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Abstract

This paper contributes a new high quality dataset for

person re-identification, named “Market-1501”. General-

ly, current datasets: 1) are limited in scale; 2) consist of

hand-drawn bboxes, which are unavailable under realistic

settings; 3) have only one ground truth and one query im-

age for each identity (close environment). To tackle these

problems, the proposed Market-1501 dataset is featured in

three aspects. First, it contains over 32,000 annotated b-

boxes, plus a distractor set of over 500K images, making

it the largest person re-id dataset to date. Second, im-

ages in Market-1501 dataset are produced using the De-

formable Part Model (DPM) as pedestrian detector. Third,

our dataset is collected in an open system, where each iden-

tity has multiple images under each camera.

As a minor contribution, inspired by recent advances

in large-scale image search, this paper proposes an un-

supervised Bag-of-Words descriptor. We view person re-

identification as a special task of image search. In exper-

iment, we show that the proposed descriptor yields com-

petitive accuracy on VIPeR, CUHK03, and Market-1501

datasets, and is scalable on the large-scale 500k dataset.

1. Introduction

This paper considers the task of person re-identification.

Given a probe image (query), our task is to search in a

gallery (database) for images that contain the same person.

Our work is motivated by two aspects. First, most exist-

ing person re-identification datasets [10, 44, 4, 13, 22, 19]

are flawed either in the dataset scale or data richness.

Specifically, the number of identities is often confined in

several hundred. This makes it infeasible to test the robust-

ness of algorithms under large-scale data. Moreover, im-

ages of the same identity are usually captured by two cam-

* Three authors contribute equally to this work.

Dataset and code are available at http://www.liangzheng.com.cn.

eras; each identity has one image under each camera, so the

number of queries and relevant images is very limited. Fur-

thermore, in most datasets, pedestrians are well-aligned by

hand-drawn bboxes (bboxes). But in reality, when pedes-

trian detectors are used, the detected persons may undergo

misalignment or part missing (Fig. 1). On the other hand,

pedestrian detectors, while producing true positive bbox-

es, also yield false alarms caused by complex background

or occlusion (Fig. 1). These distractors may exert non-

ignorable influence on recognition accuracy. As a result,

current methods may be biased toward ideal settings and

their effectiveness may be impaired once the ideal dataset

meets reality. To address this problem, it is important to

introduce datasets that reach closer to realistic settings.

Second, local feature based approaches [11, 40, 38, 3]

are proven to be effective in person re-identification. Con-

sidering the “query-search” mode, this is potentially com-

patible with image search based on the Bag-of-Words

(BoW) model. Nevertheless, some state-of-the-art meth-

ods in person re-identification rely on brute-force feature-

feature matching [39, 38]. Although good recognition rate

is achieved, this line of methods suffer from low compu-

tational efficiency, which limits its potential in large-scale

applications. In the BoW model, local features are quan-

tized to visual words using a pretrained codebook. An im-

age is thus represented by a visual word histogram weighted

by TF-IDF scheme. Instead of performing exhaustive visu-

al matching among images [39], in the BoW model, local

features are aggregated into a global vector.

Considering the above two issues, this paper makes t-

wo contributions. The main contribution is the collection of

a new person re-identification dataset, named the “Market-

1501” (Fig. 1). It contains 1,501 identities collected by 6

cameras. We further add a distractor set composed of 500K

irrelevant images. To our knowledge, Market-1501 is the

largest person re-id dataset featured by 32,668+500K bbox-

es and 3,368 query images. It is distinguished from exist-

ing datasets in three aspects: DPM detected bboxes, the in-

clusion of distractor images, and multi-query, multi-ground

truth per identity. This dataset thus provides a more real-
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Figure 1. Sample images of the Market-1501 dataset. All images are normalized to 128×64 (Top:) Sample images of three identities with

distinctive appearance. (Middle:) We show three cases where three individuals have very similar appearance. (Bottom:) Some samples of

the distractor images (left) as well as the junk images (right) are provided.

istic benchmark. For accuracy evaluation, we propose to

use mean average precision (mAP), a more comprehensive

measurement compared to the commonly used Cumulated

Matching Characteristics (CMC) curve [38, 39, 20].

