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Abstract

The group membership prediction (GMP) problem in-

volves predicting whether or not a collection of instances

share a certain semantic property. For instance, in kinship

verification given a collection of images, the goal is to pre-

dict whether or not they share a familial relationship. In this

context we propose a novel probability model and introduce

latent view-specific and view-shared random variables to

jointly account for the view-specific appearance and cross-

view similarities among data instances. Our model posits

that data from each view is independent conditioned on

the shared variables. This postulate leads to a parametric

probability model that decomposes group membership like-

lihood into a tensor product of data-independent parame-

ters and data-dependent factors. We propose learning the

data-independent parameters in a discriminative way with

bilinear classifiers, and test our prediction algorithm on

challenging visual recognition tasks such as multi-camera

person re-identification and kinship verification. On most

benchmark datasets, our method can significantly outper-

form the current state-of-the-art.

1. Introduction

Visual similarity plays an important role in visual recog-

nition in object detection and scene understanding [11, 17].

A visual similarity function returns a score of how likely

two instances (e.g. images and videos) share similar seman-

tic concepts (e.g. persons, cars, etc.). With this perspective

we propose the Group Membership Prediction (GMP) prob-

lem, where the goal is to determine how likely a collection

of distinct items share the same semantic property. Fig. 1

depicts the idea of the GMP problem for two visual recogni-

tion tasks, i.e. person re-identification and kinship verifica-

tion. In person re-identification (Re-ID) we are given a col-

lection of images of persons captured from multiple views

(cameras) and the goal is to detect whether or not they be-

long to the same person. In applications such as kinship

detection, the underlying semantic property is more gen-

eral, and the goal is to predict whether or not a collection of

(a) Person re-identification (b) Kinship verification

Figure 1. Illustration of group membership prediction (GMP) in the visual

recognition tasks of (a) person re-identification and (b) kinship verification.

Here we would like to predict (a) whether the four pedetrain images are

taken from the same person, and (b) whether the face images are from the

same family. These images are borrowed from (a) VIPeR dataset [13] and

(b) Family101 dataset [8], respectively.

images share a familial relationship. GMP poses significant

challenges on account of large variations in data including

lighting conditions, poses and camera views.

We introduce a novel parametric probability model for

predicting group membership. Our key insight is that al-

though the visual appearances can significantly vary, they

share a set of latent variables common to all views. As de-

picted in Fig. 2, we can hypothesize “body parts” as shared

latent variables for all the pedestrian images, while for kin-

ship verification “facial landmarks” could be considered as

the shared latent variables. Our model postulates that con-

ditioned on the location of each shared latent variable (body

part or facial landmark) the visual appearance at that loca-

tion is conditionally independent for different views. This

property leads to a natural way of measuring image similar-

ities through comparison of visual similarities of the same

shared latent variables across different views.

This postulate leads us to a joint parametric probabil-

ity model that consists of view-specific and view-shared

random variables. View-specific variables account for vi-

sual characteristics within a view while view-shared vari-

ables account for the integration of multi-view information.

The group membership likelihood factorizes into a tensor

product consisting of data-independent and data-dependent

factors. We learn the data-independent parameters (i.e.

weights) discriminatively using bilinear classifiers. Finally

we marginalize these data tensors over all the dimensions
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(a) Body parts (b) Facial landmarks

Figure 2. Illustration of (a) body parts (e.g. head, torso, legs) for Re-ID

and (b) facial landmarks (e.g. eyes, nose, mouth) for kinship verification.

Note that in these aligned images, these body parts or facial landmarks

approximately coincide in terms of spatial locations.

with the learned weights as the group membership scores.

Our experimental results on multi-camera person Re-ID and

kinship verification demonstrate the good prediction perfor-

mance and computational efficiency of our method.

1.1. Related Work

GMP problem is closely related to multi-view learning

(MVL). Indeed, our perspective of shared variables has

been used before in the context of MVL [12, 29, 30]. Nev-

ertheless, the goal of MVL specifically in visual recognition

is different from ours. Namely, the objective of MVL is to

leverage multiple sources (e.g. texts, images, videos, etc.)

of data corresponding to the same underlying object (e.g.

persons, events, etc.) to improve recognition performance

[3, 14, 21, 30]. On the other hand our goal is to predict

group membership among the multiple sources.

