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Abstract

In this paper, we present a method to estimate a

sequence of human poses in unconstrained videos. In

contrast to the commonly employed graph optimization

framework, which is NP-hard and needs approximate

solutions, we formulate this problem into a unified two

stage tree-based optimization problem for which an efficient

and exact solution exists. Although the proposed method

finds an exact solution, it does not sacrifice the ability

to model the spatial and temporal constraints between

body parts in the video frames; indeed it even models the

symmetric parts better than the existing methods. The

proposed method is based on two main ideas: ‘Abstraction’

and ‘Association’ to enforce the intra- and inter-frame

body part constraints respectively without inducing extra

computational complexity to the polynomial time solution.

Using the idea of ‘Abstraction’, a new concept of ‘abstract

body part’ is introduced to model not only the tree based

body part structure similar to existing methods, but also

extra constraints between symmetric parts. Using the

idea of ‘Association’, the optimal tracklets are generated

for each abstract body part, in order to enforce the

spatiotemporal constraints between body parts in adjacent

frames. Finally, a sequence of the best poses is inferred

from the abstract body part tracklets through the tree-based

optimization. We evaluated the proposed method on three

publicly available video based human pose estimation

datasets, and obtained dramatically improved performance

compared to the state-of-the-art methods.

1. Introduction

Human pose estimation is crucial for many computer

vision applications, including human computer interaction,

activity recognition and video surveillance. It is a very

challenging problem due to the large appearance variance,

non-rigidity of the human body, different viewpoints,

cluttered background, self occlusion etc. Recently, a

significant progress has been made in solving the human
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Figure 1. An abstract high-level illustration of the proposed

method aiming at removing simple cycles from the commonly

employed graph optimization framework for video based human

pose estimation problem. All of the above graphs are relational

graphs for the problems. In (b), each body part in each frame

is represented by a node. Green and blue edges represent

relationships between different body parts in the same frame

(green ones are commonly used edges in the literature, and blue

ones are important edges for symmetric parts); red edges

represent the consistency constraints for the same body part in

adjacent frames. Note that this is only an illustration and not

all edges are shown. In the ‘Abstraction’ stage, symmetric parts

are combined together, and the simple cycles within each single

frame are removed (shown in (c)); and in the ‘Association’ stage,

the simple cycles between adjacent frames are removed (shown in

(d)).

pose estimation problem in unconstrained single images

([39, 23, 36]); however, human pose estimation in videos

([19, 22, 5]) is a relatively new and challenging problem,

which needs significant improvement. Obviously, single

image based pose estimation method can be applied to

each video frame to get an initial pose estimation, and a

further refinement through frames can be applied to make

the pose estimation consistent and more accurate. However,

due to the innate complexity of video data, the problem

formulations of most video based human pose estimation
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Figure 2. Real body parts vs. abstract body parts. The left side

shows a commonly used body part definitions in the literature,

and we call these body parts (nodes) ‘real body parts’, and the

graph ‘real body part relational graph’. The right side shows the

proposed new definition of body parts, basically we combine a

pair of symmetric body parts to be one body part, we call these

body parts (nodes) ‘abstract body parts’, since the parts are some

abstract concepts of parts, not real body parts, and the graph as

‘abstract body part graph’.

methods are very complex (usually NP-hard), therefore,

approximate solutions have been proposed to solve them

which result in sub-optimal solutions. Furthermore, most

of the existing methods model body parts as a tree structure

and these methods tend to suffer from double counting

issues ([23]) (which means symmetric parts, for instance

left and right ankles, are easily to be mixed together). In

this paper, we aim to formulate the video based human pose

estimation problem in a different manner, which makes the

problem solvable in polynomial time with an exact solution,

and also effectively enforces the spatiotemporal constraints

between body parts (which will handle the double counting

issues).

One commonly employed methodology for human pose

estimation in videos is the graph optimization formulation.