As a minor contribution, inspired by the state-of-the-art

image search systems, an unsupervised BoW representation

is proposed. After generating a codebook on training data,

each pedestrian image is represented as a visual word his-

togram. In this step, a number of techniques are integrated,

e.g., root descriptor [2], negative evidences [14], burstiness

weighting [16], avgIDF [41], etc. Moreover, several further

improvements are adopted, i.e., weak geometric constraints,

Gaussian Mask, multiple queries, and reranking. By simple

dot product as similarity measurement, we show that the

proposed BoW representation yields competitive recogni-

tion accuracy while enjoying a fast response time.

2. Related Work

For person re-identification, both supervised and unsu-

pervised models have been extensively studied these years.

In discriminative models [28, 12, 7, 20, 3], classic SVM (or

the RankSVM [28, 40]) and boosting [11, 30] are popular

choices. For example, Zhao et al. [40] learn the weights of

filter responses and patch matching scores using RankSVM,

and Gray et al. [11] perform feature selection among an en-

semble of local descriptors by boosting. Recently, li et al.

[20] propose a deep learning network to jointly optimize all

pipeline steps. This line of works are beneficial in reduc-

ing the impact of multi-view variations, but require labo-

rious annotation, especially when new cameras are added

in the system. On the other hand, in unsupervised models,

Farenzena et al. [8] make use of both symmetry and asym-

metry nature of pedestrians and propose the Symmetry-

Driven Accumulation of Local Features (SDALF). Ma et

al. [25] employ the Fisher Vector to encode local features

into a global vector. To exploit the salience information a-

mong pedestrian images, Zhao et al. [38] propose to as-

sign higher weight to rare colors, an idea very similar to the

Inverse Document Frequency (IDF) [41] in image search.

This paper proposes an unsupervised method which is well-

adaptable to different camera networks.

On the other hand, the field of image search has been

greatly advanced since the introduction of the SIFT descrip-

tor [24] and the BoW model. In the last decade, a myriad of

methods [15, 42, 45] have been developed to improve search

performance. For example, to improve matching precision,

Jégou et al. [15] embed binary SIFT features in the inverted

file. Meanwhile, refined visual matching can also be pro-

duced by index-level feature fusion [42] between comple-

mentary descriptors. Since the BoW model does not consid-

er the spatial distribution of local features (also a problem

in person re-id), another direction is to model the spatial

constraints [45, 37]. Spatial coding [45] checks the geo-

metric consistency between images by the offset map, while

Zhang et al. [37] discover visual phrases to encode spatial

information. For ranking problems, an effective reranking

step typically brings about improvements. Liu et al. [23]

design a “one shot” feedback optimization scheme which

allows a user to quickly refine the search results. Zheng

et al. [43] propose to leverage the profile of the score list-

s to adaptively assign weights to various features. In [29],

the top-ranked images are used as queries again and final

score is the weighted sum of individual scores. When mul-

tiple queries are present [1], a new query can be formed

by average or max operations. This paper integrates sev-

eral state-of-the-art techniques in image search, yielding a

competitive person re-id system.

3. The Market-1501 Dataset

3.1. Description

In this paper, a new person re-id dataset, the “Market-

1501” dataset, is introduced. During dataset collection, a

total of six cameras were placed in front of a campus su-

permarket, including five 1280×1080 HD cameras, and one

720×576 SD camera. Overlapping exists among these cam-
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Datasets Market-1501 RAiD [5] CUHK03 [20] VIPeR [10] i-LIDS [44] OPeRID [22] CUHK02 [19] CAVIAR [4]

# identities 1,501 43 1,360 632 119 200 1,816 72

# BBoxes 32,668 6920 13,164 1,264 476 7,413 7,264 610

# distractors 2,793 + 500K 0 0 0 0 0 0 0

# cam. per ID 6 4 2 2 2 5 2 2

DPM or Hand DPM hand DPM hand hand hand hand hand

Evaluation mAP CMC CMC CMC CMC CMC CMC CMC
Table 1. Comparing Market-1501 with existing datasets [20, 10, 44, 22, 19, 4].

eras. This dataset contains 32,668 bboxes of 1,501 identi-

ties. Due to the open environment, images of each identity

are captured by at most six cameras. We make sure that

each annotated identity is captured by at least two cameras,

so that cross-camera search can be performed. Overall, our

dataset has the following featured properties.

