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Abstract

We propose two novel minimal solvers which advance

the state of the art in satellite imagery processing. Our

methods are efficient and do not rely on the prior existence

of complex inverse mapping functions to correlate 2D im-

age coordinates and 3D terrain. Our first solver improves

on the stereo correspondence problem for satellite imagery,

in that we provide an exact image-to-object space map-

ping (where prior methods were inaccurate). Our second

solver provides a novel mechanism for 3D point triangu-

lation, which has improved robustness and accuracy over

prior techniques. Given the usefulness and ubiquity of satel-

lite imagery, our proposed methods allow for improved re-

sults in a variety of existing and future applications.

1. Introduction

Commercial satellite imagery, captured on a variety of

hardware platforms, has become widely available by multi-

ple vendors. It is a valuable source of information and has

received much attention by the computer vision community.

For instance, it has driven work on geo-localization [20],

meteorological and oceanographic forecasts [19], urban

change detection [24], and road detection [25].

To effectively leverage this imagery, the relationship be-

tween the underlying 3D scene geometry and its 2D image

has to be known. This is typically provided by a camera

model. However, defining a precise physical camera model

is complicated due to the complex hardware configuration

and the capture process. It is standard practice to construct

an approximation to the mapping between the 3D object

space and the image.

The representation that has been used to approximate

this mapping for over two decades is the Rational Poly-

nomial Coefficient (RPC) model. It was first introduced

by Hartley and Saxena [14] and greatly contributed to the

thriving of satellite imagery applications. The primary rea-

son for its success is its ability to maintain the full accuracy

of physical sensor models, its unique characteristic of sen-

sor independence, and its real-time calculation [18]. It is
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Figure 1: The two problems solved in our paper.

included in the standards of the NITF image format [1], and

is available from most satellite image vendors [2].

However, one challenge faced by many works utilizing

satellite imagery and the RPC model is that the bidirec-

tional mapping between the 3D object and 2D image spaces

may be unknown. Specifically, vendors supplying the satel-

lite imagery may only provide the one-directional mapping

function from the 3D object space to 2D image (known as

a forward RPC model). The inverse mapping, termed the

inverse RPC model, utilizes 2D image coordinates and an

associated altitude in order to infer the resulting 3D coordi-

nate. Approaches attempting to solve for this inverse map-

ping often lack accuracy [31]. In this work, we propose two

novel high-accuracy minimal solvers (see Fig. 1) for use

with satellite imagery only requiring the forward RPC.

The first minimal solver for the inverse mapping targets

the domain of extracting depth information from pairs of

satellite images (stereo). Previous works have explored this

domain [11, 10, 18], but suffer from various limitations.

For instance, a typical approach relying on volumetric mod-

els can have high memory requirements [5]. Furthermore,

recent image-to-image approaches rely on the existence of

an inverse RPC model, which may be missing or inaccu-

rate [15, 26, 30]. Our approach avoids these issues by

proposing an efficient minimal solver, which bypasses the

issue of explicitly constructing a single inverse RPC model

for the entire image. Instead, each coordinate is processed

independently, providing a highly-accurate inverse mapping

conforming to the provided forward RPC model.
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The second novel minimal solver targets the application

of 3D point triangulation. In typical computer vision ap-

plications, 3D point triangulation is the task of finding the

optimal 3D point position given correspondences among

feature points in calibrated images. However, triangula-

tion under the forward RPC model is much more difficult,

mainly due to the increased complexity of the camera model

[29]. Moreover, since no explicit epipolar constraints exist

for the RPC camera model, feature mismatches cannot be

easily detected and removed. Our approach solves these is-

sues by first proposing an effective strategy for a minimal

solver based triangulation under the forward RPC model,

and then by making the observation that only three of the

four coordinates in a correspondence are needed to solve

the equations. The fourth coordinate can then be used both

for robustness (enabling us to reject false matches), as well

as for refinement (leveraging redundant information). This

is novel compared to typical triangulation schemes, and we

demonstrate the usefulness and effectiveness of this strategy

in our results.