There are two types of such formulation. The first type of

this formulation ([19]) is to generate several human pose

hypotheses in each frame and select one best hypothesis

from each frame, while making sure they are consistent

throughout the video. The inference in this approach is

very efficient, however, due to the large variations of pose

configurations, it is very difficult to get good poses with all

body parts correctly estimated. Therefore, the second type

of such formulation ([22, 34, 5]) was introduced to handle

each body part separately (please see Fig.1(b)). In this

formulation, hypotheses are generated for each body part

in every frame. Following the spatial constraints between

body parts in each frame and using temporal consistency

of appearances and locations between adjacent frames, the

goal is to optimally select the best hypotheses for each

body part from all the frames together. This formulation is

desirable, since it is able to expand sufficient diverse human

pose configurations, and also, it is able to effectively model

spatiotemporal constraints between body parts. Despite all

the benefits of this formulation, it is an NP-hard problem

due to the underlying loopy graph structure (i.e. there

are many simple cycles in the graph; e.g. the simple

cycles in Fig.1(b) induced by the green, blue and red

edges) ([22]). Several methods were proposed to attack

this NP-hard problem in different ways. To reduce the

complexity induced by inter-frame simple cycles, Tokola

et.al [34] proposed a tracking-by-selection framework, in

which each body part is tracked separately and parts are

then combined at a later stage. Authors in [5] proposed

an approximate method which focuses on less-certain parts

in order to reduce the complexity. Ramakrishna et. al

[22] introduced a method which takes symmetric parts into

account and proposed an approximate solution to handle

the loopy graph. And in [27], the original model is

decomposed into many sub-models which are solvable,

since the sub-models have a tree-based structure. All of the

above methods are insightful, however, none of them has

simultaneously exploited the important constraints between

body parts (e.g. symmetry of parts) and has an efficient

exact solution.

Based on the discussion above, the major issue is: How

to exploit the spatial constraints between the body parts in

each frame and temporal consistency through frames to the

greatest possible extent, with an efficient exact solution?

Since the inference of a tree-based optimization problem

has a polynomial time solution ([39, 41]), the main issue

becomes (please refer to Fig.1): How to formulate the

problem in order to model the useful spatial and temporal

constraints between body parts among the frames without

inducing simple cycles?

We propose two key ideas to tackle this issue, which

approximate the original fully connected model into a

simplified tree-based model. The first idea is Abstraction:

in contrast to the standard tree representation of body

parts, we introduce a new concept, abstract body parts,

to conceptually combine the symmetric body parts (please

refer to Fig.2, and details are given in Section 3.2). This

way, we take advantage of the symmetric nature of the

human body parts without inducing simple cycles into the

formulation. The second idea is Association, using which

we generate optimal tracklets for each abstract body part to

ensure the temporal consistency. Since each abstract body

part is processed separately, it does not induce any temporal

simple cycles into the graph.

The proposed method is different from the

state-of-the-art methods ([22, 34, 5, 27]) in the following

ways: [22] exploits the symmetric nature of body parts,

however, the problem is formulated as a multi-target

tracking problem with mutual exclusions, which is

NP-complete and only approximate solutions can be

obtained by relaxation; the method in [34] is designed
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to remove the temporal simple cycles from the graph

shown in Fig.1(b) to track upper body parts, however,

the employed junction tree algorithm will have much

higher computational complexity if applied to full-body

pose estimation, since there are many more simple cycles

induced by symmetric body parts; compared to [5], the

proposed method has no temporal simple cycles; and in

contrast to [27], our method can model symmetric body

part structure more accurately rather than settling for the

sub-models. Therefore, the proposed method ensures both

spatial and temporal constraints without inducing any

simple cycles into the formulation and an exact solution

can be efficiently found by dynamic programming.

The organization of the rest of the paper is as follows.

After discussing related work in Section 2, we introduce

the proposed method in Section 3. We present experimental

results in Section 4 and conclude the paper in Section 5.

2. Related Work

A large body of work in human pose estimation have

been reported over the last few years. Early works

are focused on human pose estimation and tracking in

controlled environment ([29]); there is also some important

work using depth images ([28]). Single image based human

pose estimation ([39, 36, 6, 37]) in unconstrained scenes

has progressed dramatically in the last a few years; however,

video based human pose estimation in unconstrained scenes

is still in a very early stage, and some pioneer research

([22, 19, 34, 5]) has been conducted only recently.

For image based human pose estimation in

unconstrained scenes, most work has been focused on

pictorial structure models ([2, 3, 13, 24]) for quite long

time and the performance has been promising. In [39],

a flexible mixture-of-parts model was proposed to infer

the pose configurations, which showed very impressive

results. A new scheme was introduced in [14] to handle

a large number of training samples, which resulted in

significant increase in pose estimation accuracy. Authors in

[31, 40, 21] attempted to estimate 3D human poses from a

single image. The high order dependencies of body parts

are exploited in [16, 11, 12, 32, 30, 38, 15, 33, 20, 23]. The

authors in [33] proposed a hierarchical spatial model with

an exact solution, while [20] achieves this by defining a

conditional model, and [23] employs an inference machine

to explore the rich spatial interactions among body parts.