Person Re-ID essentially is a GMP problem, where each

camera view can be taken as one of the instances. In the lit-

erature, however, most of existing works consider this prob-

lem as an independent two-view classification task, mainly

focusing on cleverly designing local features [10, 20, 26,

31, 36] or learning better metrics [15, 16, 18, 19, 25, 37].

Recently, Figueira et al. [12] proposed a semi-supervised

learning method to fuse multi-view features for Re-ID so

that the features agree on the classification results. Das

et al. [5] considered the group membership prediction in

Re-ID by maximizing the summation of pairwise similar-

ity scores using binary integer programming during testing.

Unlike [5], we formulate the group membership problem

as a learning problem, rather than a post-processing step to

improve the matching rate.

Kinship verification is indeed another GMP problem,

where each family role (e.g. father, mother, son, daugh-

ter, etc.) can be considered as an instance. Similar to per-

son Re-ID, existing works mainly focus on learning better

features [6, 9] and better distance metrics [23] for pair-

wise classification [22]. Recently, Qin et al. [28] pro-

posed a bilinear model to handle so-called tri-subject kin-

ship verification problems. Fang et al. [8] proposed a sparse

group lasso based feature selection method to determine

whether a query person is from a specific family. Unlike

[8, 28], our method targets at a more general and challeng-

ing problem which can be used to predict an arbitrary num-

ber of images with a fixed structure of family roles, such as

father-son, father-mother-daughter, grandfather-father-son-

grandson, etc.

2. Our Method

2.1. Problem Setting

Let {(Xm, ym)}m=1,··· ,M be a group of M persons from

different views, where ∀m,Xm denotes the mth person and

ym denotes its label (e.g. identity or family). Let ∀n =
{1, · · · , Nm},xm,n ∈ Xm be the nth image for the per-

son with Nm images in total. The goal of our method is to

predict the following probability as group membership:

p(y1 = · · · = yM |X1, · · · ,XM ). (1)

Note that our problem setting is naturally applicable to

the multiple instance cases. For example, during learning

we allow multiple images to be associated with a person (i.e.

Xm = {xm,n}) in person Re-ID and kinship verification, as

in the CUHK Campus [35] and Family101 [8] datasets.

While we have motivated our approach in the context

of shared latent variables (body parts or facial landmarks),

this information is unavailable during the training or test-

ing phases. Furthermore, estimating locations of body parts

and facial landmarks is known to be extremely challenging

[2, 38]. Fortunately, in the context of the applications and

problems that we are concerned with, the images are ap-

proximately aligned. In these images, foreground objects

are centralized and well cropped. Currently most bench-

mark datasets are composed of such approximately aligned

images, namely, the same body parts or facial landmarks

appear roughly at similar locations. In such cases, pixel

locations provide good approximation of where body parts

and facial landmarks are, and we utilize this property to by-

pass the detection challenge, while accounting for spatial

misalignments with spatial kernels. Note that the issue of

visual ambiguity of the shared variables still remains in our

problem.

2.2. Parametric GMP Model

We introduce two latent variables to model the relation-

ship between the class labels {ym} and data samples {Xm}.

The graphical representation of our parametric probabil-

ity model is shown in Fig. 3(a), where ∀m, zm denotes

the view-specific latent variable for view m, h denotes the

view-shared latent variable, and Nm denotes the number of

images from view m. Based on this model, we can factorize
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(a) Parametric probability model (b) Pairwise decomposition

Figure 3. (a) Graphical representation of our parametric probability model

for GMP. (b) Pairwise decomposition of our model in (a).

our group membership score as follows:

p(y1 = · · · = yM |X1, · · · ,XM ) (2)

=
∑

z1,··· ,zM ,h

py|z

M
∏

m=1

p(zm|Xm, h)p(h)

=
∑

z1,··· ,zM ,h

py|z · p(h)

M
∏

m=1

[

1

Nm

Nm
∑

n=1

p(zm|xm,n, h)

]

,

where py|z = p(y1 = · · · = yM |z1, · · · , zM ).