Given the usefulness and ubiquity of satellite imagery

and the RPC model, our proposed methods allow for im-

proved results in a variety of existing and future applica-

tions. For low-level problems and stereo computations, our

exact image-to-object space mapping increases the accuracy

of 3D reconstructions. For high-level tasks, we provide im-

proved feature matching and outlier rejection mechanisms

to improve the results.

2. Related Work

Most applications leveraging satellite imagery for recon-

struction and analysis require a known camera model in or-

der to correctly function. A popular technique to provide

the required camera calibration is the RPC model [14]. Af-

ter its introduction, Tao et al. [28] studied the characteristics

of the RPC model and proposed an iterative approximation

solution to estimate RPC models from the physical sensor

model or using ground control points. Hu et al. [17] pro-

posed to exploit control information to further improve the

accuracy of the solution for RPC models. To further boost

accuracy, Dial et al. [9] leverage bundle adjustment to refine

the the RPC coefficients. All of the above methods provide

numerical approximations to the RPCs for satellite imagery.

However, numerical stability is and was a major challenge

in these solutions, which had typically been mitigated by

leveraging additional information such as sensor character-

istics or ground control points [28, 9]. In this paper we pro-

pose a solution to achieve a numerically stable and accurate

solution to determine the image-to-object-space mapping

given an RPC model describing the object-to-image-space

transformation.

Once the RPC model is known, computer vision and

photogrammetry applications have leveraged them in a va-

riety of applications. For instance, given a pair of match-

ing features from two stereo satellite images, Tao et al.

[29] reconstruct the corresponding approximate 3D point

by an iterative approach that relies on the first-order Tay-

lor approximation of the RPC model. However, lacking a

rigorous analytical convergence proof and outlier removal

mechanisms, the automatic processing of satellite images is

impeded. Several other approaches also provide methods

to perform dense stereo reconstruction from satellite im-

ages [8, 16, 12, 26]. Hirschmüller [15] used an approxi-

mation of global optimization to efficiently solve the dense

stereo problem. Oh et al. [26] rectify the satellite images

by approximating the epipolar curve with piecewise straight

lines, and then search for correspondences along the line

of the rectified images using normalized cross correlation

measures. It is unclear if the linear approximations work

for images with large distortions. Additionally, this method

also requires that the inverse RPC parameters are available.

Wang et al. [30] efficiently compute depthmaps of large

satellite images by testing a reduced set of disparity hy-

potheses for each pixel. These methods are very effective

when handling high-resolution satellite images, but a bi-

directional mapping is required for such methods to work.

We propose a novel minimal solver to accurately establish

this bi-directional mapping.

3. RPC model

There are two broadly used classes of sensor models, the

physical sensor model and the generalized sensor model.

The physical sensor model deduces the imaging character-

istics from the physical imaging process of the specific sen-

sor used for acquisition. The parameters describe the posi-

tion and orientation of the sensor with respect to an object-

space coordinate system. These physical sensor models typ-

ically yield high modeling accuracy when used for map-

ping. However, the physical models across different satel-

lites may vary significantly and do not provide a decent gen-

eralization. Accordingly, image analysis algorithms often

have to be tailored for the specific satellite.

To overcome this limitation of specificity and to achieve

generalization across sensor platforms (satellites), general-

ized sensor models were proposed. In the generalized sen-

sor model, the transformation between the image and the

object space is represented as a general mapping function

without modeling the specific physical imaging process of

the satellite. There are a number of common representa-

tions of the mapping function, for instance polynomials or

rational functions. In either of these models, the parameters

do not carry any physical meanings related to the imaging

process as is the case for the physical sensor models, so the

algorithms are fixed and can be directly apply across differ-

ent satellites. Utilizing the RPC model to replace physical

sensor models in photogrammetric mapping is becoming a
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standard way for accurate, economical, and fast mapping.

Next, we describe the RPC model in detail.

