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Abstract

In this paper we describe how to perform Principal Com-

ponents Analysis in “shell space”. Thin shells are a phys-

ical model for surfaces with non-zero thickness whose de-

formation dissipates elastic energy. Thin shells, or their

discrete counterparts, can be considered to reside in a shell

space in which the notion of distance is given by the elastic

energy required to deform one shape into another. It is in

this setting that we show how to perform statistical anal-

ysis of a set of shapes (meshes in dense correspondence),

providing a hybrid between physical and statistical shape

modelling. The resulting models are better able to capture

nonlinear deformations, for example resulting from articu-

lated motion, even when training data is very sparse com-

pared to the dimensionality of the observation space.

1. Introduction

Statistical models of the shape or appearance of a class of

objects are widely used in computer vision and graphics to

model the variability over the object class. They can be used

to constrain synthesis or analysis problems and their param-

eter space provides a compact representation which can be

used for classification or intuitive editing. Human faces and

bodies have proven particularly amenable to statistical mod-

elling. In this case, the source of shape variability is usually

changes in identity or dynamic deformation.

Such models seek to satisfy a number of competing

goals. The first is to capture the variability in the training

data as efficiently as possible, measured by the compactness

of the model. Hence, one purpose of statistical modelling

is dimensionality reduction. The second is to approximate

unseen data as accurately as possible, measured by the gen-

eralisation ability of the model. Finally, we require that the

model have specificity, i.e. can only generate instances that

are plausibly members of the object class being modelled.

Often, the dimensionality of the observations is orders

of magnitude greater than the number of samples in the

training set. With modern shape capture techniques, typ-

ical meshes may contain tens of thousands of vertices. In

contrast, the number of training samples that can feasibly be

collected is typically only in the tens or hundreds. Hence,

the underlying shape space is sampled very sparsely.

In this scenario, the quality of the model is dependent on

the validity of the assumed or learnt structure of the mani-

fold on which the data is assumed to lie. For example, PCA

assumes that the input data lies on (or can be well approx-

imated by) a hyper-planar manifold, the axes of which are

those that capture maximal variance. This makes it optimal

with respect to compactness in Euclidean space but a poor

choice when the data contains highly nonlinear variations.

In this paper, we use a physically-motivated, nonlinear

model of surfaces: thin shells that can undergo tangential

and bending distortion. Geodesics in the space of shells

have already shown great promise in realistically interpo-

lating and extrapolating between sparse samples of shapes

undergoing complex deformations [21, 19, 16]. In other

words, shell space potentially provides a useful constraint

in modelling the nonlinear variability in a sparsely sampled

set of shapes. This motivates our idea of performing statis-

tical shape analysis in shell space. We define a notion of

covariance based on the Hessian of an elastic energy term.

In analogy to PCA, we extract principal components based

on an eigendecomposition of the resulting covariance ma-

trix. The resulting principal components are able to capture

nonlinear articulations and complex deformations.

We provide results on human face and body data and

evaluate the resulting models in terms of compactness, gen-

eralisation and specificity.
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2. Related Work

Constructing a statistical shape model requires knowl-

edge of the structure of the underlying shape space, along

with a prior over that space. The first ingredient is obtained

by using manifold learning or assuming a known manifold

structure, the second via a statistical analysis in this space.

For a recent review of statistical shape modelling see [6].

Statistical shape modelling Statistical models of shape

have been used widely in computer vision and graphics. In

a 2D setting, PCA-based models such as Active Shape [9]

or Appearance Models [8] provide a parametric represen-

tation of shape that can be used for segmentation, tracking

and recognition. In a 3D setting, they are typically used for

fitting to noisy or ambiguous data or for 3D reconstruction

via analysis-by-synthesis. Essentially, the model provides

a constraint that significantly reduces the search space for

many shape processing problems. Such models begin by

transforming raw data into a shape space. This requires es-

tablishing a dense point-to-point correspondence between

the training samples. This problem has previously been ad-

dressed using non-rigid ICP [1], template fitting [31], opti-

cal flow [3] and minimum description length [11].