Model interpretation. To show the intuition of our para-

metric probability model, we consider the person Re-ID ex-

ample in Fig. 2(a) in more detail. In the Re-ID problem

the view-specific latent variables {zm} can be thought of as

visual appearances of body parts of different persons, and

the view-shared latent variable h can be considered as these

body parts which are shared among all the persons.

Then using Bayes rule we can expand Eq. 2. In

particular, for the two-view Re-ID problem we see that

the group membership score of the image pair (x1, y1)
and (x2, y2) as p(y1 = y2|x1,x2) =

∑

z1,z2,h
p(y1 =

y2|z1, z2)p(x1|z1, h)p(x2|z2, h)p(h). Since visual appear-

ances in z1 (or z2) are posited to be independent given im-

age x1 (or x2) and the parts h, we can predict whether

or not y1 is equal to y2 (i.e. p(y1 = y2|x1,x2)) by

marginalizing the similarities of corresponding visual fea-

tures of each individual part in both images (i.e. p(x1|z1, h)
and p(x2|z2, h)) with some data-independent weights (i.e.

p(y1 = y2|z1, z2) and p(h)). Similarly for the kinship ex-

ample in Fig. 2(b) we can infer the group membership score

by marginalizing the corresponding landmark similarities.

We take these data-independent weights as the model pa-

rameters for prediction, which are learned discriminatively.

2.3. Discriminative Learning of Model Parameters

2.3.1 Co-occurrence Tensor Representation

As discussed in Section 2.1, images are approximately

aligned in the related applications. Specifically, in person

Re-ID benchmarks the head is always located at the top of

images, torso in the middle, and legs at the bottom. This

typical structure has been exploited in designing discrimi-

native features [10]. Therefore, with approximately aligned

images we can bypass the problem of shared variable detec-

tion and directly utilize pixel locations as surrogates for lo-

cations of body parts or facial landmarks. Note that we can

still allow small spatial misalignments by designing kernels

to account for spatial distortions.

Recently, Zhang et al. [32] proposed an interesting fea-

ture representation to handle visual ambiguity and spatial

distortion in images for person re-id. The basic idea in their

method is to capture visual ambiguity using visual words,

and match them at similar locations using distance trans-

form to handle spatial distortion. This results in a visual

word co-occurrence matrix for a pair of images.

Inspired by [32], we propose a visual word co-

occurrence tensor representation using p(zm|xm,n, h) from

multiple views to represent the group of data samples. Their

proposed Gaussian kernel [32] is computationally cumber-

some. Instead we design a truncated exponential function

as the spatial kernel κ with an arbitrary distance function

inside to improve flexibility and computational efficiency.

Let πzm ∈ Π(zm,xm,n) be a pixel location where the

corresponding pixel in image xm,n is encoded using visual

word zm, and πh be the pixel location with index h. Then

we define p(zm|xm,n, h) in Eq. 2 as follows:

p(zm|xm,n, h)
∆
= max

πzm∈Π(zm,xm,n)
κ (πzm ,πh;σm) (3)

=

{

exp
{

−
minπzm

d(πzm ,πh)

σm

}

, if d(πzm ,πh) ≤ α

0, otherwise.

where d(·, ·) denotes a distance function, σm ≥ 0 de-

notes a predefined window size parameter for view m,

and α ≥ 0 is a predefined spatial scale parameter. Then

if we take view-specific and view-shared latent variables

as the dimensions in the tensor to represent the group of

data, the entry at index (z1, · · · , zm, h) can be calculated as
∏M

m=1

[

1
Nm

∑Nm

n=1 p(zm|xm,n, h)
]

.

2.3.2 General Learning Formulation

Here we introduce additional notations to simplify our ex-

position. Rather than directly representing a group of data

samples X1,··· ,M = {X1, · · · ,XM} as a tensor, we con-

vert it into a matrix φ(X1,··· ,M ) ∈ R

∏M
m=1

|zm|×|h| with di-

mensions
∏M

m=1 |zm| and |h|, respectively, where ∀m, |zm|
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and |h| denote the numbers of visual words for view m and

pixel locations in images. Further, we denote wz
∆
= p(y1 =

· · · = yM |z1, · · · , zM ) ∈ R

∏M
m=1

|zm| and wh
∆
= p(h) ∈

R
|h| as our model parameters in the form of vectors. Then

our group membership score in Eq. 2 can be rewritten as a

decision function f as follows:

f(X1,··· ,M ) = w
T
z φ(X1,··· ,M )wh, (4)

where (·)T denotes the matrix transpose operator. If

f(X1,··· ,M ) ≥ 0, we expect that all the members in the

group have the same class label (and do not otherwise).