To boost accuracy, the RPC model typically operates in

a normalized space. The normalization functions, for the

unnormalized object space coordinates X̃ , Ỹ , and Z̃, are

denoted as ΦX , ΦY , and ΦZ , given by:

X = ΦX(X̃) = (X̃ −Xo)/Xs,

Y = ΦY (Ỹ ) = (Ỹ − Yo)/Ys,

Z = ΦZ(Z̃) = (Z̃ − Zo)/Zs, (1)

with Xo, Yo, and Zo denoting the offset of object coordi-

nates, and Xs, Ys and Zs representing the corresponding

scale factors for the coordinate directions. Similarly, the

image coordinates are normalized through:

r = (r̃ − ro)/rs, c = (c̃− co)/cs, (2)

with r denoting the normalized row coordinate of the im-

age and c the normalized column in the image, and ro, co
being the offsets of the image coordinates. The scale fac-

tors for the image coordinates are denoted by rs, cs. The

normalization parameters are set to makes sure that the 3D

region covered by the satellite image has normalized coor-

dinates within the cube of [−1, 1] × [−1, 1] × [−1, 1], and

that the normalized image coordinates are within the range

of [−1, 1] × [−1, 1]. There parameters are provided by the

satellite image vendors with the RPC model. For conve-

nience, we denote M = (X,Y, Z), M̃ = (X̃, Ỹ , Z̃), and

the 3D point normalization as M = Φ(M̃).
Then, the forward RPC model relates the normalized ob-

ject coordinates X,Y, Z to the normalized image coordi-

nates (r, c):

r =
P 1(X,Y, Z)

P 2(X,Y, Z)
, c =

P 3(X,Y, Z)

P 4(X,Y, Z)
, (3)

with the P i, i = 1, 2, 3, 4 being polynomials of degree

three. Also, notice that in Eq. (3) the row and column of

the image coordinates are independently computed. The

P i, i = 1, 2, 3, 4 are of the form (superscript i is omitted

for simplicity)

P = a0 + a1X + a2Y + a3Z + a4XY + a5XZ

+ a6Y Z + a7X
2 + a8Y

2 + a9Z
2 + a10XY Z

+ a11X
2Y + a12X

2Z + a13XY 2 + a14Y
2Z

+ a15XZ2 + a16Y Z2 + a17X
3 + a18Y

3 + a19Z
3,
(4)

where aj , j = 0, . . . , 19 are the polynomial coefficients.

It is understood that distortions caused by the optical pro-

jection during the satellite image capture can generally be

represented by the ratios of first-order terms of the P i. Cor-

rections such for the earth curvature, the atmospheric re-

fraction, etc., can be well approximated by the second-order

terms. Additional unmodeled distortions are approximated

through the high-order components, where one example of

these distortions is the camera vibration that can be mod-

eled by the third-order terms [28]. Typically, the low-order

monomial terms in Eq. (4) have a significantly larger coef-

ficients than high-order monomials.

The inverse RPC model performs image-to-space trans-

formation. Given the input of the normalized row and col-

umn (r, c), and the normalized altitude Z of the correspond-

ing 3D point, it computes associated X and Y . The model

is almost the same to that of forward RPC model as follows,

X =
P 5(r, c, Z)

P 6(r, c, Z)
;Y =

P 7(r, c, Z)

P 8(r, c, Z)
; (5)

where P i, i = 5, 6, 7, 8 has the form of polynomial as in

Eq. (4). While some satellite image vendors deliver both the

forward and the inverse RPC model with their data, most of

them only provide the forward RPC model. We also find es-

timating the inverse RPC model is difficult without detailed

knowledge of the sensor and/or ground control points. In

the remainder of this paper, we use the term RPC model to

represent forward RPC model since we assume the inverse

RPC is unknown.

4. Inverse mapping

This section proposes the parameterizations of the in-

verse mapping, a minimal solver based on a polynomial

equation system, and our proposed solution using the

Gröbner basis method. We close the discussion with the

application of the novel minimal solver to stereo estimation.

4.1. Inverse Mapping Parameterization

Unlike traditional methods that explicitly model the in-

verse mapping and estimate its parameters, our method

maps each individual point without any assumption about

the model of the inverse mapping (inverse RPC).