A novel, non-linear joint regressor model was proposed in

[6], which handles typical ambiguities of tree based models

quite well. More recently, deep learning ([36, 35, 18, 4])

has also been introduced for human pose estimation.

For video based human pose estimation in

unconstrained scenes, some early research adopted

the tracking-by-detection framework ([1, 17, 25]). More

recently, some methods ([5, 34, 42, 9, 26, 27]) have mainly

focused on upper body pose estimation and other methods

([19, 22]) have focused on full body pose estimation.

The method proposed in this paper aims to estimate

full body poses in the video, without reducing its ability

to model symmetric body parts ([19]); and it has lower

computational complexity compared to [34], and gives an

exact solution using dynamic programming compared to

approximate solutions in [22, 5].

3. Tree-based Optimization for Human Pose

Estimation in Videos

We formulate the video based human pose estimation

problem into a unified tree-based optimization framework,

which can be solved efficiently by dynamic programming.

In view of the major steps shown in Fig.3, we introduce

the general notions of relational and hypothesis graphs,

and related problem formulation and solutions in Section

3.1; we discuss the new concept: ‘abstract body parts’ in

comparison to ‘real body parts’ in section 3.2 and show how

to generate body part hypotheses in each frame in Section

3.3; we introduce tracklets generation in Sections 3.4 and

3.5, and finally show how to obtain the optimal poses in

Section 3.6.

3.1. Relational Graph vs. Hypothesis Graph

In computer vision, and several other disciplines, many

problems ([10]) can be abstracted as follows. Assume there

is a set of entities E = {ei|Ni=1}, where each entity can only

be in one of the many states S = {sk|Mk=1}, with the unary

scoring functions {Φ(ei, sk)|ei ∈ E , sk ∈ S}, which gives

the likelihood that an entity ei is in state sk. And there

is a binary compatibility function for each pair of entities

{Ψ(ei, ej , sk, sl)|ei, ej ∈ E , sk, sl ∈ S}, which represents

the compatibility of entity ei in state sk and entity ej in

state sl. The goal then is to determine the best states for

each entity such that all of them have high unary scores and

they are also compatible with each other. This problem can

be modeled as a graph optimization problem formulated by

relational and hypothesis graphs, which is described next.

A relational graph, Gr = (Vr, Er), represents the

relationship of a set of entities which are represented by

entity nodes {vir |
|Vr|
i=1}, and the relationships between pairs

of entities are represented by edges Er . Examples of

relational graph are shown in Fig.2, Fig.4(a) and Fig.5(a).

Corresponding to a relational graph Gr, a hypothesis

graph, Gh = (Vh, Eh), can be built. For an entity node vir

in Vr, a group of hypothesis nodes Vh(i) = {vkh(i) |
|Vh(i)|

k=1 }
are generated to form the hypothesis graph, so Vh =
|Vr|
⋃

i=1

Vh(i). The hypothesis nodes represent the possible

states of each entity, and in this paper they represent

possible locations of body parts. Hypothesis edges, Eh =
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Figure 3. An outline of the proposed method. (a) shows the original video frames; in (b) the N-Best method ([19]) was employed to

generate a set of diverse poses for each single frame; in (c), by using the results from (b), real body part hypotheses are generated for

each body part in each frame and propagated to the adjacent frames; in (d), real body parts are combined into abstract body parts and

the hypotheses are also combined accordingly in order to remove the intra-frame simple cycles (i.e. the simple cycles with blue and

green edges in Fig.1(b)); in (e), tracklets are generated for abstract body parts (including single body parts and coupled body parts) using

the abstract body part hypotheses generated in (d); in (f), the pose hypotheses graph is built, each node is a tracklet corresponding to the

abstract body part, and the best pose estimation is obtained by selecting the best hypotheses for the parts from the graph.