First, while most existing datasets use hand-cropped b-

boxes, the Market-1501 dataset employs a state-of-the-art

detector, i.e., the Deformable Part Model (DPM) [9]. Based

on the “perfect” hand-drawn bboxes, current methods do

not fully consider the misalignment of pedestrian images, a

problem which always exists in DPM based bboxes. As is

shown in Fig. 1, misalignment and part missing are com-

mon among the detected images.

Second, in addition to the false positive bboxes, we also

provide false alarms. We notice that the CUHK03 dataset

[20] also uses the DPM detector, but the bboxes in CUHK03

are relatively good ones in terms of detector. In fact, a

large number of the detected bboxes would be very “bad”.

Considering this, for each detected bbox to be annotated, a

hand-drawn ground truth bbox is provided (similar to [20]).

Different from [20], for the detected and hand-drawn bbox-

es, the ratio of the overlapping area to the union area is cal-

culated. In our dataset, if the area ratio is larger than 50%,

the DPM bbox is marked as “good” (a routine in object de-

tection [9]); if the ratio is smaller than 20%, the DPM bbox

is marked as “distractor”; otherwise, the bbox is marked as

“junk” [27], meaning that this image is of zero influence to

re-id accuracy. Moreover, some obvious false alarm bbox-

es are also marked as “distractors”. In Fig. 1, examples of

“good” images are shown in the top two rows, while “dis-

tractor” and “junk” images are in the bottom row. These

images undergo extensive variations in pose, resolution, etc.

Third, each identity may have multiple images under

each camera. Therefore, during cross-camera search, there

may be multiple queries and multiple ground truths for each

identity. This is consistent with practical usage, especial-

ly where multiple queries can be fully exploited to obtain

more discriminative information about the person of inter-

est. In terms of performance evaluation, for a re-id system,

a perfect method should be able to locate all instances of the

query identity. In this sense, our dataset provides testbed for

methods applied in open systems.

Figure 2. Sample images of the distractor dataset.

3.2. A Distractor Dataset

We emphasize that scale is a vital problem for person

re-id studies. Therefore, we further augment the Market-

1501 dataset with an additional distractor set. This dataset

contains over 500,000 bboxes, consisting of false alarms on

the background, as well as pedestrians not belonging to the

1,501 identities. Sample images are shown in Fig. 2. In the

experiment, apart from the Market-1501 dataset, we will

also report the results on the enlarged Market-1501 + 500K

dataset.

A statistics comparison with existing datasets is shown in

Table 1. Our dataset contains 1,501 identities, which is low-

er than CUHK02 [19]. With respect to this point, we plan to

release version 2.0 to include more identities. The original

dataset contains 32,668 fully annotated bboxes, making it

the largest person re-id dataset to date. Since images con-

taining a pedestrian are annotated with a hand-drawn bbox

as well as an ID, this dataset can also be used for pedestri-

an detection. Moreover, our dataset is greatly enlarged by

the 500K distractor images, and efficiency/scalability anal-

ysis can be reliably done. Compared with other benchmark

datasets, Market-1501 is also featured by 6 cameras. In

place of a close-system with 2 cameras only, our dataset

serves as an ideal benchmark for metric learning methods,

so that their generalization capacities can be evaluated for

practical usages.

3.3. Evaluation Protocol

Current datasets typically use the Cumulated Matching

Characteristics (CMC) curve to evaluate the performance of

person re-id algorithms. The CMC curve shows the prob-

ability that a query identity appears in different-sized can-

didate lists. This evaluation measurement is valid only if

there is only one ground truth match for a given query (see
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Figure 3. A toy example of the difference between AP and CMC

measurements. True matches and false matches are in green and

red boxes, respectively. For all three rank lists, the CMC curve

remains 1. But AP = 1, 1, and 0.71, resp.

