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Abstract

Higher-order models have been shown to be very useful

for a plethora of computer vision tasks. However, existing

techniques have focused mainly on MAP inference. In this

paper, we present the first efficient approach towards ap-

proximate Bayesian marginal inference in a general class

of high-order, multi-label attractive models, where previous

techniques slow down exponentially with the order (clique

size). We formalize this task as performing inference in

log-supermodular models under partition constraints, and

present an efficient variational inference technique. The re-

sulting optimization problems are convex and yield bounds

on the partition function. We also obtain a fully factorized

approximation to the posterior, which can be used in lieu of

the true complicated distribution. We empirically demon-

strate the performance of our approach by comparing it to

traditional inference methods on a challenging high-fidelity

multi-label image segmentation dataset. We obtain state-

of-the-art classification accuracy for MAP inference, and

substantially improved ROC curves using the approximate

marginals.

1. Introduction

Dealing with uncertainty is a central challenge in com-

puter vision and pattern recognition. Probabilistic modeling

and inference have consequently received much attention in

these fields. However, general purpose approximate infer-

ence algorithms such as belief propagation, mean-field [1]

and variants slow down exponentially with the size of the

largest interaction (number of variables per clique) in the

model. Hence, their application has been mostly restricted

to low-order models of limited expressive power. For the

purpose of MAP (Maximum A Posteriori) inference, captur-

ing richly parameterized interactions between large sets of

variables has been shown to be very beneficial to computer

vision tasks, e.g., in semantic segmentation [2]. The result-

ing energy minimization problems – even though involv-

ing large cliques – remain tractable, as long as the energy

functions are submodular. The downside of MAP inference
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Figure 1: Results on a sample image. (a) Original image. (b,c)

Two superpixel layers that are used to define the higher-order po-

tentials. (d) The MAP estimate using our formulation. (e) Entropy

of the approximated marginals. (f) Ground truth. Note that our

MAP estimate closely matches the ground truth, while capturing

uncertainty in difficult regions.

is that all uncertainty is collapsed into a single configura-

tion. A variety of scenarios, such as computing gradients

for conditional random field training, integrating estimation

into more complex probabilistic models and quantifying the

uncertainty in estimations, require (approximated) marginal

inference. Given that submodularity has profound impli-

cations for MAP inference, what are its consequences for

marginal inference?

Related work. Most methods for inference in high-order

models focus on MAP inference. For example, Kohli et

al. [2] show how to minimize the energy of robust Pn po-

tentials by move-making using graph cuts. Tarlow et al. [3]

demonstrate how to compute the max-product messages for

a family of potentials. Zhang et al. [4] utilize parallelization

to achieve constant acceleration for both MAP and marginal

inference, but with exponential complexity in terms of mod-

el order. A recent primal-dual method [5] employs move-

making-like MAP inference for arbitrary higher-order po-

tentials while the iteration-wise complexity is still pro-
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hibitively exponential in the clique size. In the case of nest-

ed cardinality-based potentials, Tarlow et al. [6] develop a

fast algorithm for the exact computation of the factor-to-

variable messages for marginal inference. The strategy of

Krähenbühl et al. [7] to speed up the mean-field updates by

filtering has been extended to higher-order models by Vi-

neet et al. [8], for a family of potentials different from the

ones considered in this paper. However, the two families of

potentials partially overlap on representative vision models

such as higher order Potts model.

Submodularity, as a discrete analogue of convexity, has

profound consequences for optimization, with many appli-

cations in computer vision, machine learning and beyond

[9, 10, 11]. In vision, submodular functions have been pri-

marily utilized for efficient MAP inference as they have the

remarkable property that they can be minimized in polyno-

mial time. The most notable case is MAP inference in the

attractive Ising model using graph cuts [12], but the problem

remains tractable regardless of the cardinality of the poten-

tials. Jegelka et al. [13] use submodularity to model cooper-

ative behavior between edges for image segmentation. The

consequences of submodularity for (approximate) marginal

inference, however, have not been investigated until very re-

cently. Djolonga et al. [14] present a variational inference

approach applicable to arbitrary log-supermodular models.