{(vkh(i), v
l
h(j))|v

k
h(i) ∈ Vh(i), v

l
h(j) ∈ Vh(j), (v

i
r, v

j
r) ∈

Er}, are built between each pair of hypothesis nodes from

different groups following the structure of Gr. An unary

weight, Φ, can be assigned to each hypothesis node, which

measures the likelihood of the corresponding entity to be in

the state of this hypothesis node; and a binary weight, Ψ,

can be assigned to each hypothesis edge, which measures

the compatibility of the pair of hypothesis nodes connected

by the edge. Examples of hypothesis graph are shown

in Fig.4(b,c) and Fig.5(b). The methodology is to select

one hypothesis node for each entity, in order to maximize

the combined unary and binary weights. This is a graph

optimization problem and the general form is NP-hard;

however, if the relational graph is a tree (including the

degenerate case of a single branch), the problem is no

longer NP-hard and efficient dynamic programming based

polynomial time solutions exist.

For a tree-based relational graph, Gr, and the

corresponding hypothesis graph, Gh, the objective function

for a set of arbitrary selected nodes s = {si|
|Vr|
i=1 , s

i ∈ Vh}
is:

M(s) =
∑

si∈Vh

Φ(si) + λ ·
∑

(si,sj)∈Eh

Ψ(si, sj), (1)

in which λ is the parameter for adjusting the binary and

unary weights, and the goal is to maximize M(s): s∗ =
argmaxs(M(s)). Let the algorithm proceed from the

leaf nodes to the root, and let F(i, k) be the maximum

achievable combined unary and binary weights of kth

hypothesis for ith entity. F(·, ·) satisfies the following

recursive function:

F(i, k) = Φ(vkh(i))+
∑

vj
r∈kids(vi

r)

max
l

(

λ ·Ψ(vkh(i), v
l
h(j)) + F(j, l)

)

.

(2)

Based on this recursive function, the problem can be solved

efficiently by dynamic programming ([39, 41]), with a

computation complexity of O(|Vr| · N), in which N is the

max number of hypotheses for each node in Vr.

3.2. Real Body Parts vs. Abstract Body Parts

We use the term real body parts to represent body parts

which are commonly used in the literature. And we use

abstract body parts, which is a new concept introduced

in this paper, to facilitate the formulation of the proposed

method (as shown in Fig.2). In contrast to the real body part

definitions, there are two types of the abstract body parts

in this paper: single part and coupled part. Single parts

include HeadTop and HeadBottom. Coupled parts include

Shoulder, Elbow, Hand, Hip, Knee and Ankle. Note that, for

coupled parts, we use one part to represent two symmetric

real body parts, for instance Ankle is employed to represent
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the abstract part which is actually the combination of the

left and right ankles. The motivation of abstract body parts

is to remove simple cycles in the body part relational graph,

and at the same time maintaining the ability of modeling

the symmetric body parts. For example, in Fig.1(b), in

each frame, the green and blue edges are used to model

the body part relationships, and at the same time there are

many simple cycles in a given frame. After introducing

the abstract body parts in Fig.1(c), the symmetric parts are

combined, and as a result, none of the frames contain simple

cycles. However, there are still simple cycles between

frames, which will be handled by the abstract body part

tracklets in Section 3.4 and 3.5.

3.3. Body Part Hypotheses in a Single Frame

N-Best human pose estimation approach ([19]) is applied

to each video frame to generate N best full body pose

hypotheses. N is usually a large number (normally N >

300). And for each real body part, the body part hypotheses

are body part locations extracted from the N-best poses.

The body part hypotheses are sampled by an iterative

non-maximum suppression (NMS) scheme based on the

detection score map. Detection score is a combination of

max-marginal ([19]) and foreground score,

Φs(p) = αΦM (p) + (1− α)ΦF (p), (3)

in which Φs is the detection score, ΦM is the max-marginal

derived from [19], ΦF is the foreground score obtained by

the background subtraction ([7]), and p is the location of the

body part.

The abstract body part hypotheses for a single part are

the same as its corresponding real body part hypotheses.

And the abstract body part hypotheses for a coupled part

are the permutation of its corresponding left and right body

part hypotheses.

3.4. Single Part Tracklets

Based on the abstract body part hypotheses generated

in Section 3.3, we want to obtain several best single part

and coupled part tracklets through the video frames. The

problem is how to select one hypothesis from each frame,

ensuring that they have high detection scores and are

consistent throughout the frames. Following the definitions

in Section 3.1, the relational graph for this problem is shown

in Fig.4(a), and the hypothesis graphs for single parts and

coupled parts are shown in Fig.4 (b) and (c) respectively.

