continuous view-

point estimation error and show that the majority error is

introduced by discretization. We compare our estimation

to the ground-truth viewpoint (azimuth) and report the ab-

solute angular value in Figure 4. The mean error over the

whole test set is only 3.4 in degree.

In addition to the quantitative evaluations, we show qual-

itative results on the test images from FG3DCar in Figure

6, where we project the 3D model wireframe with the esti-

mated pose and shape on to the image. We also show the

textured model rendered at novel views.

5.2. PASCAL3D Dataset

The PASCAL3D dataset augments a subset of PASCAL

dataset [7] with 3D models and pose annotations. PAS-

CAL3D consists of images captured under various natural

conditions. Occlusions and various object sizes cast great
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Figure 5: Precision recall curves for continuous viewpoint

estimation on four categories of PASCAL3D, occluded in-

stances are excluded. The horizontal axis is the tolerance of

viewpoint error to count a prediction as correct, in the range

of [0, π/4]. The vertical axis shows the precision.

challenges to 3D estimation. We validate our method on

four categories of PASCAL3D (test set): bicycle, bus, car

and motorbike. Both discrete and continuous viewpoint ac-

curacies are evaluated. Part Detectors are trained on the

PASCAL3D training set. We use the provided landmarks

and 3D models.

For discrete viewpoint accuracy, we compare Average

Viewpoint Accuracy to recently reported state-of-art results

on the benchmark [35, 10, 30]. We use VDPM as base de-

tector and estimate viewpoint within each detection hypoth-

esis and quantize our continuous viewpoint output into dis-

crete bins. Table 5 shows the accuracy of viewpoint pre-

diction with different quantization of the azimuth angle,

namely 4, 8, 16 and 24 views. Our results are compara-

ble on different categories. While our model-based method

performs well on larger objects, statistical learning based

approaches as [30] have advantages on small and heavily

occluded instances in terms of viewpoint prediction.

We evaluated the continuous viewpoint accuracy on

non-occluded instances within groundtruth bounding boxes.

Figure 5 shows the precision-recall curves for four cat-

egories as the viewpoint error tolerance changes within

[0, π/4]. We can observe that for bus and car the precision

increases quickly as the angular tolerance increases from 0

to 10 degrees, meaning that the majority angular errors are

less than 10 degrees. Bus and car outperform bicycle and

motorbike with our method because their landmarks have

larger appearance variation. Figure 7 shows qualitative re-

sults with estimated visible landmarks reprojected.

We break down the running time of our system on a

3.3Ghz Intel i7 CPU and an Nvidia TitanZ GPU as the fol-

lowing. Estimating a single object instance in a PASCAL3D

image (500x300 pixels) requires: 0.08 seconds building

HOG pyramid; 1.41 seconds in filters convolution; 3.76 sec-

onds in CNN classification and 1.52 seconds in ADMM.

933



Figure 6: Example 3D estimation results from FG3D Car are shown. In the first two rows, the 3D wire frame of the car model

is projected on the image with estimated pose and shape. Red solid lines represent visible wire frames and blue dotted lines

represent invisible wire frames. In the last row, the textured 3D reconstructions of the cars in the second row are rendered at

novel viewpoints. (We use symmetry to texture the invisible faces).

Figure 7: Examples of landmark localization results from different categories of PASCAL3D are shown in the first two rows.

Visible 3D landmarks are projected back to the image. The yellow dots are groundtruth locations and the green dots are the

estimation. The last row shows example pop-up results of different object classes.

6. Conclusion

We proposed a novel approach for estimating the pose

and the shape of a 3D object from a single image. Our ap-

proach is based on a collection of automatically-selected

and discriminatively-trained 2D parts with a 3D shape-

space model to represent the geometric relation. In model

inference, we simultaneously localized the parts, estimated

the pose, and recovered the 3D shape by solving a convex

program with ADMM.
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