Their approach, however, is limited to binary variables. A

different class of submodular-based models (also for binary

variables) is studied by Iyer et al. [15].

Our contributions. We introduce a class of multi-label

log-supermodular models, which generalizes the Potts

model [16], but allows to capture attractive interactions of

arbitrary order. Extending the approach of [14] on infer-

ence in probabilistic submodular models, we propose a nov-

el variational inference scheme, which yields a bound on the

partition function. The resulting optimization problem is

convex, and can be solved efficiently using the Frank-Wolfe

(conditional gradient) algorithm with low per-iteration com-

plexity. At every step, it produces a completely factorized

distribution that approximates the true posterior. For the

special case of two labels, thresholding this approximate

distribution recovers the true MAP assignment. Further-

more, our approach can be interpreted as – and used for –

smoothing a convex relaxation to the MAP inference prob-

lem. In summary, our main contributions are:

• A novel Bayesian modeling framework for multi-class

log-supermodular distributions.

• An easy-to-implement technique for approximate

marginal inference with a guaranteed convergence rate.

• A clear connection between our inference scheme and s-

moothed MAP inference.

Figure 2: The binary (two-label) case. The set consisting of the

green elements correspond to the configuration X1 = X3 = 2 and

X2 = X4 = X5 = X6 = 1.

• Experiments demonstrating the scalability and effective-

ness on a natural scene segmentation task.

2. Review: Binary Models & Submodularity

We now review relevant background for the binary (two-

label) case and defer the discussion for the multi-label case

to section 3. Formally stated, we seek to model a joint dis-

tribution for a random vector X = [X1, X2, . . . , XN ] such

that each component Xi takes on values in {1, 2}.

Random vectors vs. sets. To draw connections to com-

binatorial optimization, it will be very important to state

the distribution as being defined over subsets of a ground

set V = {1, 2, . . . , N}. We can construct a bijection be-

tween the set of all possible states {1, 2}N and the set

of all subsets of V by identifying any configuration x =
(x1, x2, . . . , xN ) ∈ {1, 2}N with the set Ax = {i | xi =
2}. Please see figure 2 for an illustration. With this perspec-

tive, we will consider distributions of the form

P (A) =
1

Z
exp(−F (A)),

where F : 2V → R and Z =
∑

A⊆V exp(−F (A)) is the

so-called partition function that normalizes the distribution.

Hereby, F is often called the energy function.

Submodular minimization and MAP. A very important

problem is to compute the MAP configuration, i.e., finding

a set A∗ such that F (A∗) is minimal (and hence P (A∗) is

maximal). While generally very challenging, a well-studied

class of functions for which this can be done in polyno-

mial time are submodular functions [17]. A set function

F : 2V → R is said to be submodular with ground set V if

it satisfies the following property

F (i | A) ≥ F (i | B)

for all sets A ⊆ B and i /∈ B, where we define the marginal

gain F (i | A) as

F (i | A) = F (A ∪ {i})− F (A).

This definition states the diminishing returns property —

the benefit of any item i decreases as the context A grows.

We will also assume that F is normalized so that F (∅) = 0.

However, note that this is no restriction as the distributions
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P (A) ∝ exp(−F (A)) and P (A) ∝ exp(−F (A) + β) are

identical for any constant β.

Very often the energy function F (·) decomposes and

can be written as sum of simpler functions, i.e., F (A) =
∑R

i=1 Fi(A ∩ Ui), where Ui ⊆ V is the domain of the i-th
component Fi. For these functions, maxi |Ui| is called the

order of the model. As an important example, the widely

used cut function is of this form:

F (A) =
∑

u∈A,v/∈A

wu,v =
∑

u,v∈V

wu,v[|A ∩ {u, v}| = 1].

Hereby, wu,v ≥ 0 are non-negative weights, and [·] denotes

the indicator function of the event encoded by its argument.

The cut function can be used to obtain the attractive Ising

model when the ground set can be organized on a grid and

we add weights between immediate neighbors. Then, the

resulting probability distribution is

P (A) ∝
∏

u∈V,v∈V

exp(−wu,v[|A ∩ {u, v}| = 1]).