Based on the single part hypotheses, a single part tracklet

hypothesis graph is built (Fig.4(b)) for each single part

(headTop and headBottom). In this graph, each node

represents a single part hypothesis and the detection score

Φs(p) from Eqn.3 is used to assign the node an unary

weight. Edges are added between every pair of nodes

from the adjacent frames. Binary weights are assigned to

Source Sink���
���

���
���
���

���
���
���

���
���
���

���

Frame 1 Frame 2 Frame 3 Frame N
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(���,���)
(���,���)
(���,���) (���,���)

(���,���)
(���,���)
(���,���)
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Frame 1 Frame 2 Frame 3 Frame N

(b) Single Part Tracklet Hypothesis Graph

(c) Coupled Part Tracklet Hypothesis Graph

Frame 1 Frame 2 Frame 3 Frame N

(a) Tracklet Relational Graph

… … … …

… … … …

Figure 4. Tracklet graphs. (a) Shows the relational graph for

the abstract body part tracklet generation. (b) Shows the tracklet

hypothesis graph for single body parts. Each node represents

one hypothesis location of the body part in a specific frame,

and edges show the similarity between the connected body part

hypotheses in adjacent frames. (c) Shows the tracklet hypothesis

graph for coupled parts. Each node represents a coupled body

part hypothesis, which is the combination of the corresponding

symmetric body parts (that is why each node is colored into two

halves). The edges represent the similarities between connected

coupled body parts in adjacent frames. Note that, (b) and (c) are

only illustrations, and for simplicity, not all edges are shown.

the edges which represent similarities between hypotheses

in adjacent frames. The binary weight is defined as a

combination of optical flow predicted location distance and

the Chi-square distance of HOG features as follows:

Ψs(p
f , pf+1) = exp(−

χ2(Υ(pf ),Υ(pf+1) · ‖p̂f − pf+1‖22)

σ2
),

(4)

where pf and pf+1 are two arbitrary hypotheses from

frames f and f+1, Υ(p) is the HOG feature vector centered

at location p, p̂f is the optical flow predicted location for pf

in frame f+1, and σ is a parameter. The goal is to select one

node from each frame to maximize the overall combined

unary and binary weights. Given an arbitrary selection of

nodes from the graph ss = {sis|
F
i=1} (F is the number of

frames), the objective function is given by

Ms(ss) =

F
∑

i=1

Φs(s
i
s) + λs ·

F−1
∑

i=1

Ψs(s
i
s, s

i+1
s ), (5)

where λs is the parameter for adjusting the binary and unary

weights, and s∗s = argmaxss(M(ss)) gives the optimal

solution. It is clear that the relational graph of this problem
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is a degenerate tree (i.e. single branch tree, please see

Fig.4(a)), and as shown in Section 3.1, the problem can

be solved using dynamic programming efficiently. After

the optimal solution is obtained, the selected nodes are

removed from the graph and the next optimal solution can

be obtained. This process can be iterated for multiple times

in order to get several tracklets from the graph.

3.5. Coupled Part Tracklets

The relational graph for the coupled part tracklets

generation is the same as for the single part; however,

the nodes and edges are defined differently. In this case,

each hypothesis node is composed of the locations of

a pair of symmetric parts (e.g. left and right ankles).

Fig.4(c) shows an illustration of the graph. Such design

aims to model the symmetric relationship between coupled

parts, including mutual location exclusions and appearance

similarity in order to reduce double counting. As discovered

in previous research ([22]), double counting is a key issue

which severely hinders the pose estimation. Theoretically,

tree based model ([39]) lacks the ability to model spatial

relationship of the coupled parts (e.g. left and right ankles).

Furthermore, as discussed in Section 1, attempting to model

such spatial relationship would inevitably induce simple

cycles in the graph, which would severely increase the

computational complexity. By introducing the coupled

parts, this could be effectively dealt with. In the coupled

part tracklet hypothesis graph, each node r = (p, q)
represents a composition of a pair of symmetric parts p and

q. Unary weights are assigned to the nodes which represent

the detection confidence and the compatibility between the

two symmetric parts, and the weight is defined as:

Φc(r) =
(Φs(r.p) + Φs(r.q)) · (Λ(r.p)

T · Λ(r.q)))

1 + e−|r.p−r.q|/θ
, (6)

where Φs is from Eqn.3, r.p and r.q respectively represent

the left and right components of the coupled part r, Λ(p) is

the normalized color histogram of a local patch around p,

the denominator is the inverse of a sigmoid function which

penalizes the overlap of the symmetric parts, and θ is the

parameter that controls the penalty. The binary weights of

the edges are computed as

Ψc(r
f , rf+1) = Ψs(r.p

f , r.pf+1)+Ψs(r.q
f , r.qf+1), (7)

where Ψs is from Eqn. 4.