To compute the inverse mapping, we rewrite the RPC

mapping from Equation (3) as:
{

P 1(X,Y, Z)− rP 2(X,Y, Z) = 0
P 3(X,Y, Z)− cP 4(X,Y, Z) = 0

(6)

which defines a polynomial equation system. Assuming a

known normalized altitude Z and after expanding each of

P i in Eq. (6), we can obtain a polynomial equation system

of two equations. Each has degree three in the unknown

variables X and Y . Using computational algebra software

(e.g. Maple or Macaulay2 [13]) it can be confirmed that the

equation system of Eq. (6) has up to nine solutions. Next,

we describe the Gröbner bases method for our solution.

4.2. Solving polynomial equations

In order to solve the polynomial equation system of

Eq. (6), we leverage the Gröbner basis method which has
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Figure 2: The Gröbner basis method for inverse mapping problem. The black dots represent non-zero values. The value of

the three rows in the action matrix is obtained from the three rows in figure (b).

achieved great success in solving minimal problems en-

countered in computer vision [27, 23]. From the existing

standard approaches [4, 22, 27, 3], we opt to use the effi-

cient and accurate method proposed by Kukelova et al. [22]

as we empirically found it to produce very accurate results.

Solving a polynomial equation system typically involves

two steps. The first step is an offline process in which the

specific behavior of the problem is studied, and a pattern

for the solution is determined. The second step, an online

process, uses the determined pattern to set up and solve the

problem for a given input.

Starting with the offline process, it consists of two main

parts. In the first part, the problem (Eq. (6)) is mod-

eled in a computer algebra software package (such as

Macaulay2 [13]). We then leverage the built-in functions

of the software package to first compute the Gröbner bases,

and then the bases of the quotient ring (which in turn de-

fines the number of solutions to our problem). During this

computation, in order to avoid issues of numerical preci-

sion, the problem is represented using a finite field (which

uses fixed, discrete values instead of a floating-point rep-

resentation). For these computations, we use the GrevLex

as the monomial ordering, as this typically results in fewer

overall computations compared to other alternative ordering

schemes (such as lexicographic) [7].

The second part of the offline process seeks to construct

a modified set of polynomial equations that can be used for

action matrix construction. In order to achieve this, we first

construct an elimination template (e.g. Fig. 2a) which rep-

resents our initial equations (the first two rows of the tem-

plate correspond to Eq. (6)). Here, the polynomial equa-

tions are represented as MX = 0, where X is a vector

of monomial terms, and M is a matrix of polynomial co-

efficients (the elimination template [3]). Given these ini-

tial equations, we then multiply them by various monomial

terms, yielding additional entered rows in the elimination

template. The purpose of these additional entries is to en-

able the successful construction of an action matrix in a fol-

lowing step. Given the elimination template, we then per-

form Gauss-Jordan elimination to reduce the matrix to ech-

elon form. Once in echelon form, the matrix has certain

properties which enable the construction of an action ma-

trix by leveraging the bases of the quotient ring computed

above. The exact method, properties, and theory for how

to construct the elimination template and action matrix are

complex and beyond the scope of this paper. Therefore, we

refer readers to [7, 22, 23] for more details.

By successfully constructing the action matrix, we now

have a pattern for how the original set of equations can

be solved. The online portion of the processing now uti-

lizes actual input values to form the elimination template,

perform Gauss-Jordan elimination, and construct the action

matrix. Then, the final numerical solutions to the polyno-

mial equations can be computed from the eigenvectors of

the action matrix. As much of this process has been de-

tailed before [7, 22, 23], we now only provide the details of

the offline procedures for our specific problem.

For our inverse mapping problem, the polynomial

equation system consists of two polynomials, with each

containing 10 monomials (Eq. (6)). The polynomial

equations are multiplied by the following monomials

{X,Y,X2, XY, Y 2}, and the resulting equations are added

to form the elimination template (Fig. 2a). Then, the eche-

lon form of the elimination template is computed by Gauss-

Jordan elimination (Fig. 2b), and the action matrix is con-

structed. Here, the negated values of row 6, 10 and 12 in

Fig. 2b are used for action matrix construction as shown in

Fig. 2c. After constructing the action matrix, the 7th and 8th

elements of the eigenvectors are the solutions of the poly-

nomial equation system.