Manifold learning Manifold learning refers to the situ-

ation in which data is assumed to lie on an unknown, usually

Riemannian, manifold and the structure of this manifold is

learnt from training data. PCA can be viewed as paramet-

ric manifold learning, in that the structure of the manifold

is assumed hyperplanar but its parameters (principal axes)

are learnt from data. PCA has been widely used to model

shape variation [2, 28, 34]. More complex, usually nonlin-

ear, manifold learning approaches have also been applied to

shape modelling. For example, Locally Linear Embedding

for matching articulated shapes [26] and Isomap for shape

clustering [35]. Multilinear models [33, 10, 5] have proved

useful for a number of tasks since they provide a natural

way to independently model different sources of variation,

for example identity and expression. In contrast to mani-

fold learning approaches, in this paper we use a physical

model to define the manifold on which we perform statisti-

cal learning. Note that some statistical methods incorporate

manifold learning. For example, Hauberg et al. compute

shape statistics on a learned Riemannian manifold [20].

Statistics on manifolds An alternative to manifold

learning is to assume that the Riemannian manifold on

which the input data lie is known explicitly. On this mani-

fold, statistical analysis can be performed in a manner that

respects the Riemannian geometry of the manifold. This

requires Riemannian notions of concepts such as distance,

mean value and covariance. In this direction, Pennec [29]

showed how to compute these measures for a number of ge-

ometric primitives that do not form vector spaces. Fletcher

et al. [13] went further, building statistical models on such

manifolds via computation of the principal geodesics of a

set of data. This was done via a linear approximation on

the tangent plane. Freifeld and Black [14] use this princi-

pal geodesic analysis to build nonlinear models of human

body shape variation. They define a Lie group characteris-

ing deformations of a triangle mesh and perform statistical

analysis on the resulting Riemannian manifold. In contrast

to the work we present here, their manifold of deformations

is not physically motivated. In all these cases, explicit ex-

pressions for the log and exponential maps are required and

hence knowledge of the underlying manifold. Of close rela-

tion to the work we present here, Rumpf and Wirth [30] de-

scribe a covariance analysis of shapes represented as bound-

ary contours of elastic objects.

Geometry of shape space The classical treatment of

shape space is due to Kendall [23], in which sets of land-

marks are considered points on a shape manifold in which

the effects of scale, rotation and translation are factored

out. The tangent plane to Kendall’s shape space enables

linear analysis in which Euclidean distance approximates

Procrustes distance. Srivastava et al. [32] propose a rep-

resentation for analysing shapes of curves under an elastic

metric. This allows them to define geodesics and geodesic

distance between curves in a way that is invariant to trans-

formations including reparameterisation. Killian et al. [24]

model the space of triangulated shapes. They use a Rieman-

nian metric which measures the stretching of triangle edges

in order to compute geodesics. While this space requires

an ad hoc regularisation term, Heeren et al. [21] propose

a purely physically-based notion of geodesics by making

use of a bending energy term. Furthermore they introduce

a notion of shape extrapolation via the exponential map in

Riemannian geometry. The physically-based definition of a

shell space and the geometric exploration in [21] is of par-

ticular relevance to this work.

3. Thin Shells

A thin shell Sδ is a physical material with tiny but posi-

tive thickness δ. Mathematically this shell is represented by

a smooth surface S embedded in R
3 which is thought of as

the middle layer of the physical material, i.e.

Sδ = {p+ z n(p) | p ∈ S , z ∈ (−δ/2, δ/2) } ,
where n : S → S2 denotes the unit normal field.

3.1. Shell Deformations

In the following we will consider a reference material

S̄δ ⊂ R
3 which is in a stress-free state and an elastic defor-

mation φδ : S̄δ → R
3 thereof. All quantities corresponding

to S̄δ and its middle layer S̄ , respectively, will be labelled

with a bar, e.g. ḡ denotes the first fundamental form of S̄ .