Similarly, the goal is to select one node (which is

a composition of a pair of symmetric parts) from each

frame to maximize the overall combined unary and binary

weights. Given an arbitrary selection of nodes from the

graph sc = {sic|
F
i=1} (where F is the number of frames),

the objective function is

Mc(sc) =

F
∑

i=1

Φc(s
i
c) + λc ·

F−1
∑

i=1

Ψc(s
i
c, s

i+1
c ), (8)
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Figure 5. Pose graphs. (a) is the pose relational graph. Each

node represents one abstract body part and edges represent the

relationship between the connected body parts. (b) is the pose

hypothesis graph. Each node is a tracklet for the part, and edges

represent the spatial compatibility of connected nodes.

where λc is the parameter to adjust the binary and unary

weights, and s∗c = argmaxsc(M(sc)) gives the optimal

solution. As discussed in Section 3.1, the problem can also

be solved by dynamic programming efficiently, and iterated

for multiple times to get several tracklets.

3.6. Optimal Pose Estimation using Part Tracklets

Since the best tracklets for each abstract body parts are

obtained by the methods introduced in Section 3.4 and 3.5,

the next step is to select the best ones which are compatible.

The relational graph, GT = (VT , ET ), for this final tracklet

based optimal pose estimation is shown in Fig.5(a). Each

node represents an abstract body part, and the edges model

the spatial relationships between them. Following the

definitions of the abstract body parts and using the part

tracklets generated for these abstract body parts, a pose

hypothesis graph can be built to get the optimal pose (as

shown in Fig.5(b)). In this graph, each node represents an

abstract body part tracklet and edges represent the spatial

constraints. For each hypothesis tracklet node, s, depending

on if it corresponds to a single part or a coupled part, Es(s)
from Eqn.5, orEc(s) from Eqn.8 is used as its unary weight

ΦT (s). Let Ψd(pi, qj) = ωi,j · ψ(pi − qj) be the relative

location score in [39] (ωi,j and ψ are defined the same as

in [39]), the binary weight between a pair of adjacent single

part tracklet nodes ss = {sis|
F
i=1} and ts = {tis|

F
i=1} is

ΨT (ss, ts) =

F
∑

i=1

Ψd(s
i
s, t

i
s), (9)

the binary weight between a single part tracklet node ss =
{sis|

F
i=1} and an adjacent coupled part tracklet node tc =

{tic|
F
i=1} is

ΨT (ss, tc) =

F
∑

i=1

(Ψd(s
i
s, t

i
c.p) + Ψd(s

i
s, t

i
c.q)), (10)
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and the binary weight between a pair of adjacent coupled

tracklet part nodes sc = {sic|
F
i=1} and tc = {tic|

F
i=1} is

ΨT (sc, tc) =

F
∑

i=1

(Ψd(s
i
c.p, t

i
c.p) + Ψd(s

i
c.q, t

i
c.q)). (11)

Now, the goal is to select only one tracklet for each

abstract body part in order to maximize the combined unary

(detection score) and binary (compatible score) weights.

Given an arbitrary tree selected from the hypothesis graph

sT = {siT |
|VT |
i=1 }, the objective function is given by

MT (sT ) =
∑

vi
T
∈VT

ΦT (s
i
T ) + λT ·

∑

(vi
T
,vj

T
)∈ET

ΨT (s
i
T , s

j
T ),

(12)

where λT is a parameter for adjusting the binary and

unary weights, and as discussed in Section 3.1, the optimal

solution s∗T = argmaxsT (M(sT )) can also be obtained by

the dynamic programming algorithm efficiently. The body

part locations in each frame are extracted from this final

optimal solution.