We can immediately see the attractive behavior as it prefers

neighbors to be assigned to the same class (so that the above

intersections are of size 0 or 2). The cut function is of or-

der 2. In this paper, we will consider functions of much

higher order, discussed in more details in section 7.

A special family of submodular functions that we will

make extensive use of are modular functions (which are of

order 1). A function s : 2V → R is modular if s(A) =
∑

i∈A s({i}). Note that their corresponding distributions

completely factorize as P (A) ∝
∏

i∈A exp(−s({i})), and

the factors are often called unary potentials. Modular func-

tions are essentially linear functions in the discrete world

and can be represented by the values si = s({i}) for i ∈ V .

We will thus treat modular functions s(·) as vectors s ∈ R
N

with coordinates si = s({i}).

3. Modeling for the Multi-label Case

We will now show how to handle the more general case

where each variable can take one of L different values

{1, 2, . . . , L}1. We will represent each random variable Xi

by L distinct elements Vi = {vi,1, vi,2, . . . , vi,L} corre-

sponding to the values it can take. The idea is that if for

example vi,5 is chosen, then this corresponds to Xi tak-

ing on the value 5. This is also known as the 1-of-L en-

coding. To make sure that the variable can take only a s-

ingle value, we will add a constraint Mi that forces the

distribution to assign non-zero mass only to those config-

urations that select exactly one element from Vi. Formally

stated, Mi = {A : |A ∩ Vi| = 1} and our final constraint

1Our approach can be easily extended to the case where each random

variable takes on a different set of values.

Figure 3: An illustration of the ground set when we have 6

random variables and three possible values/labels for each. The

set corresponding to the blue elements satisfies the partition con-

straints and specifies a feasible assignment. The orange set does

not as it picks two values from V3 and no value from V1.

is M = ∩N
i=1Mi. In the combinatorial optimization liter-

ature, these constraints are known as the bases of the par-

tition matroid [18][§2.1] and we will use the shorter name

partition constraints. Note that the final ground set is equal

to V = ∪N
i=1Vi and has a total of NL elements. We de-

pict this with an example in figure 3. In our experiments

we will define one energy function for each set of elements

of the ground set that correspond to the same label. We

thus also define the sets V j = {vi,j | i = 1, 2, . . . , N} for

j = 1, 2, . . . , L.

With this set-based view at hand, we will consider distri-

butions of the form

P (A) =

{

1
Z exp(−F (A)) if A ∈ M

0 otherwise

for some submodular function F : 2V → R. We call such

models multi-label log-supermodular models.

Using our modeling methodology we can also obtain2

the Potts model [16], which extends the Ising model to mul-

tiple labels. The idea is to use one cut function Fj as in the

Ising model for each subset of elements that belong to some

label, i.e., Fj is a cut on the elements V j . Then, the Potts

model corresponds to P (A) ∝ exp(−
∑L

j=1 Fj(A)).
Another family of submodular functions that are useful

in modeling are concave-over-modular functions, i.e., those

of the form F (A) = h(s(A)), where s is a non-negative

modular function and h is concave. We will make use of

(sums of) such functions in section 7 for modeling label-

consistency over superpixels. Note that models of this form

have very high order (usually O(N)).

4. Probabilistic Inference

Given the log-supermodular model we have just intro-

duced, we are interested in marginal inference, i.e., comput-

ing the marginal probabilities P (Xi = j) = P (vi,j ∈ A)

2Here we just sketch the construction and a formal proof can be found

in the appendix.
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for every i = 1, 2, . . . , N and j = 1, 2, . . . , L. The central

challenge here is the computation of the normalizer

Z =
∑

A∈M

exp(−F (A))

without exhaustive enumeration. Unfortunately, even for

the attractive Ising model, which has only pairwise interac-

tions and a tractable MAP problem, computing the normal-

ization Z constant is known to be #P-hard [19]. It is also

hard to even approximate it, as shown in [20].