4.3. Inverse mapping in stereo

After describing how to solve for the inverse mapping,

we next detail its usage within the context of stereo estima-
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tion for a pair of stereo images I1 and I2. For convenience

of notation, we use the subscript 1 and 2 to denote the asso-

ciated properties for I1 and I2.

In traditional image based stereo for pinhole cameras,

it is known that points corresponding to point p1 in the

first image I1 can only be found along the corresponding

epipolar line l2(p1) in the second image I2. The epipo-

lar line l2(p1) effectively represents the depth ambiguity

of the point p1 in the second image I2, i.e. the position

along the line corresponds to the depth of the point. Hav-

ing this reduction to a one-dimensional search space (epipo-

lar line) significantly reduces the computational expense of

the stereo estimation. Leveraging the inverse mapping in

combination with the RPC model, we are also able to es-

tablish a one dimensional search space for image-to-image

stereo from satellite images. In contrast to the pinhole cam-

era model that has an epipolar line, the satellite images have

epipolar curves with unknown analytical formulation [26].

However, using the inverse RPC mapping we can still nu-

merically identify the epipolar curve in the second image.

Starting from an image point (r̃1, c̃1) in pixel coordi-

nates, we first apply the image point normalization of Eq.

(2) to obtain the normalized point (r1, c1) in the first satel-

lite image. To explore the ambiguity space for the normal-

ized altitude Z1 of the corresponding object point, we can

sample the normalized altitude in the range [−1, 1] (Sec. 3).

For each specific sample Ẑi
1
, the inverse mapping can be ap-

plied to compute the corresponding normalized 3D object

point M̂1 = (X̂i
1
, Ŷ i

1
, Ẑi

1
). The set of samples {Ẑi

1
} defines

a curve in the object space corresponding to the depth ambi-

guity of the image point (r̃1, c̃1). After de-normalizing from

the normalized 3D points M̂ i
1

to real object space, apply the

normalization of the second image and the RPC model of

I2 to compute the 2D point (r̂i
2
, ĉi

2
) on I2. In practice we

adjust the sampling rate to produce a sub-pixel sampling in

the second satellite image. Fig. 3a shows a 2D point and

its corresponding epipolar curve for a pair of stereo satellite

images. The particular epipolar curve in Fig. 3b is close to a

line, but epipolar curves generally show different curvatures

in different parts of the image. As in the case of standard

stereo estimation, the limited altitude range further short-

ens the epipolar curve in the second image. This leads to a

further reduced search space in the second satellite image.

5. Triangulation

We now describe our method for robust satellite sparse

point triangulation, which allows us to efficiently remove

outlier correspondences during feature triangulation. We

address the problem of obtaining the normalized 3D point

from a pair of correspondences with normalized coordinates

(r1, c1) in image I1 and (r2, c2) in image I2 with known

RPC models. Our key observation is that it is sufficient to

use three out of the four coordinate values to triangulate the

(a) (b)

Figure 3: The yellow point on the left image and its corre-

sponding blue epipolar curve on the right image. The white

rectangle is the region of feature candidates for matching.

3D point. Hence, the last coordinate value can be used for

correspondence verification. Without loss of generality, we

use r1, c1 and r2 for triangulation, and c2 for verification.

For a 3D point (X̃, Ỹ , Z̃) in the real object space that is

observed by I1 and I2, and given the known RPC models

(Eq. (3)) for images I1 and I2, we can construct the follow-

ing polynomial equation system





P 1

1
(ΦX

1
,ΦY

1
,ΦZ

1
)− r1P

2

1
(ΦX

1
,ΦY

1
,ΦZ

1
) = 0

P 3

1
(ΦX

1
,ΦY

1
,ΦZ

1
)− c1P

4

1
(ΦX

1
,ΦY

1
,ΦZ

1
) = 0

P 1

2
(ΦX

2
,ΦY

2
,ΦZ

2
)− r2P

2

2
(ΦX

2
,ΦY

2
,ΦZ

2
) = 0,

(7)

where ΦX , ΦY and ΦZ are the known normalization func-

tions for the point in the object space given by Eq. (1).