4. Experiments

4.1. Datasets

We evaluated our method on three publicly available

datasets:

Outdoor Pose Dataset: this dataset was collected by the

authors of [22], which contains six video sequences from

outdoor scenes. There are a lot of self-occlusions of the

body parts and annotations of more than 1,000 frames are

provided by the authors.

Human Eva-I: this dataset ([29]) contains human

activities in indoor controlled conditions. The activities

are synchronized with a ground truth of 3D motion capture

data, which can be converted into 2D joint locations. In

order to have a fair comparison with [22], we use 250

frames from the sequences: S1 Walking, S1 Jog, S2 Jog

captured by camera 1.

N-Best Dataset, this dataset was collected by the authors

of [19], which has four sequences in total. As a fair

comparison to [22], we also report results on sequences

walkstraight and baseball.

4.2. Evaluation Metrics

Similar to [22], we use PCP and KLE to evaluate our

results. Probability of a Correct Pose (PCP) [8] is a

standard evaluation metric which measures the percentage

of correctly localized body parts within a threshold.

Keypoint Localization Error (KLE) [22] measures the

average Euclidean distance from the ground truth to the

estimated keypoints, normalized by the size of the head in

each frame.

Outdoor Dataset [22]

Metric Method Head Torso U.L L.L U.A. L.A. Average

PCP

[22] 0.99 0.86 0.95 0.96 0.86 0.52 0.86

[19] 0.99 0.83 0.92 0.86 0.79 0.52 0.82

[5] 0.87 0.97 0.68 0.89 0.78 0.52 0.79

Ours(Baseline) 0.92 1.00 0.84 0.73 0.68 0.47 0.77

Ours(Abt. Only) 0.99 1.00 0.89 0.77 0.72 0.53 0.82

Ours(Asc. Only) 0.99 1.00 0.87 0.76 0.79 0.56 0.83

Ours 0.99 1.00 1.00 0.97 0.91 0.66 0.92

KLE

[22] 0.39 0.58 0.48 0.48 0.88 1.42 0.71

[19] 0.44 0.58 0.55 0.69 1.03 1.65 0.82

[5] 0.31 0.72 0.91 0.36 0.44 0.72 0.58

Ours(Baseline) 0.58 0.45 0.61 0.78 0.75 1.11 0.71

Ours(Abt. Only) 0.16 0.23 0.48 0.69 0.55 0.78 0.48

Ours(Asc. Only) 0.16 0.20 0.47 0.64 0.44 0.71 0.44

Ours 0.19 0.22 0.35 0.37 0.41 0.61 0.36

Human Eva-I Dataset [29]

Metric Method Head Torso U.L L.L U.A. L.A. Average

PCP

[22] 0.99 1.00 0.99 0.98 0.99 0.53 0.91

[19] 0.97 0.97 0.97 0.90 0.83 0.48 0.85

[5] 0.99 1.00 0.90 0.89 0.96 0.62 0.89

Ours(Baseline) 1.00 1.00 0.93 0.62 0.44 0.24 0.71

Ours(Abt. Only) 1.00 1.00 0.98 0.66 0.43 0.30 0.73

Ours(Asc. Only) 1.00 1.00 0.94 0.62 0.45 0.27 0.71

Ours 1.00 1.00 1.00 0.94 0.93 0.67 0.92

KLE

[22] 0.27 0.48 0.13 0.22 1.14 1.07 0.55

[19] 0.23 0.52 0.24 0.35 1.10 1.18 0.60

[5] 0.13 0.40 0.23 0.16 0.14 0.24 0.22

Ours(Baseline) 0.17 0.40 0.34 0.45 0.66 0.84 0.48

Ours(Abt. Only) 0.17 0.41 0.29 0.41 0.66 0.75 0.45

Ours(Asc. Only) 0.17 0.39 0.33 0.42 0.63 0.74 0.45

Ours 0.16 0.42 0.13 0.15 0.20 0.24 0.22

N-Best Dataset [19]