The corresponding elastic deformation energy is given by

Wδ[φδ] =

∫
S̄δ

Wmem(Dφδ) dx , (1)
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where Dφδ ∈ R
3,3 and Wmem denotes some elastic energy

density.

LeDret and Raoult [25] have shown in the context of Γ-

convergence that to leading order, the energy (1) scales lin-

early in the thickness parameter δ and after rescaling with
1
δ

is given by the membrane energy

Wmem[S̄, φ] =
∫
S̄

Wmem(G[φ]) da , (2)

where φ : S̄ → R
3 is the deformation of the middle

layer and da =
√
det ḡ dt denotes the area element. The

Cauchy-Green strain tensor G[φ] ∈ R
2,2 is given by

G[φ] = ḡ−1gφ , (3)

where gφ is the intrinsic first fundamental form on the de-

formed shell φ(S). The membrane energy density in (2) can

be chosen e.g. as

Wmem(A) =
µ

2
trA+

λ

4
detA−(

µ

2
+
λ

4
) log detA−µ−λ

4
.

Here the trace accounts for local length changes while the

determinant accounts for local change of area.

Friesecke et al. [15] demonstrated that for isometric de-

formations φ (for which Wmem[S̄, φ] = 0) the leading order

term of (1) is cubic in the thickness δ and after rescaling

with 1
δ3

is given by an energy term that solely depends on

the so-called relative shape operator. This bending energy

is supposed to account for out of plane bending and changes

in curvature. One particular choice is the Willmore energy

Wbend[S̄, φ] =
∫
S̄

|H̄ −H ◦ φ|2 da , (4)

which measures changes in the mean curvature H . Note

that H can be regarded as the trace of the matrix-valued

relative shape operator. The energy (4) is widely used as

bending energy e.g. in the computer graphics community,

cf. [17, 19]. Combining (2) and (4) we obtain

WS̄ [φ] = Wmem[S̄, φ] + γWbend[S̄, φ] (5)

where the physical parameter γ is a bending weight that is

proportional to the squared thickness δ2 of the thin shell. It

can be viewed as a parameter that balances between mem-

brane energy and bending energy.

For two shells S̄,S we define

W[S̄,S] = min
φ:φ(S̄)=S

WS̄ [φ] . (6)

We might consider this as an approximation of the squared

Riemannian distance in the shell space although it is not

symmetric. However, for infinitesimal small deforma-

tions the Hessian of W allows us to retrieve a symmetric,

positive-definite Riemannian metric on the space of shell

[21]. Note that the formulation is invariant with respect

to rigid body motions as WS̄ [φ] = 0 if φ(x) = Qx + b,
Q ∈ SO(3), b ∈ R

3.

3.2. Discrete Shells

The above description of shell deformation is based on

a smooth shell. In practice, we discretize a smooth shell

S by a triangular mesh S. Furthermore we assume a fixed

connectivity constraint that means there is a one-to-one cor-

respondence (dense correspondence) between all nodes and

all faces of two meshes as e.g. in [24]. Hence we will repre-

sent a triangular mesh S by the vector of its nodal positions

X ∈ R
3n, where n is the number of vertices in the mesh.

We can think of each triangle T ⊂ R
3 being

parametrized over the unit triangle ω ⊂ R
2 consisting of

the nodes (0, 0), (1, 0) and (0, 1). If q0, q1, q2 ∈ R
3 are

the nodes of T we consider the local linear parametriza-

tion XT : (t1, t2) 7→ t1q1 + t2q2 + (1 − t1 − t2)q0 with

0 ≤ t1, t2 ≤ 1. Hence we have

DXT = [∂t1XT | ∂t2XT ] = [q1 − q0 | q2 − q0] ∈ R
3,2

and can deduce an elementwise constant discrete first fun-

damental form via GT = (DXT )
TDXT ∈ R

2,2. Due to

the dense correspondence we can define the discretization

of the distortion tensor (3) elementwise via

G[Φ]T̄ = Ḡ−1
T̄

GT .