Let {(X
(k)
1,··· ,M , y

(k)
1,··· ,M )}k=1,··· ,N be a set of N training

data groups from M views, where ∀k, y
(k)
1,··· ,M = 1 if all

the class labels in group k are the same (and −1 otherwise).

Due to the specific form in Eq. 4, we propose learning bilin-

ear classifiers (i.e. wz and wh) for GMP inspired by [27],

which used bilinear classifiers in a different context (binary

classification):

min
wz,wh

λ1

2
‖wz‖

2
2+

λ2

2
‖wh‖

2
2+

N
∑

k=1

ℓ
(

y
(k)
1,··· ,M , f(X

(k)
1,··· ,M )

)

,

(5)

where ℓ(·, ·) denotes the loss function (e.g. hinge loss),

λ1 ≥ 0, λ2 ≥ 0 are predefined regularization parameters,

and ‖ · ‖2 denotes the ℓ2-norm of a vector.

Note that here we relax the probability constraint on wz

and wh to real numbers so that Eq. 5 can be efficiently

solved using alternating optimization. In each iteration, we

fix one parameter (i.e. wz or wh) and use a standard support

vector machine (SVM) solver to find the other parameter so

that the objective value decreases monotonically, thus guar-

anteeing a local optimal solution.

2.3.3 Pairwise Decomposition Approximation

With sufficient training data, we can train a bilinear classi-

fier directly using Eq. 5. This training method, however,

does not scale well with the number of views due to the

high dimensional tensor representation, leading to serious

computational and overfitting issues.

To overcome these issues, we propose an approximate

pairwise decomposition method, as illustrated in Fig. 3(b),

to reduce the parameter space. This is based on the condi-

tional independence assumption in multi-view learning [1].

Accordingly, we can rewrite our group membership score

in Eq. 2 as follows:

p(y1 = · · · = yM |X1, · · · ,XM ) (6)

≡
∑

mi 6=mj∈{1,··· ,M}

∑

zmi
,zmj

,h

p(y1 = · · · = yM |ymi
= ymj

)

p(ymi
= ymj

|zmi
, zmj

)p(zmi
|Xmi

, h)p(zmj
|Xmj

, h)p(h).

Algorithm 1 Pairwise decomposition based learning

Input : {φ(Xmi,mj )}∀mi 6=mj∈{1,...,M}, {ymi}∀mi∈1,...,M ,

λ1, λ2, λ3 ≥ 0

Output : {wmi,mj}mi 6=mj∈{1,...,M},wh,β

Initialize β ← 1, wh ← 1, wmi,mj ← 1;

repeat

Solve {wmi,mj} in Eq. 8 (multi-view training) or Eq. 9

(double-view training) by fixing β and wh;

Solve wh in Eq. 8 or Eq. 9 by fixing β and {wmi,mj} ;

Solve β in Eq. 8 or Eq. 9 by fixing {wmi,mj} and wh.

until Converge;

return {wmi,mj}mi 6=mj∈{1,...,M},wh,β

where p(y1 = · · · = yM |ymi
= ymj

) indicates how

importantly the pair of views mi and mj contribute to

GMP. In this way, the number of parameters that need

to be learned in our method is significantly reduced from
(

∏M

m=1 |zm|+ |h|
)

to
(

∑

mi 6=mj
|zmi

||zmj
|+ |h|

)

.

Let φ(Xmi,mj
)

∆
= p(zmi

|Xmi
, h)p(zmj

|Xmj
, h) ∈

R
(|zmi

||zmj
|)×|h|

be the pairwise visual word matrix be-

tween views mi and mj , where Xmi,mj
= {Xmi

,Xmj
}.