Fig. 3(a)). In this case, precision and recall are the same

issue. However, if multiple ground truths exist, the CMC

curve is biased because “recall” is not considered. For ex-

ample, CMC curves of Fig. 3(b) and Fig. 3(c) both equal

to 1, which fail to provide a fair comparison of the quality

between the two rank lists.

For Market-1501 dataset, there are on average 14.8

cross-camera ground truths for each query. Therefore, we

use mean average precision (mAP) to evaluate the overall

performance. For each query, we calculate the area under

the Precision-Recall curve, which is known as average pre-

cision (AP). Then, the mean value of APs of all queries, i.e.,

mAP, is calculated, which considers both precision and re-

call of an algorithm, thus providing a more comprehensive

evaluation. When average precision (AP) is used, rank lists

in Fig. 3(b) and Fig. 3(c) are effectively distinguished.

Our dataset is randomly divided into training and testing

sets, containing 750 and 751 identities, respectively. During

testing, for each identity, we select one query image in each

camera. Note that, the selected queries are hand-drawn, in-

stead of DPM-detected as in the gallery. The reason is that

in reality, it is very convenient to interactively draw a b-

box, which can yield higher recognition accuracy [20]. The

search process is performed in a cross-camera mode, i.e.,

relevant images captured in the same camera as the query

are viewed as “junk”. In this scenario, an identity has at

most 6 queries, and there are 3368 query images in total.

Queries of two sample identities are shown in Fig. 4.

4. Our Method

4.1. The Bag­of­Words Model

For three reasons, we adopt the Bag-of-Words (BoW)

model. First, it well accommodates local features, which

are indicated as effective by previous works [25, 38]. Sec-

ond, it enables fast global feature matching, instead of ex-

haustive feature-feature matching [40, 39, 3]. Third, by

quantizing similar local descriptors to the same visual word,

the BoW model achieves some invariance to illumination,

Figure 4. Sample query images. In Market-1501 dataset, queries

are hand-drawn bboxes. Each identity has at most 6 queries, one

for each camera.

Color Names Descriptor

Figure 5. Local feature extraction. We compute the mean CN vec-

tor for each 4×4 patch. Local features are quantized, and pooled

in a histogram for each horizontal stripe.

view, etc. We describe the individual steps below.

Feature Extraction. We employ the Color Names (CN)

descriptor [32]. Given a pedestrian image normalized to

128×64 pixels, patches of size 4×4 are densely sampled.

The sampling step is 4, so there is no overlapping between

patches. For each patch, CN descriptors of all pixels are

calculated, and are subsequently ℓ1 normalized followed by
√

(·) operator [2]. The mean vector is taken as the descrip-

tor of this patch (see Fig. 5).

Codebook. For Market-1501, we generate a codebook on

its training set. For other datasets, the codebook is trained

on the independent TUD-Brussels dataset [35]. Standard

k-means is used, so codebook size is k.

Quantization. Given a local descriptor, we employ Multi-

ple Assignment (MA) [15] to find its near neighbors under

Euclidean distance in the codebook. We set MA = 10, so a

feature is represented by the indices of 10 visual words.

TF-IDF. The visual word histogram is weighted by TF-IDF

scheme. TF encodes the number of occurrences of a visual

word, and IDF is calculated as log N
ni

, where N is the num-

ber of images in the gallery, and ni is the number of images

containing visual word i. In this paper, we use the avgIDF

[41] variant in place of the standard IDF.

Burstiness. Burstiness refers to the phenomenon where a

query feature finds multiple matches in a test image [16].

For CN descriptor, burstiness could be more prevalent due
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to its low discriminative power compared with SIFT. There-

fore, all terms in the histogram are divided by
√
tf .

Negative Evidence. Following [14], we calculate the mean

feature vector in the training set. Then, the mean vector is

subtracted from all test features. So the zero entries in the

feature vector are also taken into account with dot product.