Hence the discrete version of membrane energy is

Wmem[X̄,X] =
∑
T̄∈S̄

|T̄ |Wmem(G[Φ]T̄ ) , (7)

where we use the same energy density Wmem as in the

smooth setting.

For the discrete bending energy, we make use of the dis-

crete shells energy proposed in [19]:

Wbend[X̄,X] =
∑
ē∈S̄

(θē − θe)
2|ē|2

Dē

, (8)

where the sum is over all undeformed edges ē ∈ S̄. If T
and T ′ share one edge e we have De = 1

3 (|T | + |T ′|) and

θe is the angle between the triangle normals of T and T ′.

In [7] the relation between (8) and the Willmore energy is

analysed rigorously.

Analogously to (5) the discrete deformation energy

W[S̄, S] = W[X̄,X] is given as the sum of (7) and (8):

W[X̄,X] = Wmem[X̄,X] + γWbend[X̄,X] (9)

Due to the dense correspondence there is a natural elemen-

twise linear deformation between two meshes S̄ and S .

Hence - different from (6) - we do not need to optimize for

deformations in (9). Note that (9) is invariant with respect

to rigid body motions as well.
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4. Statistics in Shell Space

A principal component analysis (PCA) relies on notions

of averaging and covariance and uses an eigendecomposi-

tion of the covariance matrix in order to extract linear prin-

cipal components. Following [30] we will now introduce

for a given set of input data (i) a general notion of an av-

erage (depending on a distance measure d) and (ii) a co-

variance operator as a generalization of a covariance matrix

(depending on an inner product g). In section 4.1 and 4.4

we will introduce two particular choices for d and g, respec-

tively, namely the standard Euclidean distance/metric and a

physically-based distance/metric induced by the shell defor-

mation energy (9). The corresponding PCA will be refered

to as Euclidean PCA in the former and as Shell PCA in the

latter setup.

4.1. Averaging

Consider a given set of input data S1, . . . , Sm which we

now consider as triangular meshes that are in dense corre-

spondence. Hence we can represent each mesh Si by its

vector of nodal positions Xi ∈ R
3n. For a given (squared)

distance measure d2 : R3n × R
3n → R the group average

X̂ ∈ R
3n is given by the Fréchet mean

X̂ := argmin
X

m∑
i=1

d2[Xi,X] . (10)

In the Euclidean setup we have d2[Xi,X] = ‖Xi −X‖2 and

hence

X̂euc =
1
m

m∑
i=1

Xi .

However, in the Shell PCA setup we have d2[Xi,X] =
W[Xi,X] and (10) becomes a nonlinear optimization prob-

lem and the average X̂shell has to fulfil the necessary condi-

tion

F [X̂shell] :=
m∑
i=1

∂2W[Xi, X̂shell] = 0 . (11)

Here ∂2 denotes differentiation with respect to the second

argument of W .

4.2. Covariance operator

Inherently a PCA is defined on a linear space. Hence

we will consider the linear space of nodal displacements

Ui = Xi − X̂ ∈ R
3n, i = 1, . . . ,m, from the average X̂.

Given an inner product g on R
3n we define the covariance

operator

Cov V =
1

m

m∑
i=1

g(V,Ui)Ui (12)

and a matrix C = (Cij)ij ∈ R
m,m via

Cij := g(Ui,Uj) . (13)

Obviously, C is symmetric and positive semi-definite, that

means there is a spectral decomposition

C = OΛOT , Λ = diag(λ1, . . . , λm) ,

where λ1 ≥ . . . ≥ λm ≥ 0 are eigenvalues of C and O is

an orthogonal matrix, i.e. OOT = OTO = idm. We define

W1, . . . ,Wm via

Wk :=
1√
λk

m∑
i=1

OikUi (14)

if λk > 0 and Wk = 0 else. A straight forward calculation

reveals that

Cov Wk =
λk

m
Wk

and g(Wk,Wl) = δkl, i.e. W1, . . . ,Wm are in fact eigen-

vectors of Cov . Formally, we can extend W1, . . . ,Wm to

an orthonormal basis of R3n with Cov Wk = 0 for k > m.