Also let wmi,mj

∆
= p(ymi

= ymj
|zmi

, zmj
) ∈ R

|zmi
||zmj

|

, and β
∆
= p(y1 = · · · = yM |ymi

= ymj
) ∈ R

|zmi
||zmj

|
.

Then based on Eq. 6, we can rewrite Eq. 4 as follows:

f̃(X1,··· ,M ) =
∑

mi 6=mj

βmi,mj
w

T
mi,mj

φ(Xmi,mj
)wh, (7)

where βmi,mj
denotes the entry in β for the view pair.

To learn our model parameters in Eq. 7, we propose two

learning methods as follows, namely, multi-view training

and double-view training:

Multi-view training:

min
{wmi,mj

},

wh,β

λ1

2

∑

mi 6=mj

‖wmi,mj
‖22 +

λ2

2
‖wh‖

2
2 +

λ3

2
‖β‖22

+

N
∑

k=1

ℓ
(

y
(k)
1,··· ,M , f̃(X

(k)
1,··· ,M )

)

, s.t. β ≥ 0, (8)

Double-view training:

min
{wmi,mj

},

wh,β

λ1

2

∑

mi 6=mj

‖wmi,mj
‖22 +

λ2

2
‖wh‖

2
2 +

λ3

2
‖β‖22

+

N
∑

k=1

∑

mi 6=mj

ℓ
(

y(k)mi,mj
, f̃(X (k)

mi,mj
)
)

, s.t. β ≥ 0, (9)

where ∀k, y
(k)
mi,mj = 1 if in group k the labels of the two

persons ymi
= ymj

holds; otherwise, 0. Here, ≥ denotes
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an element-wise ≥ operator. Both training can be done us-

ing alternating optimization with a standard SVM solver.

Still local optima are guaranteed. For two-view scenarios,

both training methods are essentially identical, and scale

quadratically with the number of views, in general. Lin-

ear scalability is also possible if we organize all the views

as cycle graphs. Difference in these two training methods

comes from the loss functions, where in multi-view training

ℓ measures the group (i.e. multi-view) loss, while in double-

view training ℓ measures the pair-view loss. Our algorithm

is summarized in Alg. 1.

3. Experiments

We evaluate our method on person Re-ID and kinship

verification tasks along with state-of-the-art methods on

benchmark datasets. Standard training/testing protocols are

used in all experiments. For each comparing method, we ei-

ther cite the original results from the papers (denoted by (·)∗

in the tables) or calculate from released codes. Our results

are reported as the average over 3 trials.

For each experiment, we choose the same or similar low-

level feature as the other methods (see the details in subsec-

tion) for fair comparison. We densely sample the images to

generate a low-level local feature per pixel. Then we use K-

Means to build the visual vocabularies with about 2 × 104

randomly selected features per view. Further, every local

feature is quantized into one of these visual words based

on Euclidean distance. Note that more complicated feature

selection methods may be employed to yield better perfor-

mance, but we do not fine-tune this component for the sake

of computational efficiency and generalization ability.

We employ the chessboard distance for Eq. 3 and LI-

BLINEAR [7] as our SVM solver with hinge loss. We

randomly generate about 3 × 104 training samples to learn

model parameters w’s. The regularization parameters are

determined by cross-validation.

3.1. Person Re­identification

For performance measure we adopt the standard Cumu-

lative Match Characteristic (CMC) curve, which displays

the recognition rate as a function of rank. The recognition

rate at rank-r is the proportion of queries correctly matched

to a corresponding gallery entity at rank-r or better.

For tasks with multiple camera views, we follow [5] to

compare results under two camera views. Consider the

results from multiple views as a high dimensional tensor,

one dimension per view. To predict pairwise matches from

multi-view results (e.g. identifying matches between cam-

era view 1 and view 2 from the predicted results for the

joint of view 1, 2, and 3), we can either sum over or find

the maximum over the extra dimensions. Cross-validation

is used to choose the better way for each dataset.

Table 1. Matching rate comparison (%) on VIPeR and CUHK01.