Similarity Function. Given a query image Q and a gallery

image G, we calculate the dot product between their fea-

ture vectors. Note that, after normalized by l2-norm, dot

product is equivalent to Euclidean distance. In large-scale

experiments, Euclidean distance is employed for Approxi-

mate Nearest Neighbor algorithm [33].

4.2. Improvements

Weak Geometric Constraints. In person re-id, popular ap-

proaches on encoding geometric constraint include “Adja-

cency Constrained Search” (ACS) [38, 39]. This method

is effective in incorporating spatial constraints, but suffers

from high computational cost. Inspired by Spatial Pyramid

Matching [18], we integrate ACS into the BoW model. As

illustrated in Fig. 5, an input image is partitioned into M
horizontal stripes. Then, for stripe m, the visual word his-

togram is represented as dm = (dm
1
, dm

2
, ..., dmk )T , where k

is the codebook size. Consequently, the feature vector for

the input image is denoted as f = (d1,d2, ....,dM )T , i.e.

the concatenation of vectors from all stripes. When match-

ing two images, dot product sums up the similarity at all

corresponding stripes. Therefore, we avoid the expensive

computation on patch distances for each query feature.

Background Suppression. The negative impact of back-

ground distraction has been studied extensively [8, 38, 39].

In one solution, Farenzena et al. [8] propose to separate the

foreground pedestrian from background by segmentation.

Since the process of generating a mask for each image

is both time-consuming and unstable, this paper proposes a

simple solution by exerting a 2-D Gaussian template on the

image. Specifically, the Gaussian function takes on the form

of N(µx, σx, µy, σy), where µx, µy are horizontal and ver-

tical Gaussian mean values, and σx, σy are horizontal and

vertical Gaussian standard variances, respectively. We set

(µx, µy) to the image center, and set (σx, σy) = (1, 1) for

all experiments. This method assumes that the person lies

in the center of an image, and is surrounded by background.

Multiple Queries. The usage of multiple queries is shown

to yield superior results in image search [1] and re-id [8].

Because intra-class variation is taken into account, the al-

gorithm is more robust to pedestrian variations.

When each identity has multiple query images in a sin-

gle camera, instead of a multi-multi matching strategy [8],

we merge them into a single query for speed consideration.

Here, we employ two pooling strategies, i.e., average and

max pooling. In average pooling, the feature vectors of mul-

tiple queries are pooled into one by averaged sum; in max

pooling, the final feature vector takes the maximum value

in each dimension from all queries.

Reranking. When viewing person re-id as a ranking prob-

lem, a natural idea consists in the usage of reranking algo-

rithms. In this paper, we use a simple reranking method

which picks top-T ranked images of the initial rank list as

queries to search the gallery again. Specifically, given an

initial sorted rank list by query Q, image Ri which is the

ith image in the list is used as query. The similarity score

of a gallery image G when using Ri as query is denoted as

S(Ri, G). We assign a weight 1/(i + 1), i = 1, ..., T to

each top-i ranked query, where T is the number of expand-

ed queries. Then, the final score of the gallery image G to

query Q is determined as,

Ŝ(Q,G) = S(Q,G) +

T
∑

i=1

1

i+ 1
S(Ri, G), (1)

where Ŝ(Q,G) is the weighted sum of similarity scores ob-

tained by the original and expanded queries, and the weight

gets smaller as the expanded query is located away from the

top. This method departs from [29] in that Eq. 1 employs

the similarity value while [29] uses the reverse rank.

5. Experiments

5.1. Datasets

VIPeR dataset [10] is composed of 632 identities, and each

has two images captured from two different cameras. All

images are normalized to 128×48 pixels. VIPeR is ran-

domly divided into two equal halves, one for training, and

the other for testing. Each half contains 316 identities. For

each identity, we take an image from one camera as query,

and perform cross-camera search.

CUHK03 dataset [20] contains 13,164 DPM bboxes of

1,467 identities. Each identity is observed by two cameras

and has 4.8 images in average for each view. Following the

protocol in [20], for the test set, we randomly select 100 per-

sons. For each person, all the images are taken as query in

turns, and a cross-camera search is performed. The test pro-

cess is repeated 20 times. We report both the CMC scores

and mAP for VIPeR and CUHK03 datasets.