In this paper, we pursue a variational approach that op-

timizes a bound on Z by approximating the distribution P
by simpler distributions with analytical normalization con-

stants. Before we present our approximation scheme, we

have to introduce the base polytope B(F ) of the submodu-

lar function F , which is defined as

B(F ) = {s ∈ R
NL | ∀A ⊆ V : s(A) ≤ F (A)}

∩ {s ∈ R
NL | s(V ) = F (V )},

where s denotes the modular function s(·) when seen as a

vector. It is exactly the set of all modular lower bounds of F
that are tight at the ground set V . We build on the approach

of [14] (who addressed the case of two labels) and bound

the partition function as follows. For any s ∈ B(F ) we

have that for all A ⊆ V it holds that s(A) ≤ F (A), which

implies the following inequality

Z =
∑

A∈M

e−F (A) ≤
∑

A∈M

e−s(A). (1)

Hence, we can upper-bound the partition function by the

partition function of the distribution Q(A) ∝ exp(−s(A)).
Moreover, because s ∈ B(F ) is a free parameter, we

have a variational bound that we can optimize. For

any s ∈ B(F ) we also have an approximative distribu-

tion Q(A) ∝ exp(−s(A)), which can be easily used in

lieu of P (A) as it fully factorizes and has an analytical

partition function. Specifically, its partition function is
∏N

i=1

∑L
j=1 exp(−si,j), which we can plug into (1) to ar-

rive (after taking logs) at the following convex problem

minimize
s∈B(F )

N
∑

i=1

log

L
∑

j=1

exp(−si,j). (2)

The question that remains is how to tackle the above prob-

lem. The most remarkable fact about B(F ) is that even

though it is defined by exponentially many inequalities, we

can efficiently optimize linear functions over it due to the

celebrated result of Edmonds [17]. To maximize a linear

function 〈w, s〉 over s ∈ B(F ), we first have to sort the

elements of w. Specifically, let σ : {1, 2, . . . , NL} → V
be a bijection so that wσ(1) ≥ wσ(2) ≥ . . . ≥ wσ(NL), and

construct the sets S0 = ∅ and Si = {σ(1), σ(2), . . . , σ(i)}
for i = {1, 2, . . . , NL}. Then, the optimizer is the vector

s∗ with coordinates s∗σ(i) = F (Si) − F (Si−1). Hence, we

need O(NL logNL) operations to sort the vector w and at

most NL function evaluations to obtain the function differ-

ences. Below, we show how this result can be used as a key

subroutine for efficient variational inference.

As linear programming over the base polytope B(F ) is

very cheap, a natural candidate for solving eq. (2) is the

Frank-Wolfe algorithm, which only needs access to such

a procedure. The algorithm has a O(1/k) convergence

rate [21], requires no parameter tuning and provides an eas-

ily computable duality gap at each iteration.

In the common case of decomposable functions, i.e.,

F (A) =
∑R

r=1 Fr(A), we can easily parallelize the compu-

tation of the linear optimization oracle, due to the fact that

B(F ) =
∑R

r=1 B(Fr) [22][§4.2]. The complete procedure

is provided as algorithm 1, where we have denoted the ob-

jective of eq. (2) as g(·). Note that computing ∇g(s) is very

efficient, as it amounts to the computation of the marginal

probabilities under the distribution Q(A) ∝ exp(−s(A)).

Specifically, [∇g(s)]i,j = −e−si,j/
∑L

k=1 e
−si,k .

Algorithm 1 Inference with Frank-Wolfe

1: Initialize s = s0 ∈ B(F )
2: for k = 1 to MAX STEPS do

3: xr = argmin
y∈B(Fr)〈∇g(s),y〉 in parallel for r

4: x =
∑R

r=1 xr

5: if 〈x− s,∇g(s)〉 ≤ ǫ then

6: break

7: end if

8: s = s+ γ (x− s) with γ = 2/ (k + 2)
9: end for

10: return Q(si,j ∈ A) ∝ exp(−si,j)

5. Special Properties in the Binary Case

For the binary case there are in fact two approaches one

could take. First, we can simply use a ground set of size N
without any constraints, as discussed in section 2. Then, the

distribution will be equal to

P (A) ∝ exp(−G(A)) for A ⊆ {1, 2, . . . , N}. (3)

This class of models has been considered by [14], who pre-

sented a variational inference scheme for it. Alternatively,

we can use our partition constraint construction from sec-

tion 3 with a ground set of size 2N . Then, the model is

P (A) =

{

exp(−F (A)) if A ∈ M

0 otherwise
, (4)
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defined on the ground set

V = {vi,j | i = 1, 2, . . . , N and j = 1, 2}.