Rank r = 1 5 10 15 20 25

VIPeR

SCNCD [31] 20.7 47.2 60.6 68.8 75.1 79.1

SCNCDfinal [31] 37.8 68.5 81.2 87.0 90.4 92.7

LADF [19] 29.3 61.0 76.0 83.4 88.1 90.9

Mid-level filters [36] 29.1 52.3 65.9 73.9 79.9 84.3

Mid-level+LADF [36] 43.4 73.0 84.9 90.9 93.7 95.5

VW-CooC [32] 30.70 62.98 75.95 81.01 - -

Ours 33.5 59.5 72.8 81.3 88.0 89.6

CUHK01

Single-shot LAFT∗ [18] 25.8 55.0 66.7 73.8 79.0 83.0

Multi-shot LAFT∗ [18] 31.4 58.0 68.3 74.0 79.0 83.0

Mid-level filters [36] 34.3 55.1 65.0 71.0 74.9 78.0

VW-CooC [32] 44.03 70.47 79.12 84.77 - -

Ours 60.39 82.92 90.43 93.42 94.55 95.78

3.1.1 Two Camera Views

Person Re-ID between two views is the simplest scenario.

We test our method on the VIPeR [13] and CUHK Cam-

pus [35] dataset. We extract a 672-dim Color+SIFT1 vector

from each 5×5 pixel patch in images as low-level features.

We follow the experimental setting in [35] for both datasets.

Our comparison results are listed in Table 1. As we see,

on VIPeR “Mid-level+LADF” from [36] is the current best

method, which utilized more discriminative mid-level filters

as features and a powerful classifier, and “SCNCDfinal”

from [31] is the second, which utilized only foreground fea-

tures. Our results are comparable to both of them. How-

ever, our method always outperforms their original meth-

ods significantly when either the powerful classifier or the

foreground information is not involved. On CUHK01,

our method performs the best. At rank-1, it outperforms

[32, 36] by 16.36% and 26.09%, respectively. Compared

with [32], the improvement mainly comes from the multi-

ple instance setting of our method.

The CMC curve comparison on VIPeR and CUHK01 is

shown in Fig. 4. As we see, our curve is very similar to that

of LADF. This is mainly because LADF is a second-order

(i.e. quadratic) decision function based on metric learning,

which shares some commonality with our classifiers.

We also demonstrate the impacts of different numbers

of pixel locations (i.e. view-shared space) and visual words

(i.e. view-specific space) on the performance using VIPeR

in Fig. 5. We sample the pixel locations, step by from 1 to 5

pixels along x and y-axis in images (larger number leading

to fewer samples), while using different numbers of visual

words. Visual words capture the variations in appearance,

and with more visual words more similar patterns can be

differentiated (e.g. pink and red). Matching between pixel

locations gives us the statistic information of visual words,

and more samples make the statistics more robust. Together

they work for good performance.

1We downloaded the code from https://github.com/

Robert0812/salience_match.
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(a) (b)

Figure 4. CMC curve comparison on (a) VIPeR and (b) CUHK01, respectively. Notice that except our results, the rest are copied from [36].

Figure 6. CMC curve comparison on WARD. Note except for our results, the other results are cited from [5].

Figure 5. Demonstration of the impacts of different numbers of pixel lo-

cations and visual words on the performance using VIPeR. Warmer color

demotes higher accuracy. This figure is best viewed in color.

3.1.2 Three Camera Views

Now we consider three camera views, and test our method

on the WARD dataset [24]. Following [5], we denote the

camera views as view 1, 2 and 3. However, for pairwise

view matching, [5] did not mention which view as probe

or gallery. Here, we define the view with a smaller/larger

number of data to be the gallery/probe set. We randomly

select 35 people for training, and the rest for testing.

We first resize each image to the same 128 × 64 pixels,

and take every 2 × 2 pixel patch in the HSV color space to

generate our low-level features by concatenating 3×2×2 =
12 entries into a vector. The reason for choosing this feature

is because in [5] the features were built in the HSV color

space as well. Different from [5], we take the whole image

to generate features without foreground segmentation.

Table 2. AUC comparison (%) on WARD based on Fig. 6.

View pair 1-2 1-3 2-3 Ave.