5.2. Important Parameters

Codebook size k. In our experiment, codebooks of various

sizes are constructed, and mAP on Market-1501 dataset is

presented in Table 2. We set k = 350 where the peak value

is achieved.

Number of stripes M . Table 3 presents the performance of

different numbers of stripes. As the stripe number increas-

es, a finer partition of the pedestrian image leads to a more

discriminative representation. So the recognition accuracy

increases, but recall may drop for a large M . As a trade-off
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Methods
Market-1501 VIPeR CUHK03

r = 1 mAP r = 1 r = 20 mAP r = 1 mAP

BoW 9.04 3.26 7.82 39.34 11.44 11.47 11.49

BoW + Geo 21.23 8.46 15.47 51.49 19.85 16.13 15.12

BoW + Geo + Gauss 34.38 14.10 21.74 60.85 26.55 18.89 17.42

BoW + Geo + Gauss + MultiQ avg 41.21 17.63 - - - 22.35 20.48

BoW + Geo + Gauss + MultiQ max 42.64 18.68 - - - 22.95 20.33

BoW + Geo + Gauss + MultiQ max + Rerank 42.64 19.47 - - - 22.95 22.70
Table 5. Results (rank-1, rank-20 matching rate, and mean Average Precision (mAP)) on three datasets by combining different methods, i.e.,

the BoW model (BoW), Weak Geometric Constraints (Geo), Background Suppression (Gauss), Multiple Queries by average (MultiQ avg)

and max pooling (MultiQ max), and reranking (Rerank). Note that, here we use the Color Names descriptor for BoW.

k 100 200 350 500

mAP (%) 13.31 14.01 14.10 13.82

r=1 (%) 32.20 34.24 34.38 34.14
Table 2. Impact of codebook size on Market-1501. We report re-

sults obtained by “BoW + Geo + Gauss”.

M 1 4 8 16 32

mAP (%) 5.23 11.01 13.26 14.10 13.79

r=1 (%) 14.36 27.53 32.50 34.38 34.58
Table 3. Impact of number of horizontal stripes on Market-1501.

We report results obtained by “BoW + Geo + Gauss”.

T 0 1 2 3 4 5

mAP (%) 18.68 19.47 19.20 19.16 19.10 19.04
Table 4. Impact of number of expanded queries on Market-1501.

T = 0 corresponds to “BoW + Geo + Gauss + MultiQ max”.

between speed and accuracy, we choose to split an image

into 16 stripes in our experiment.

Number of expanded queries T . Table 4 summarizes the

results obtained by different numbers of expanded queries.

We find that the best performance is achieved when T = 1.

When T increases, mAP drops slowly, which validates the

robustness to T . The performance of reranking highly de-

pends on the quality of the initial list, and a larger T would

introduce more noise. In the following, we set T to 1.

5.3. Evaluation

BoW model and its improvements. We present results

obtained by BoW, geometric constraints (Geo), Gaussian

mask (Gauss), multiple queries (MultiQ), and reranking (R-

erank) in Table 5 and Fig. 6.

First, the baseline BoW vector produces a relatively low

accuracy: rank-1 accuracy = 9.04%, 10.56%, and 5.35% on

Market-1501, VIPeR, and CUHK03 datasets, respectively.

Second, when we integrate geometric constraints by

stripe matching, we observe consistent improvement in ac-
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(b) CUHK03

11.47% BoW,                mAP = 11.49%

16.13% +Geo,               mAP = 15.12%

18.89% +Gauss,           mAP = 17.42%

22.95% + MultiQ_max, mAP = 20.33%

Figure 6. Performance of different method combinations on

VIPeR and CUHK03 datasets.

curacy. On Market-1501 dataset, for example, mAP in-

creases from 3.26% to 8.46% (+5.20%), and an even larg-

er improvement can be seen from rank-1 accuracy, from

9.04% to 21.23% (+12.19%).

Third, it is clear that the Gaussian mask works well on

all three datasets. We observe +5.64% in mAP on Market-

1501 dataset. Therefore, the prior that pedestrian is roughly

located in the center of the image is statistically sound.