The two models can be seen to be equivalent if in the lat-

ter case the function F splits across the labels, which can

be formalized as follows. Note that we can write V as

V = V 1 ∪V 2, where V j are the elements corresponding to

label j. What we mean by the splitting condition is that the

energy can be written as F (A) = F1(A∩V 1)+F2(A∩V 2)

for some functions F1 : 2V
1

→ R and F2 : 2V
2

→ R. To

define the equivalent model of the form eq. (3) we define

for k = 1, 2

Gk : 2{1,2,...,N} → R as Gk(A) = Fk({vi,k | i ∈ A}).

Then, the equivalence of these models is immediate if we

use G(A) = G1(A)+G2(A), where we have denoted by A
the complement of A. Note that it is easy to go in the other

direction (from eq. (3) to eq. (4)) by defining

F (A) = G({i | vi,2 ∈ A}).

The natural question that arises if the two inference pro-

cedures, the one of [14] and ours from eq. (2) will yield

the same result when ran on their respective models. The

problem from [14] is equal to

minimize
s∈B(G)

∑

i∈V

log(1 + e−si), (5)

which is not immediately equivalent to eq. (2). However, in

the setting we have outlined above they do yield exactly the

same probabilities.

Claim 1. The inference problems eq. (2) and eq. (5) will

yield the same marginal probabilities if F and G are in the

above correspondence.

The proof of Claim 1 is provided in the supplement. This

result has two important consequences. First, it shows that

our approach strictly generalizes that of [14]. Second, it

proves that the theoretical guarantees from [23] also hold

for our procedure in the binary case. For example, thresh-

olding the approximate marginals at 1/2 will give us an ex-

act MAP solution. Furthermore, the authors in [23] show

that eq. (5) is equivalent to minimizing the following diver-

gence over all factorized distributions Q

D∞(P ‖ Q) = log sup
A⊆V

P (A)

Q(A)
.

This divergence-centric view gives us a hint of the quali-

tative behavior of the approximative distribution. Namely,

due to the penalization by the worst case ratio, we would

expect approximative distributions Q that try to avoid be-

ing over-confident and spread the probability over a larger

family of sets. In section 7, we will see how this result-

s in expressive approximate marginals with rich dynamic

range.

6. Probabilistic Inference as Smoothed MAP

In many applications, marginals are important and use-

ful. In other settings, a single MAP configuration might suf-

fice. In this section, we discuss how one can interpret our

marginal inference technique as solving a smoothed MAP

problem which provides computational benefits. Smooth-

ing (using the ℓ2 norm) has been used in the case of submod-

ular optimization by [24], and entropy-based smoothing has

been used for LP-based MAP inference, e.g., [25, 26].

The MAP problem, i.e. finding the most probable con-

figuration for our model is easily seen to be equivalent to

the following discrete optimization problem

minimize
A⊆V

F (A)

s.t. |A ∩ Vi| = 1, ∀i = 1, . . . , N.
(6)

To explain the connection with our approach we need the

Lovász extension f of F [27], which is defined as

f(p) = sup
s∈B(F )

〈p, s〉.

It is called an extension as it agrees with F on the vertices

of the unit cube. Formally, for any A ⊆ V we have that

F (A) = f(1A), where 1A is the characteristic vector of A
with 1 in those positions corresponding to the elements of

A and 0 elsewhere. Thus, we can see the above problem as

the following binary minimization problem

minimize
p∈{0,1}N

f(p)

s.t. 1Tpi = 1, ∀i = 1, . . . , N,
(7)

where pi ∈ {0, 1}L are the components of p corresponding

to the i-th random variable3. A natural approach (c.f. [28])

to solve this problem is to relax pi to the probability simplex

(the convex hull of the feasible vectors)

∆ = {pi ∈ R
L | pi ≥ 0 and 1Tpi = 1}.