Remark 1: Usually eigenvectors of Cov are found by

a spectral decomposition of the (3n)-by-(3n) covariance

matrix. However, as in most applications m ≪ 3n it is

more efficient to decompose C ∈ R
m,m as defined in (13)

and obtain eigenvectors via (14).

Remark 2: Due to the rigid body motion invariance the

representation of a discrete shell S by its nodal positions X

is not unique. In fact, S is represented by an equivalence

class of nodal position vectors induced by rigid body mo-

tions. This issue becomes crucial when defining nodal dis-

placements U = X − X̂, as we can construct an arbitrary

large displacement by a simple translation. However, this

obstacle is overcome by taking X such that ‖X − X̂‖2 ≤
‖Y − X̂‖2 for all Y in the equivalence class.

4.3. Principal component analysis

For a data set U1, . . . ,Um the first component V(1) of a

principal component analysis (PCA) is defined as

V(1) = arg max
‖V‖=1

m∑
i=1

g(V,Ui)
2

= arg max
‖V‖=1

g(Cov V,V) (15)

where we used the definition (12) of Cov in the second

equality. If we now write V =
∑

k αkWk, i.e. repre-

sent V in the orthonormal basis as defined in (14), we get

g(Cov V,V) =
∑

k α
2
kλk. Hence (15) is equivalent to solv-

ing

ᾱ = arg max
‖α‖=1

m∑
k=1

α2
kλk .

As λ1 is the largest eigenvalue we have ᾱ = (1, 0, 0, . . .)
and hence V(1) = W1. Similarly we obtain further com-

ponents V(k) as V(k) = Wk for k = 2, . . . ,m. Hence the
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principal components are given by the eigendisplacements

of Cov as defined in (14).

4.4. Choice of metric

We have not specified an inner product g on the space of

discrete shells yet. For the Euclidean setup we can define g
as the standard scalar product on R

3n, i.e.

geuc(U,V) = UT V .

It has been shown in [21] that for a deformation energy as

defined in (9) the bilinear form

gshell(U,V) =
1

2
UT (HessW)[X̂shell, X̂shell]V (16)

in fact defines a metric on the space of discrete shells mod-

ulo rigid body motions. Here HessW = ∂2
2W ∈ R

3n,3n

denotes the Hessian matrix w.r.t. the second argument of W
which is a positive semi-definite symmetric matrix whose

nullspace corresponds to displacements induced by rigid

body motions.

4.5. Visualization of principal modes

A PCA model amounts to an average shape Ŝ represented

by its nodal positions X̂ ∈ R
3n and its eigendisplacements

(Wk)k obtained by the PCA. A simple linear visualization

of these dominant modes is to compute meshes via X̂ +
tWk, where t ∈ [−T, T ].

However, a more reasonable way to express pure nonlin-

ear variations is to use the nonlinear shooting method via the

time-discrete exponential map EXPX as proposed in [21].

On a smooth manifold M the exponential map expX maps a

tangent vector V at some point X to the endpoint X(1) of the

geodesic t 7→ X(t) with X(0) = X and Ẋ(0) = V. Here,

we use the exponential map on shell space as a natural ex-

trapolation of shell variations and pick up the corresponding

time-discrete definition from [21]. In fact, for the visualiz-

ing of (nonlinear) principal modes of variation we consider

the elastic average X̂ as start point X and a (possibly scaled)

mode αWk, α ∈ R, as the initial velocity V.

4.6. Projection and reconstruction

In an analogous fashion to Euclidean PCA, Shell PCA

can also be used for reconstructing shapes from a set of

PCA coefficients. Given the elastic average X̂, the eigen-

vectors (Wk)k and some (possibly unseen) shape X ∈ R
3n,

we first compute the nodal displacement U = X − X̂.