Eq. (7) defines a system of three polynomial equations, and

each of the polynomial has degree 3 in the unknown vari-

ables X̃ , Ỹ and Z̃. Similarly to the inverse mapping, Eq. (7)

has in general up to 27 solutions, some of which have real

values. Solving Eq. (7) again uses the framework of the

Gröbner basis as briefly described below.

Solving the polynomial equation system for triangula-

tion is similar to that of inverse mapping, but slightly more

complicated. The original 3 polynomials are multiplied

by all the 34 monomials in variables {X̃, Ỹ , Z̃} of de-

grees from 1 up to 4, and added to the original 3 equa-

tions. The number of total equations is 35 ∗ 3 = 105, but

within which only 93 are linearly independent. By choos-

ing 93 linearly independent equations, we have the elim-

ination template of size 93 × 120 (Fig. 4a). After com-

puting the echelon form (Fig. 4b), the negated values in

the submatrix from the rows {36, 62, 63, 78, 79, 80, 89} and

columns {64, 83—85, 95—100, 104—120} are used in row

{1—3, 5—7, 11} of the action matrix (Fig. 4c). The 24th,

25th, and 26th elements of the eigenvectors of the action

matrix are solutions to the polynomial equation system.

After estimating the 3D object point M̃∗, we next need

to evaluate the obtained solution leveraging the remaining

742



1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

91

86

81

76

71

66

61

56

51

46

41

36

31

26

21

16

11

 6

 1

(a) Elimination template of size 93× 120
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(b) Elimination template in Echelon form
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(c) Action matrix

Figure 4: The Gröbner basis method for triangulation problem. The eliminate template shapes may vary depending on which

linearly independent equations are chosen, but the shape of the echelon form is fixed.

point coordinate c̃2. During this, c̃2 acts as a role to remove

the outlier correspondences and the fake real solutions of

the polynomial equation system. The estimated 3D point

M̃∗ = (X̃∗, Ỹ ∗, Z̃∗) is projected onto I2 to compute the

column c̃2
∗

. If the distance d̃∗ = |c̃2− c̃∗
2
| is below a prede-

fined threshold (e.g. 2 pixels in our experiments), the cor-

respondence is considered to be correct. Since Eq. (7) gen-

erates multiple real valued solutions, each real valued solu-

tion is tested for correctness. If none of the solutions pass

the test, the 2D match is considered to be an outlier. For

correct matches (inlier), typically only one solution passes

the inlier test. Whenever multiple solutions pass the test, we

accept the one with the smallest distance d̃∗.

Beyond serving for validation, the redundancy during the

triangulation can also be used to further refine the estimated

3D point M̃∗ starting from the obtained solution. We pro-

pose to determine the refined 3D point by minimizing the

projection error in both images through

min
M̃

2∑

i=1

||
P 1

i (Φi(M̃))

P 2

i (Φi(M̃))
− ri||

2

2
+ ||

P 3

i (Φi(M̃))

P 4

i (Φi(M̃))
− ci||

2

2
,

(8)

where Φi are the normalization functions. We leverage the

Levenberg-Marquardt algorithm to perform the minimiza-

tion of the non-linear cost function.

Triangulation requires estimating the correspondences

from image features in two images. Since the satellite im-

ages are typically huge and contain millions of features, it is

inappropriate to exhaustively compute the pairwise distance

between every two features. Not only this is computation-

ally expensive, but also the feature descriptor is less distinc-

tive in presence of millions of features. To tackle this prob-

lem, we use the observation that the epipolar curve typically

covers a small region of the satellite image. For the feature

point shown in Fig. 3a, we only search within the white

rectangle for correspondence (Fig. 3b). The white rectangle

is determined by the two end points of the epipolar curve,

which is readily computed using the inverse mapping.