FT 93.3 91.0 94.9 93.1

NCR on ICT 90.4 84.8 91.1 88.7

NCR on FT 95.4 91.9 95.6 94.3

Ours: Multi-view 94.4 92.1 98.1 94.9

Ours: Double-view 92.7 91.0 97.5 93.8

The results are shown in Fig. 6. As we see, our method

performs similar or better than NCR [5], and the curves of

both the multi-view training and double-view training for

our method behave very similarly. We list the area under

curve (AUC) scores in Table 2. Our method is better than

NCR on FT by 0.6%, on average, from 94.3% to 94.9%.

3.1.3 Four Camera Views

Next we consider four camera views, and test our method

on the Re-identification Across indoor-outdoor Dataset

(RAiD) [5] with two indoor views camera 1 and 2, and two

outdoor views camera 3 and 4. Still we take the views with

smaller/larger numbers as galleries/probes. We follow [5],

and utilize the same HSV low-level feature as we did in

Section 3.1.2.

Our comparison results are shown in Fig. 7. As we see,

our method again performs equally well or better than NCR.

We list the AUC score comparison results in Table 3. Still

our method is better than NCR on FT by 1.6%, on average,

from 94.7% to 96.3%.

3921



Figure 7. CMC curve comparison on RAiD. Notice that expect our results, the rest results are cited from [5].

Table 3. AUC comparison (%) on RAiD based on Fig. 7.

View pair 1-2 1-3 1-4 2-3 2-4 3-4 Ave.

FT 96.6 84.3 88.8 90.0 93.9 93.5 91.2

NCR on ICT 98.5 90.6 92.1 91.0 94.4 94.1 93.4

NCR on FT 98.1 90.4 93.1 94.5 96.5 95.9 94.7

Ours: Multi-view 98.2 93.0 97.1 94.1 96.6 90.5 94.9

Ours: Double-view 99.3 90.8 98.3 93.0 98.0 98.8 96.3

For both indoor-indoor and outdoor-outdoor cases, our

method consistently works best, which may indicate that the

visual word co-occurrence patterns are more discriminative

if the lighting condition is similar.

3.2. Kinship Verification & Identification

As before, we utilize the HSV 12-dim low-level fea-

tures. In the experiments, we denote father, mother, son,

and daughter as F, M, S, and D, respectively. Following

[23], we measure the verification performance with the ver-

ification rate, defined by the number of correctly classified

face pairs divided by the total number of face pairs in the

test set. For identification, CMC curves are also used. We

only use double-view training in this task since the informa-

tion captured by parent-offspring pairs are more important.

Kinship verification between two views (one parent and

one offspring) is the conventional setting, where we test

our method on two datasets, i.e. KinFaceW-I [23] and

KinFaceW-II [23]. The former consists of 156 FS, 134

FD, 116 MS and 127 MD pairs, while the latter contains

250 pairs of each kin relation. The main difference be-

tween the two datasets is that each pair of face images in

KinFaceW-II comes from the same photo while the image

pairs in KinFace-I come from different photos. We follow

the same protocol as that in [23, 6, 28] and use a 5-fold cross

validation with balanced positive and negative pairs on the

default training/testing split. Results are listed in Table 4.

On KinFaceW-II, our method significantly outperforms

the competitors, but on KinFaceW-I ours is slightly worse.

Our reasoning is that our current visual word representa-

tion using simple K-Means does not account for significant

visual ambiguity in appearance when imaging factors (e.g.

lighting conditions, illumination, etc.) change substantially.

This leads to large intra-cluster variations in visual words

that our method does not currently handle well. To further

investigate the different performances on both datasets, we

use a smaller training set randomly sampled on KinFaceW-

II such that it has the same size as KinFaceW-I, while keep-

ing the same test set and record the results as “reduced

training set”. The results become slightly worse than the

original training set, while still outperform other methods.

These relatively good results, along with the worse results

on KinFaceW-I, demonstrate that the size of training data is

indeed important, but less important than the data sources.

Next we use TSKinFace dataset [28] for three-view kin-

ship verification (i.e. father, mother, offspring), which con-

tains 513 FM-S and 502 FM-D groups. Following [28], we

carry out a 5-fold cross validation with balanced positive

and negative samples , and list the results in Table 5. As we

see, our method performs consistently better than [28].