Then, we test multiple queries on CUHK03 and Market-

1501 datasets, where each query identity has multiple bbox-

es. Results suggest that the usage of multiple queries further

improves recognition accuracy. The improvement is more

prominent on Market-1501 dataset, where the query images

take on more diverse appearance (see Fig. 4). Moreover,

multi-query by max pooling is slightly superior to average

pooling, probably because max pooling gives more weights

to the rare but salient features and improves recall.

Finally, we observe from Table 4 and Table 5 that r-

eranking generates higher mAP. Nevertheless, one recurrent

problem with reranking is the sensitivity to the quality of

initial rank list. On Market-1501 and CUHK03 datasets, s-

ince a majority of queries DO NOT have a top-1 match, the

improvement in mAP is relatively small.

Results between camera pairs. To further understand the

Market-1501 dataset, we provide the re-id results between

all camera pairs in Fig. 7. We use the ”BoW+Geo+Gauss”
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Figure 7. Re-id performance between camera pairs on Market-

1501: (a) mAP and (b) rank-1 accuracy. Cameras on the vertical

and horizontal axis are probe and gallery, respectively. The cross-

camera average mAP and average rank-1 accuracy are 10.51% and

13.72%, respectively.
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Figure 8. Comparison with the state-of-the-arts on VIPeR. We

combine HS and CN features, and the eSDC method.

representation. It is easy to tell that re-id within the same

camera yields the highest accuracy. On the other hand, as

expected, performance among different camera pairs varies

a lot. For camera pairs 1-4 and 3-5, the BoW descriptor

generates relatively good performance, mainly because the

two camera pairs share more overlap. Moreover, camera 6

is a 720×576 SD camera, and captures distinct background

with other HD cameras, so re-id accuracy between camera

6 and others are quite low. Similarly low result can be ob-

served between camera pairs 5-1 and 5-2. We also compute

the cross-camera average mAP and average rank-1 accura-

cy: 10.51% and 13.72%, respectively. We weight mAPs

between different camera pairs according to their number

of queries, and do not calculate the results on the diago-

nals. Compared with the ”BoW+Geo+Gauss” line in Table

5, both measurements are much lower than pooling images

in all cameras as gallery. This indicates that re-id between

camera pairs is very challenging on our dataset.

Comparison with the state-of-the-arts. We compare our

Methods
CU03

r = 1

SDALF [8] 4.87

ITML [6] 5.14

LMNN [34] 6.25

eSDC [39] 7.68

KISSME [17] 11.70

FPNN [20] 19.89

BoW 18.89

BoW (MultiQ) 22.95

BoW (+HS) 24.33

Methods
Market-1501

r = 1 mAP

gBiCov [26] 8.28 2.23

HistLBP [36] 9.62 2.72

LOMO [21] 26.07 7.75

BoW 34.38 14.10

+LMNN [34] 34.00 15.66

+ITML [6] 38.21 17.05

+KISSME [17] 39.61 17.73

BoW (MultiQ) 42.64 19.47

BoW (+HS) 47.25 21.88
Table 6. Method comparison on CUHK03 and Market-1501.

Stage SDALF [8] SDC [8] Ours

Feat. Extraction (s) 2.92 0.76 0.62

Search (s) 2644.80 437.97 0.98
Table 7. Average query time of different steps on Market-1501

dataset. For fair comparison, Matlab implementation is used.

results with the state-of-the-art methods in Fig. 8 and Table

6. On VIPeR (Fig. 8), our approach is superior to two un-

supervised methods, i.e., eSDC [39], SDALF [8]. Specif-

ically, we achieve a rank-1 identification rate of 26.08%

when two features are used, i.e., Color Names (CN) and

HS Histogram (HS). When eSDC [39] is further integrated,

the matching rate increases to 32.15%.

On CUHK03, our method without multiple-query signif-

icantly outperforms almost all presented approaches. Com-

pared with FPNN [20] which builds a deep learning archi-

tecture, our accuracy is slightly lower by 1.00%. But when

multiple-query and HS feature are integrated, rank-1 match-

ing rate exceeds [20] by +4.44% on CUHK03 dataset.