We then project U onto the Shell PCA space Wm, where

Wm is the linear subspace spanned the principal modes

Wk, k = 1, . . . ,m. The projection is given by

PWm
: U → PWm

U :=

m∑
k=1

gshell(Wk,U)Wk ,

where gshell is the Shell (16). Finally we are able to get the

reconstruction X̄ via nonlinear shooting:

X̄ := EXPX̂(PWm
U) .

4.7. Elastic vs. Riemannian PCA

We consider a linear space of (possibly large) nodal

displacements and not the tangent space in a Riemannian

setup of infinitesimal displacements. This is computation-

ally more efficient (no higher resolution of geodesic paths

from the average X̂ to each input shape Xi is required)

and sufficient also for large displacements due to the in-

volved nonlinear elastic deformation energy and its invari-

ance w.r.t. rigid body motions. However, the input displace-

ments Ui = Xi− X̂ as well as the resulting principal modes

Wk can be considered as approximate tangent vectors in the

Riemannian tangent space at the average shape X̂ whereas

this approximation is only valid in a neighborhood of X̂.

Furthermore, this motivates the nonlinear shooting of prin-

cipal modes using the discrete exponential map (cf. sec.

4.5).

5. Implementation and optimization

The implemention is realized as an extension of the open

source C++ library QuocMesh1. Computationally, the most

demanding part is evaluating the shell mean X̂shell ∈ R
3n in

(11). This is done by means of Newton’s method, i.e. for

F [.] as defined in (11) and an initial guess X0 we compute

iteratively

DF [Xk]Dk = −F [Xk] , Xk+1 = Xk + τkDk ,

until ‖DF [Xk]‖ < ǫ for some k < Kmax and set X̂shell =
Xk. The stepsize τk is determined by Armijo’s backtracking

line search [27]. Note that each iteration step requires (i) an

evaluation of F and DF , i.e. the assembling and addition

of m Hessian matrices ∂2
2W[., .] ∈ R

3n,3n, and (ii) solving

a linear system in 3n dimensions. To improve the robust-

ness and efficiency of the optimization we make us of an

hierarchical scheme based on progressive meshes [22, 18]

as it was used in [24]. The computation of the nonlinear

mean for the input data shown in Figure 1 with m = 5
and n ≈ 6000 takes 5 minutes on an Intel Core 3.40GHz.

However, the running time can be improved substantially

by picking up the two-level hierarchical method proposed

in [16]. Note that the spectral decomposition of (13) by

means of a standard QR algorithm is fast as m is usually

small.

6. Experiments

In this section we provide an experimental evaluation

of our model. We begin with a qualitative evaluation of

1http://numod.ins.uni-bonn.de/software/quocmesh/index.html
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Figure 1: Human bodies data with large nonlinear, articu-

lated deformations from FAUST dataset [4]. These 5 sam-

ples are used in our experiment for evaluating the principal

modes in section 6.1.

the Shell PCA model by visualising the principal compo-

nents. Next we compare reconstructions using Euclidean

and Shell PCA . Finally, we provide a quantitative compari-

son in terms of compactness, generalisation and specificity.

We use two datasets in our experiments. The first con-

tains scans of human bodies drawn from the FAUST dataset

[4]. The 5 training shapes are shown in Figure 1. The

meshes are watertight, genus zero and we apply groupwise

simplification to reduce their resolution to 6,000 vertices.

For this data, Euclidean PCA fails to obtain a meaningful

average, let alone principal components due to the articu-

lated motion. The second is the B3D(AC)2 [12] dataset con-

taining facial motion sequences in dense correspondence.

From this dataset, we extract a subset containing 40 expres-

sions of a single subject. The meshes are genus three (holes

for the mouth and eyes) with a boundary. Once again, we

apply groupwise simplification to reduce the mesh resolu-

tion to 3,000 vertices. Note that in both cases, the training

data is extremely sparse and that there are large, nonlinear

deformations between shapes.