6. Experiments

To evaluate inverse mapping and triangulation, we use

both synthetic data and real data for quantitative and quali-

tative evaluations. Both solvers are implemented using C++

with double-precision arithmetic. To evaluate the numerical

errors, we also implement the triangulation method with 64-

bit significand (mantissa) as opposed to 53-bit for double

precision. The running time on Intel Xeon E5-2597 @2.70

GHz for each of the implementations are 0.064ms, 0.9ms

and 164ms, respectively. Accordingly, the efficiency of our

implementations with double arithmetic is sufficient to en-

able diverse application scenarios.

6.1. Inverse mapping

To quantitatively evaluate our proposed inverse RPC

mapping estimation, we generate synthetic 3D points from

a random uniform distribution within the cube of [−1, 1] ×
[−1, 1] × [−1, 1]. In order to yield the image coordinates,

these 3D points are projected into virtual images I1 and

I2 using their known RPCs to produce normalized image

coordinates. To approximate realistic experimentation sce-

narios, we use four sets of real RPC model parameters ex-

tracted from two different satellites, including GeoEye-1

and Worldview-2. Each test is performed on 10, 000 ran-

dom samples for each set of RPC parameters. Error charac-

teristics were stable across the four different sets of RPCs.

Hence, quantitative results describe the performance over

the aggregated sample of 40,000 tests.

Accuracy. Our proposed inverse mapping computes the

normalized latitude and longitude of the 3D object point.

The estimated normalized coordinates (X∗, Y ∗) are com-

743



log
10

 of error

10
-15

10
-13

10
-11

10
-9

10
-7

10
-5

10
-3

F
re

q
u

e
n

c
y

 0%

10%

20%

30%

40%
Inverse mapping

LS

(a) Error distributions

Number of real solutions

0 2 4 6 8

F
re

q
u

e
n

c
y
 (

%
)

 0%

10%

20%

30%

40%

50%

(b) Solution cardinality

Figure 5: Our inverse mapping has 7.8 ·10−14 median error.

LS in Fig. 5a represents the method proposed by [31].

pared with the ground truth using the Euclidian distance

||(X∗, Y ∗) − (Xg, Y g)||2, where the superscript g denotes

the ground truth. The resulting error distribution is shown

in Fig. 5a. As can be seen from Fig. 5a, our proposed algo-

rithm typically has errors of less than 10−11, which is well

below the demands of common applications.

To compare with one of the state-of-the-art methods

in estimating the inverse mapping, we implemented the

method of Yang [31]. Their method uses the inverse RPC

model in Eq. (5), and given the ground truth data between

3D and 2D correspondences, the parameters of the model is

estimated by fitting the data through least squares estima-

tion. To this end, we used ground truth synthetic data for

parameter estimation. We note that estimation errors above

a magnitude of 10−4 correspond to an error of one meter in

the real object space for a typical satellite image that cov-

ers 10 kilometers in one dimension. Accordingly, Fig. 5a

illustrates how our proposed algorithm significantly outper-

forms the method in [31] (LS).

Furthermore, we apply another error measure that intu-

itively shows the superiority of our method over [31]. A

2D image point with an altitude is inversely mapped into

the object space and then projected back onto the same im-

age to generate a new 2D point. The error is defined as the

Euclidean distance in pixels between the two points, which

ideally should equal to zero. For each pixel across the whole

image, we try 100 normalized altitudes randomly sampled

within the valid range [−1, 1], and report the average error

over the 100 trials. Fig. 6 shows the error distribution across

a image of resolution 7168× 9216. We can see our method

has low and uniform errors across the whole image, while

the method by [31] generates prominent and structured er-

rors (larger than 2 pixels for some regions).

Solution Cardinality. Depending on RPC model pa-

rameters and the values of the specific estimation instance,

we observed in our experiments either one or three real val-

ued solutions. Fig. 5b illustrates the distribution of the num-

ber of real valued solutions. It can be seen that our attained

solutions are predominantly unique. Moreover, there is al-

ways only one solution with both of the estimated values

(a) Our inverse mapping (b) The method of [31]

Figure 6: The error distribution of inverse mapping across

the whole image.