Metric Method Head Torso U.L L.L U.A. L.A. Average

PCP

[22] 1.00 0.69 0.91 0.89 0.85 0.42 0.80

[19] 1.00 0.61 0.86 0.84 0.66 0.41 0.73

[5] 1.00 1.00 0.91 0.90 0.69 0.39 0.82

Ours(Baseline) 1.00 1.00 0.92 0.87 0.87 0.52 0.86

Ours(Abt. Only) 1.00 1.00 0.91 0.89 0.87 0.65 0.89

Ours(Asc. Only) 1.00 1.00 0.93 0.91 0.87 0.55 0.88

Ours 1.00 1.00 0.92 0.94 0.93 0.65 0.91

KLE

[22] 0.53 0.88 0.67 1.01 1.70 2.68 1.25

[19] 0.54 0.74 0.80 1.39 2.39 4.08 1.66

[5] 0.15 0.23 0.31 0.37 0.46 1.18 0.45

Ours(Baseline) 0.15 0.19 0.36 0.49 0.32 0.84 0.39

Ours(Abt. Only) 0.15 0.19 0.31 0.43 0.34 0.60 0.34

Ours(Asc. Only) 0.15 0.17 0.27 0.42 0.29 0.68 0.33

Ours 0.15 0.17 0.24 0.37 0.30 0.60 0.31

Table 1. Comparisons with the state-of-the-art methods on three

publicly available datasets. Note that PCP is an accuracy measure,

so the larger the better, with a max of 1; and KLE is an error

measure, so the smaller the better.

4.3. Results

We compare the proposed method with three

state-of-the-art video based human pose estimation

methods: N-Best method ([19]), Symmetric Tracking

method ([22]), and Mixing Body-part method ([5]);

we did not compare with some upper body pose

estimation/tracking methods ([27, 34]), since they

focus on the modeling of hands/elbows by motion and

appearance features but do not handle other body parts.

Since [5] was designed for upper-body pose estimation,

we re-implemented its algorithm by reusing most of their

implementation and extended it to a full-body detection

model. Quantitative results are shown in Table 1, and

qualitative results are shown in Fig.6. Note that the figures

for Symmetric Tracking method are reproduced from

figures in [22], since the code is not publicly available.

We also show detailed results to analyze the
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Figure 6. Examples and comparisons with the state-of-the-art methods: N-Best [19], Symmetric Tracking (Sym. Trk.) [22] and ours. (a)

and (b) are from N-Best Dataset; (c) is from Human Eva I dataset; and (d)-(f) are from Ourdoor Pose Dataset. Body parts are shown in

different colors. Please see more results from http://crcv.ucf.edu/projects/human_pose_estimation/.

contributions of each step of the proposed method.

In Table 1,’Ours(Baseline)’ shows the results for the

proposed method without ’Abstraction’ and ’Association’;

‘Ours(Abt. Only)’ shows the results for only applying the

‘Abstraction’ step of our method; and ‘Ours(Asc. Only)’

shows the results for only using the ‘Association’ step of

the proposed method. From these results we found that

‘Abstraction’ is more important than ‘Association’ in the

proposed method, due to the fact that it contributes more to

the quantitative improvement.

Limitations: The proposed method relies on N-Best

method ([19]); therefore, if N-Best method can not generate

any correct candidates for a specific body part, it is not

possible to obtain improved results by the proposed method.

4.4. Implementation Details

We process 15 consecutive frames each time. For Eqn.5

and 8, we normalized the unary and binary weights in each

frame between 0 and 1. We use α = 0.5 in Eqn.3, and

λc = λs = λT = 1 for Eqn.5,8 and 12. For σ in Eqn.4

and θ in Eqn.6, we use 10% of the median height (normally

15-30 pixels) of N-Best poses ([19]) obtained from the step

in Section 3.3. For each real body part (Section 3.3), we

generate 20 hypotheses, and for each abstract body part we

select the top 10 tracklets (Section 3.4 and 3.5).

4.5. Computation Time

We performed experiments on a desktop computer

with Intel Core i7-3960X CPU at 3.3GHz and 16GB

RAM. On average, to process one frame (typical frame

size: 600 × 800, we resize the larger frames), the

Matlab implementation took 0.5s to generate the body

part hypotheses and weights, 0.5s to build the graph and

compute the tracklets, and it took 0.1s to build the pose

hypothesis graph (Section 3.6) and get the optimal solution.

5. Conclusions and future work

We have proposed a tree-based optimization method

for human pose estimation in videos. Our contribution is

mostly focused on reformulating the problem to remove

the simple cycles from the graph, and at the same time

maintain the useful connections at the greatest possible

extent, in order to transform the original NP-hard problem

into a simpler tree based optimization problem, for which

the exact solution exists and can be solved efficiently. The

proposed formulation is general and it has a potential to

be employed in solving some other problems in computer

vision.
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