Now the connection is clear from the following claim.

Claim 2. The Fenchel dual of the problem in eq. (2) is equal

to the following.

minimize
pi∈∆

f(p)−
N
∑

i=1

H[pi], (8)

where H[p] denotes the Shannon entropy. There is zero d-

uality gap and the pair (s∗,p∗) is primal-dual optimal iff

〈s∗,p∗〉 = f(p∗) and

p∗i,j = exp(−s∗i,j)/
L
∑

j=1

exp(−s∗i,j).

3Specifically, those entries correspond to Vi
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A natural step is to instead smooth the objective using

ǫH[·] for some smoothing parameter ǫ > 0, which allows to

control the level of smoothness 4. More precisely, we can

solve the following problem for some ǫ ≥ 0

minimize
pi∈∆

f(p)− ǫ

N
∑

i=1

H[pi]. (9)

If we reduce ǫ the objective will get closer to the MAP re-

laxation (which corresponds to ǫ = 0), but the optimization

procedure will become more challenging, since the Lovász

extension is non-smooth. We formalize this relationship in

the following claims, while in section 7 we conduct experi-

ment with different smoothing strengths ǫ.

Claim 3 (from [21]). For smoothing parameter ǫ > 0 the

Frank-Wolfe algorithm converges at a rate of O( 1
ǫk ).

Claim 4. Let us denote with p∗(ǫ) the optimum of eq. (9)

when using smoothing parameter ǫ ≥ 0. Then, we have that

f(p∗(ǫ))− f(p∗(0)) ≤ ǫN logL.

Moreover, for any ǫ,N and L, we can always construct a

submodular function F so that

f(p∗(ǫ))− f(p∗(0)) =
1

2
ǫN log(L− 1).

The first part of Claim 4 has been used before, see

e.g., [26]. Hence, the bound on the convergence rate grows

linearly with 1/ǫ and the suboptimality decreases linearly

with ǫ. Moreover, this convergence bound can be very close

to tight for an adversely chosen F .

7. Experiments

We now report our experimental setup and results on a

challenging semantic segmentation task.

Higher-order modeling. As standard components, our

energy function consists of unary terms specified as a mod-

ular function m(A) and pairwise terms (a Potts model)

FPotts, θ which capture pairwise interactions of neighboring

pixels5. We first generate multiple layers of superpixels

Pℓ ⊆ 2{1,...,N} with the mean-shift algorithm [29]. I.e.,

for each layer ℓ, Pℓ is a collection of connected regions of

pixels with homogeneous appearance. See figure 1b and 1c

for an illustration. For every generated superpixel S ∈ Pℓ,

S ⊆ {1, 2, . . . , N} and label j ∈ {1, 2, . . . , L}, we define

V j
S = {vi,j | i ∈ S}. Note that V j

S are the elements of

the ground set that have to be chosen if the variables in S
take on value j. To encourage label consistency in each su-

perpixel S, we introduce a concave-of-cardinality potential

4Can be also seen as changing the temperature, shown in the appendix.
5We discuss the details of the pairwise potentials in the appendix.

Figure 4: An illustration of the potentials. Every square repre-

sents a superpixel with a different proportion of labels. Underneath

we show for every label class its contribution to the energy by the

length of the corresponding bar (the value of the potential for that

label). The final energy is the sum of these three contributions and

is minimal when all labels are assigned to a single class.

function of the form FS(A) =
∑L

j=1 |V
j
S \(A ∩ V j

S )|
α for

some α ∈ (0, 1), which is illustrated in figure 4. The overall

energy is then given by

F (A) = m(A) + β1FPotts,θ(A) + β2

∑

ℓ

∑

S∈Pℓ

FS(A),

with β2 and α as the higher-order parameters.

We consider the following log-supermodular models.

• SUBMODPAIR: Potts model on a grid (β2 = 0).

• SUBMOD2-LAYER: Higher-order with 2 layers (β1 = 0).

• SUBMOD3-LAYER: Higher-order with 3 layers (β1 = 0).

• SUBMOD2-LAYER-PAIR: SUBMOD2-LAYER plus pairwise

interactions (both β1 > 0 and β2 > 0).