On Market-1501, we compare with state-of-the-art de-

scriptors including HistLBP [36], gBiCov [26], and LOMO

[21]. The proposed BoW descriptor clearly outperforms

these competing methods. We then apply various metric

learning methods [34, 6, 17] on BoW (after PCA to 100-

dim). Instead of pairwise training (can be expensive under

large camera networks [31]), we take all positive and nega-

tive pairs in 6 cameras as training samples. We observe that

metric learning brings decent improvement.

Some sample results on Market-1501 dataset are provid-

ed in Fig. 9. Apart from the mAP increase with the method

evolution, another finding which should be noticed is that

the distractors detected by DPM on complex background or

body parts severely affect re-identification accuracy. Previ-

ous works typically focus on “good” bounding boxes with

person only, and rarely study the detector errors.

Large-scale experiments. First, on Market-1501, we com-

pare our method with SDALF [8] and SDC [39] in two as-

pects, i.e., feature extraction and search time. We use the

Matlab implementation by the authors and for fair compar-

ison, run our algorithm in Matlab too. Evaluation is per-

1122



Query

Multi. Queries

BoW

AP = 0.47%

+Geo+Gauss

AP = 10.12%

+MultiQ_max

AP = 38.56%

+Rerank

AP = 70.03%

Figure 9. Sample results on Market-1501 dataset. Four rows correspond to four configurations, i.e., “BoW”, “BoW + Geo + Gauss”, “BoW

+ Geo + Gauss + MultiQ”, and “BoW + Geo + Gauss + MultiQ + Rerank”. The original query is in blue bbox, and the added multiple

queries are in yellow. Images with the same identity as the query is in green box, otherwise red.
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Figure 10. mAP (a) and query time (b) in Market-1501+500K

dataset. Dashed lines are obtained by exact NN search, while solid

lines represent ANN search.

formed on a server with 2.59 GHz CPU and 256 GB memo-

ry, and efficiency results are shown in Table 7. We report the

total timing by HS (we extract a 20-dim HS histogram and

generate another BoW vector for fusion with CN) and CN

features for our method. Compared with SDC, we achieve

an efficiency gain of over two orders of magnitude. For S-

DALF, three features are involved, i.e., MSCR, wHSV, and

RHSP. The feature extraction time is 0.09s, 0.03s, 2.79s, re-

spectively; the search time is 2643.94s, 0.66s, and 0.20s,

respectively. Therefore, our method is faster than SDALF

by three orders of magnitude.

Then, we experiment on the Market-1501+500K dataset.

Images in the 500K dataset are treated as outliers. For ef-

ficiency, we use the Approximate Nearest Neighbor (ANN)

algorithm proposed in [33]. During index construction, we

build 4 kd-trees, and store 50 neighbors for each datum in

the knn-graph. The number of neighbors returned is 1000

for both NN and ANN (so mAP of NN is slightly lower than

reported in Table 5).

Re-id performance on the large-scale dataset is presented

in Fig. 10. As the database gets larger, accuracy drops. On

Market-1501+500K dataset, when ANN is used, an mAP of

10.92% is achieved for “BoW + MultiQ max”. Compared

with result on the original dataset, a relative drop of 69.7%

is observed. As a result, database size has a significant-

ly negative effect on performance, which has been rarely

discussed in literature. Moreover, although ANN marginal-

ly decreases re-id accuracy, the benefit it brought obvious.

With ANN, query time is 127.5ms on the 500K dataset, a

50x speedup compared with the NN case.

6. Conclusion

This paper firstly introduces a large-scale re-id dataset,

Market-1501 (+500k), which reaches closer to realistic set-

tings. Then, a BoW descriptor is proposed in the attempt

to bridge the gap between person re-id and image search.

The new dataset will enable research possibilities in multi-

ple directions, e.g., deep learning, large-scale metric learn-

ing, multiple query techniques, search reranking, etc. In the

future, current test data will be treated as validation set, and

new test IDs will be annotated and presented in a coming

person re-id challenge.
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