Finally we employ the Family 101 dataset [8] to inves-

tigate kinship identification, namely, identifying the cor-
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Table 4. Verification rate comparison (%) on KinFaceW

FS FD MS MD Mean

KinFaceW-I

Dehghan et al. [6] 76.4 72.5 71.9 77.3 74.5

Lu et al. [23] 72.5 66.5 66.2 72.0 69.9

Qin et al. [28] 76.8 76.8 74.6 78.0 76.6

Ours 63.5 65.0 63.8 75.6 67.0

KinFaceW-II

Dehghan et al. [6] 83.9 76.7 83.4 84.8 82.2

Lu et al. [23] 76.9 74.3 77.4 77.6 76.5

Qin et al. [28] 84.6 77.0 84.4 85.4 82.9

Ours 85.4 81.8 86.6 90.0 86.0

Ours (reduced training set) 84.4 78.2 84.6 87.8 83.8

Table 5. Verification rate comparison (%) on TSKinFace.

FS FD MS MD FM-S FM-D

Dehghan et al. [6] 79.9 74.2 78.5 76.3 81.9 79.6

Fang et al. [8] 69.1 66.8 68.7 67.9 71.6 69.8

Lu et al. [23] 74.8 70.0 72.2 71.3 77.0 71.4

Qin et al. [28] 83.0 80.5 82.8 81.1 86.4 84.4

Ours 88.5 87.0 87.9 87.8 90.6 89.0

Table 6. AUC comparison (%) on Family 101.

FS FD MS MD Mean

Dehghan et al. [6] 88.8 91.3 94.3 96.4 92.7

Ours 90.3 94.6 96.0 97.0 94.5

Figure 8. CMC curve comparison with [6] on Family 101.

rect parent/child among a set of candidates given one

child/parent image. This dataset contains 14816 images that

form 206 nuclear families belonging to 101 unique family

trees. Following [6], we adopt 101 nuclear families and use

50 families for training and 51 families for testing. For each

of the four kin relations, we train a model and use the model

to match offspring images to all possible parent images. The

CMC curves2 are shown in Fig. 8 , and Table 6 lists the Area

Under Curve (AUC) measure of the CMC curves.

3.3. Storage & Computational Time

Storage (St for short) and computational time during

testing are two critical issues in real-world applications. In

our method, we only need to store a feature matrix for each

entity based on Eq. 3, which is used to calculate similari-

ties between different entities. The computational time can

be roughly divided into two parts: (1) computing feature

matrices T1, and (2) predicting group membership T2. We

do not consider the time for generating low-level features,

since different implementations vary significantly.

2We use the author’s code (http://enriquegortiz.com/

publications/FamResemblance.zip) to produce the results.

Table 7. Average storage and computational time for our mdthod.

St (Kb) T1 (ms) T2 (ms)

VIPeR 110.7 52.9 0.6

WARD 113.7 99.7 1.5

RAiD 166.5 68.7 0.5

We record the storage and computational time using 300

visual words for both probe and gallery sets on VIPeR (two

views), WARD (three views), and RAiD (four views). The

rest of the parameters are the same as described in Section

3.1. As we see, the storage per data sample and computa-

tional time are linearly proportional to the size of images

and number of visual words. Our implementation is based

on unoptimized MATLAB code3. Numbers are listed in Ta-

ble 7, including the time for saving and loading features.

Our experiments were all run on a multi-thread CPU (Xeon

E5-2696 v2) with a GPU (GTX TITAN). The method runs

efficiently with very low demand for storage.

4. Conclusion

In this paper, we propose a general parametric proba-

bility model for the group membership prediction (GMP)

problem. We introduce the notions of view-specific and

view-shared latent variables to capture visual information

and commonality for each view. Using these two variables,

we can factorize the group membership score into a tensor

product, and thus propose a new visual word co-occurrence

tensor feature to represent groups of data samples. In our

parametric probability model, we can handle the multiple

instance cases as well. Further we propose discriminatively

learning a bilinear classifier for GMP, with the decision

function as the marginalization over all latent variables. Our

experiments on multi-camera person re-id and kinship ver-

ification tasks demonstrate the good predictive ability and

computational efficiency of our method. As future work,

we would like to explore other applications for our method

such as activity retrieval [4], and develop new approaches

such as zero-shot recognition [34] and structured learning

[33] for our problem.
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