To concretely specify the super pixels, denote by sp, sr
and mr the spatial bandwidth, the range bandwidth and the

minimum size of regions for mean-shift segmentation re-

spectively. We generate superpixels with (sp, sr,mr) =
(7, 4, 500), (7, 7, 300) and (7, 10, 100). Models with two

layers of superpixels use the first and last configurations.

Experimental setup. We evaluate our approach on the

MSRC-21 dataset. As the original dataset has only coarse-

grain annotations, we use the fine-grain annotations for a

subset of 93 images by [7]. For all the experiments we

use the TextonBoost unary features [7]. We report the re-

sults using 5-fold cross-validation with the parameters cho-

sen using grid search (exact numbers provided in the ap-

pendix). For SUBMOD2-LAYER-PAIR, which uses both pairwise

and higher-order interactions, we set the pairwise parame-

ters to those selected for SUBMODPAIR, and cross-validate

the higher-order parameters.

In addition to our models, we do experiments on the

Potts model with the mean-field and belief-propagation al-

gorithms from libDAI [30]. We also report the perfor-

mances of ROBUST-PN [2] and the fully connected pairwise

model CRFFULLY [7] as computed by [7]. Our inference pro-

cedure runs on 4 threads on an Intel Core-i5 quad-core 3.2

GHz processor. The algorithms using libDAI run on a

single core of the same processor.
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Figure 5: (a,b) ROC curves over trimaps with bandwidths 0 (i.e. only boundary pixels) and 10 respectively. (c,d) shows for SUBMOD3-LAYER

the values of the Lovász extension and the discrete energy after a fixed number of iterations.

Area under ROC curve KL-divergence
Pixel-wise accuracy Running time

bandwidth 0 5 10 20 0 5 10 20

UNARY 0.8254 0.8602 0.8841 0.9112 3.01 2.39 2.00 1.55 83.71%± 1.81% –

SUBMODPAIR 0.8443 0.8708 0.8905 0.9119 2.82 2.22 1.86 1.45 83.92%± 1.81% 12.58

BPPAIR 0.7727 0.8034 0.8245 0.8504 12.03 9.66 8.14 6.34 83.91%± 1.81% 25.64

MFPAIR 0.7663 0.8006 0.8226 0.8499 9.71 8.62 7.37 5.77 83.83%± 1.82% 203.53

SUBMOD2-LAYER 0.8735 0.9035 0.9132 0.9233 1.68 1.16 0.99 0.79 88.55%± 1.80% 12.53

SUBMOD2-LAYER-PAIR 0.8886 0.9184 0.9278 0.9371 1.62 1.14 0.97 0.78 88.48%± 1.68% 20.10

SUBMOD3-LAYER 0.8904 0.9173 0.9264 0.9355 1.57 1.11 0.95 0.77 88.61%± 1.70% 15.86

CRFFULLY – – – – – – – – 88.2%± 0.7% 0.2

ROBUST-PN – – – – – – – – 86.5%± 1.0% 30

Table 1: Results for the AUC and KL divergence metrics across several trimaps. The pixel-wise accuracies are computed across the full

image. The running times and accuracies of the last two rows are as reported by [7].

7.1. Evaluating inference

Estimation of marginals. Because computing the true

marginals is intractable due to the size and order of the

model, we use the area under the ROC curve (AUC) as

a proxy to quantitatively measure the quality of marginal-

s. As we work in a multi-class setting, we first generate

one ROC curve per class using the 1-vs-all strategy, which

are then averaged to yield the overall curve, as implement-

ed in scikit-learn [31]. In addition to the AUC, we

evaluate the pixel-wise average KL divergence KL(q ‖ p)
between the estimated marginals q and the ground truth la-

belling p (which is a deterministic 0-1 distribution). We al-

so report numbers on the most challenging part of the image

— those pixels around the semantic boundaries. Following

[2], a trimap with bandwidth h is defined as the union of

(2h + 1) × (2h + 1) neighborhoods of all boundary pixel-

s. In figure 5a and figure 5b, we show the ROC curves and

the corresponding areas under them are shown in table 1.