6.1. Qualitative evaluation of PCA

In Figure 2, we show the first two principal components

for the body data. The elastic average for Shell PCA and the

linear average for Euclidean PCA are depicted in the middle

column (shapes in dark grey), respectively. In each row, we

show a geodesic path traversing from the average in each

direction along the principal component. Note that the shell

PCA modes successfully capture the nonlinear, articulated

motion. The first mode appears to capture the raising and

lowering of the arms and the second the bending of the leg,

while Euclidean PCA fails to capture meaningful deforma-

tions and leads to degenerated surfaces.

To emphasise the nonlinear nature of the Shell PCA

modes, we show the vertex trajectories for the first prin-

cipal component in Figure 3. This is done by generating a

sequence of shapes by nonlinear shooting and plotting the

resulting trajectories in red. For comparison, the Euclidean

PCA trajectories are shown in blue. Shell PCA clearly leads

to nonlinear trajectories.

(a) Shell PCA modes (elastic average in dark grey)

(b) Euclidean PCA modes (linear average in dark grey)

Figure 2: Top 2 modes of body data with (a) Shell PCA and

(b) Euclidean PCA. The mean shape in dark color is placed

in the middle, and negative and positive shooting (linear

combination for Euclidean PCA) results are shown on the

left and the right, respectively.

In Figure 4, we show the first three principal compo-

nents for the facial expression data. We show Euclidean

PCA in the first row, Shell PCA with linear combination in

the second row, and Shell PCA with nonlinear shooting in

the third row. Note that, while both Euclidean and Shell

PCA capture similar characteristics in their principal three

modes, Shell PCA with nonlinear shooting prevents the sur-

face from folding over itself and retains a more plausible

face shape (for example, mode 1 of Euclidean PCA appears

to correspond approximately to mode 3 of Shell PCA but

Shell PCA preserves a more plausible chin shape in the pos-

itive direction).
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Figure 3: Vertex trajectories of Shell PCA and Euclidean

PCA. Note that the vertices follow a curve with the Shell

PCA (red) and a straight line with the Euclidean PCA

(blue).

Figure 4: Top 3 modes of the face expression data. (Top:

Euclidean PCA; middle, Shell PCA with linear combina-

tion; bottom: Shell PCA with nonlinear shooting. Col. 1

and 2 show mode 1, col. 3 and 4 show mode 2, col. 5 and 6

show mode 3.)

6.2. Results of reconstruction

In Figure 5 we show the result of reconstructing a face

using an increasing number of model dimensions. The re-

sults in the top row are for Euclidean PCA and in the bottom

row for Shell PCA. While PCA is optimal in terms of min-

imising Euclidean distance, it is clear that there is a percep-

tual improvement in the reconstruction results using Shell

PCA. Using only 5 dimensions (column 2), Shell PCA has

successfully reconstructed the strong elastic deformation of

the smile while the Euclidean PCA reconstruction does not

successfully convey the smiling expression.

6.3. Quantitative evaluation of PCA

We now provide a quantitative comparison between a

Euclidean PCA and Shell PCA model constructed using the

facial expression data.

Figure 5: Reconstruction results of using increasing num-

ber of parameters. (Top: Euclidean PCA reconstruction re-

sults, bottom: Shell PCA reconstruction results. From left

to right: dimension = (1,5,10,39), and the last column for

ground-truth.)

Figure 6: Compactness of Shell PCA and Euclidean PCA.

Compactness measures how efficiently a model captures

the variability in the training data. Specifically, it is the cu-

mulative variance captured by the top K principal compo-

nents as a proportion of the total variance within the train-

ing data. Hence, we define the compactness as α(K) =
P

K

i=1
λiP

n

i=1
λi

. We show compactness as a function of K for the

expression dataset for Shell and Euclidean PCA in Figure

6. Euclidean PCA is optimal in the sense of least squares,

i.e. measuring in the (squared) Euclidean norm. Shell PCA

is optimal in the sense of (squared) Riemannian distance in

shell space. It is clear that Euclidean PCA is superior in

terms of compactness, implying that Euclidean variance in

the expression data is more easily captured than elastic vari-

ance. However, we should be cautious in how we interpret

these plots since the variances in the two models are com-

puted under different distance measures.

Generalisation evaluates the ability of a shape space to
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