X∗ and Y ∗ within the valid range of [−1, 1]. This behavior

follows from the geometric intuition that two 3D points with

the same altitude in the real world should not be projected

onto the same pixel.

6.2. Triangulation

Accuracy. We use the coordinate-wise components

{r̃1, c̃1, r̃2} of a match positioning within the satellite im-

agery to estimate the 3D point by the triangulation solver,

and project onto I2 to compute the estimated column, de-

noted as c̃∗
2
. The projection error is defined as |c̃2 − c̃∗

2
|.

The triangulation error is defined as the Euclidian distance

between the refined 3D point (Eq. (8)) and the ground truth.

The error distributions in Figs. 7a and 7b show both of the

projection errors and triangulation errors are very small.

Moreover, we find that the accuracy of triangulation to be

inferior to that of our estimated inverse mapping. We at-

tribute this behavior to the numerical errors from the G-J

elimination of the much larger elimination template. To

validate this assumption, we also implement the solver in

high-precision floating point arithmetic with 64 bits of sig-

nificand (mantissa), in addition to the double precision im-

plementation (53-bit mantissa). The results in Figs. 7a and

7b support numerical precision to be a significant compo-

nent of the estimation error associated with our framework.

Stability. In practice our estimation process is faced

both with measurement errors and/or potential mismatches

in the 2D correspondences. To test the stability against

measurement noise, we additively perturb input coordinate

measurements with zero-mean Gaussian noise with differ-

ent standard deviations. Fig. 7c shows the projection error

across different noise levels. From Fig. 7c, it can be seen if

the Gaussian noise has deviation of 1 pixel, the 90th per-

centile of the projection error is around 1.8 pixels. The

projection error is used for outlier correspondences rejec-

tion, so we can optionally choose 2 pixels as the threshold

for inlier testing. We note that the estimated triangulation

error has real scale. Moreover, for the RPC parameters be-

ing used, each pixel corresponds to 0.5 meter in the object
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Figure 7: (a, b) Errors on noise-free data. (c, d) Median and 90th percentile errors on noisy data. (e) Solution cardinality.

(a) Satellite image (b) Triangulated point cloud (c) Textureless 3D mesh model

Figure 8: Triangulation results on the real satellite images. The images have a pixel resolution of 20460× 20460.

space. Given that, the triangulation error shown in Fig. 7d

have reasonably small errors. We also test the implementa-

tion with 64-bit significand in presence of noise, but it has

little benefit in errors, which means the measurement noise

dominates the errors. Considering the efficiency vs. accu-

racy trade-off, the implementation with double precision

should be used in most real applications. The number of

real solutions is shown in Fig. 7e. There are typically mul-

tiple real solutions within the valid range, but only one of

them has small projection error.

Real images. Although the synthetic data illustrates the

correctness and effectiveness of our estimation methods, we

also test the algorithm on a pair of real satellite images cap-

tured by the Worldview-2 satellite. To compute the 2D Cor-

respondences, BRIEF [6] is used as local feature descriptor,

and pairwise Hamming distance is used to measure feature

similarity. One of the images used for stereo triangulation

and the associated 3D point cloud are shown in Fig. 8a and

Fig. 8b. We generate 3D mesh using Poisson surface recon-

struction [21], where the point normal information required

by Poisson surface reconstruction is set to (0, 0, 1). Fig. 8c

shows the textureless mesh model.

7. Conclusion

We propose two novel minimal solvers for satellite im-

agery based computer vision. The first minimal solver tar-

gets image based stereo estimation by establishing an ac-

curate inverse mapping from image space to object space.

Our evaluations demonstrate the advantage of the proposed

solver over existing methods. The second minimal solver

aims at 3D triangulation from satellite images. Based on

this solver, we are able to propose a robust estimator and a

refinement for increased accuracy of the triangulation.
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