For different trimap bandwidths, either SUBMOD3-LAYER or

SUBMOD2-LAYER-PAIR achieves the best AUC. We also ob-

serve that the higher-order models dramatically improve the

AUC over UNARY, while the pairwise models have at most

minimal benefits. In table 1, we observe that the higher-

order models achieve a much lower KL divergence than

the competing models. As the marginals from BPPAIR and

MFPAIR are substantially more concentrated near 0 or 1,

these can contribute large values to the KL divergence if

they are concentrated at the wrong class. Thus we obtain

much worse values from BPPAIR and MFPAIR than those from

UNARY in table 1.

MAP Estimation. As shown in table 1, SUBMOD3-LAYER

achieves the best result of 88.61%, followed by CRFFULLY.

As CRFFULLY is a pairwise model, the runtime is not directly

comparable to our higher-order approach. Hence, at a speed

similar to ROBUST-PN we obtain approximate marginals in

addition to a high-quality MAP solution.

Efficiency-accuracy trade-off. To better understand the

effects of the smoothing parameter ǫ (see section 6), we

plot on figures 5c and 5d the values of the Lovász exten-

sion and the discrete energy after a fixed number of iter-

ations. First, it is evident from both plots that with weak

smoothing one obtains very bad results, as postulated by

Claim 3. Large values of ǫ seem to hurt the optimization

of the Lovász extension, but the effect on the discrete ener-

gy seems much more benign. We believe that this is due to

the fact that to minimize the discrete energy you just need

the right marginal to be largest, which can be achieved even

when distribution is close to uniform (as preferred by large

values of ǫ). Moreover, note that using our inference ap-

proach (ǫ = 1) we do minimally worse in terms of MAP

performance, but we also obtain a bound on the partition

function and well-motivated approximate marginals.
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Figure 6: Qualitative results — MAP estimates and the entropy of the estimated marginals (higher entropy for darker regions.)

Image UNARY MAP Entropy GT

Figure 7: Hard examples for SUBMOD3-LAYER.

7.2. Qualitative results

To better understand the resulting segmentations, we vi-

sualize several examples in figure 6. Comparing with U-

NARY, the pairwise model SUBMODPAIR is able to only e-

liminate small noisy spots, while the higher-order factors

in SUBMOD3-LAYER also smooth out relatively larger noisy

regions. As the generated superpixels usually preserve the

fine semantic boundaries, our higher-order prior preserves

these region boundaries better than simple pairwise smooth-

ing. As shown on the figure, SUBMOD3-LAYER can indeed

produce good segmentations even if the unary potentials do

not align well with the true boundaries.

To understand the behavior of the resulting approximate

posterior, we show in figure 6 the entropies of the esti-

mated marginals. In our visualization darker colors cor-

respond to higher entropy (higher uncertainty). BPPAIR is

rather overconfident and produces high uncertainty only in

a very narrow range while SUBMODPAIR reports uncertain-

ty with much higher dynamic range. Both pairwise models

reduce the entropy in uncertain regions resulting from the

noisy unary features. The uncertainty in the estimates from

SUBMOD3-LAYER follows a different pattern and similar un-

certainty levels are typically observed within single regions.

In addition, and most importantly, we can also see from the

hard examples in figure 7 that our approach is uncertain

in the regions where it produces wrong estimates, which is

what is desired when the data is noisy.

8. Conclusion

In this paper, we proposed a log-supermodular model for

multi-class probabilistic modeling with higher-order inter-

actions. We posed a variational inference procedure as a

convex optimization problem over the base polytope, and

showed how to solve it efficiently using the Frank-Wolfe

algorithm. We also made a connection to a smoothed con-

vex MAP relaxation and discussed the trade-off obtained

by changing the smoothing parameter. In comparison with

multiple pairwise and higher-order baselines, our model

achieved state-of-the-art performance for both estimating

the MAP and the marginals on the challenging MSRC-21

dataset. We believe that our multi-class framework includes

a large family of richly parameterized models, and our very

easy-to-implement inference algorithm makes them highly

accessible. Together, these results present a step towards

building a more powerful toolbox for modeling and quanti-

fying uncertainty under complex data dependencies.
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