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Abstract

This paper studies matching of fragmented objects to re-

compose their original geometry. Solving this geometric re-

assembly problem has direct applications in archaeology

and forensic investigation in the computer-aided restora-

tion of damaged artifacts and evidence. We develop a

new algorithm to effectively integrate both guidance from

a template and from matching of adjacent pieces’ fracture-

regions. First, we compute partial matchings between frag-

ments and a template, and pairwise matchings among frag-

ments. Many potential matches are obtained and then se-

lected/refined in a multi-piece matching stage to maximize

global groupwise matching consistency. This pipeline is ef-

fective in composing fragmented thin-shell objects contain-

ing small pieces, whose pairwise matching is usually unre-

liable and ambiguous and hence their reassembly remains

challenging to the existing algorithms.

1. Introduction

Geometric restoration that composes 3D fragmented ob-

ject into its original shape is a difficult matching problem

that has many direct applications such as archaeological re-

construction, digital heritage archiving, and forensic evi-

dence analysis, to name a few. A few 3D reassembly al-

gorithms have been developed in graphics and computer vi-

sion literature. However, difficulty was reported in handling

thin-shell 3D objects and in processing small fragmented

pieces [15][34]. In this work, we explore the reassembly of

fragmented thin-shell objects with general geometric shapes

and small-sized fragments. One application is forensic skull

reassembly. In law enforcement investigation cases, to as-

sist with victim identification, forensic anthropologists need
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to predict the skull’s ancestry and perform facial reconstruc-

tion/superimposition to help identify the body. The skeletal

remains, however, are often incomplete or fragmented due

to trauma or environmental exposure. Therefore, forensic

specialists need to first perform a manual recomposition of

skull fragments before subsequent assessment and analysis.

With effective digital reassembly algorithms, after all the

fragments are digitized, the existing manual skull reassem-

bly procedure can be automated and augmented.

Considering the geometry of a fragment, its boundary

surface consists of two types of regions: the intact regions

and the fracture regions. The intact regions are those from

the original boundary surface of the complete object before

fracturing, and the fracture regions are those generated due

to fracturing. Fig. 1 (c) illustrates the intact and fracture

regions on a fragment.

(a) (b) (c)

Figure 1. (a,b) A ceramic object is fragmented, (c) intact (blue)

and fracture (red and gray) regions on a fragment.

Existing 3D fragment reassembly algorithms can be gen-

erally classified into two types: (1) reassembly based on

fracture-region matching, and (2) reassembly using tem-

plate guidance. Fracture-region matching approaches ex-

ploit similarities in the local fracture geometry of adjacent

fragments [8, 33, 15]. The template guidance approaches

compose fragmented pieces based on their best match to a

complete model [34, 31]. Each approach has advantage and
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limitations, and reassembly algorithms in both categories

report difficulty in effectively processing small fragmented

pieces. First, with small fragments, it is particularly chal-

lenging to differentiate and segment intact and fracture re-

gions. Second, the number of uncertain potential matches

tends to be large and their effective pruning is difficult.

In this paper, we develop a new effective reassembly

pipeline integrating both template-guidance and fracture-

region matching. The idea is to use the information from

both intact and fracture regions to construct many poten-

tial matching relationships among the fragments and tem-

plate; then, through a multi-piece matching optimization,

we prune and refine these possible matches to obtain glob-

ally consistent alignment of the fragments. This approach

is formulated in a 3-step pipeline: (1) initial reassembly

guided by a template; (2) pairwise fracture matching be-

tween fragments; (3) multi-piece matching integrating both

intact and fracture information. The main technical contri-

butions include (a) reliable pairwise matching algorithms

to align fragments with small overlapping regions, and (b) a

multi-piece matching and refinement algorithm effectively

integrating both template guidance and pairwise fragment

matchings, which iteratively optimizes the positioning of

fragments while consistently controlling accumulated error

and avoiding penetrations.

2. Background and Related Work

2.1. 3D Fragment Reassembly

Early research on data reassembly focused on solving

the 2D jigsaw puzzle problem [13]. 3D objects are of-

ten projected to 2D [9, 21, 32] and matched by their pla-

nar boundaries. In these approaches, planar boundaries

are identified manually or detected through the difference

of texture/geometry between the intact and fracture re-

gions. These methods work for large thin shell fragments,

on which the thickness of the fracture region can be ig-

nored and fracture surfaces can be treated as curves. Re-

cent algorithms solve the reassembly directly in 3D. Cooper

et al. [8] assemble 3D pot fragments by matching the

break-curves and shard normals. Willis and Cooper [33]

improve pottery assembly by applying Bayesian analysis

with a semi-automatic matching. Their experiments were

shown most effective for axially symmetric and geometri-

cally smooth/simple fragmented pots. Yin et al. [34] use

templates to roughly assemble skull fragments, then per-

form a break-curve analysis to refine the composition. This

method also approximates thin shell fragments as surface

patches, which is not suitable for small fragments [34]. For

general 3D solid models, Papaioannou et al. [23] segment

the fragments and extract fracture regions, then use depth

maps for matching. Huang et al. [15] propose a 4-step

framework for fragmented solid reassembly. Both of these

methods require the segmentation of intact and fracture re-

gions on the fragment, which is often difficult on small frag-

ments. Herein, we develop an algorithm to incorporate in-

tact and fracture geometry without explicit segmentation.

2.2. Geometric Partial Matching

3D Partial matching is a key enabling tool for frag-

ment reassembly [19]. Partial matching is related to ge-

ometric feature detection, feature description, and feature

correspondence. Feature detection identifies geometri-

cally salient keypoints. [30] evaluates the performance of

a few recent feature detectors suitable for partial match-

ing [36, 22, 35, 6]. Specifically related to our problem,

desirable feature detectors should identify keypoints consis-

tently under noise with small resolution variations. Shape

descriptors are designed to evaluate the similarity between

extracted keypoints. Descriptors are typically invariant un-

der either rigid transformation [16, 25] or isometric trans-

formations [27, 28, 3]. In this application, we focus on

descriptors for rigid transformations. Curvatures [25] and

Integral Invariants [12] are popular local descriptors in ob-

ject recognition and surface matching. However, these de-

scriptors are sensitive to the local geometric variance in

handling template-subject disparity in fragment reassembly.

Histogram-based descriptors, such as spin images [16] and

shape context [4] compress geometric structures into bins,

hence are more globally discriminate and less sensitive to

local geometric variance. [29] improves them by using a

unique local reference frame. This descriptor performs well

on partial surface matching. Feature correspondence re-

finement is a procedure to establish a bijective map be-

tween features on different shapes. Effective feature match-

ing algorithms include voting [20], RANSAC [11], graph

matching [7], and forward search [15].

3. Template Matching

In some reassembly tasks, complete models with sim-

ilar geometry to the subject data are available and can

be used to guide the reassembly. For example, in foren-

sic skull restoration from fragmented pieces [34], existing

skulls models can provide useful guidance. In tasks such

as building 3D repository database, models archived in the

same category are also suitable templates.

Following a template model M , we can reassemble frag-

ments after solving partial matching between each fragment

Fi with M . The matching should align intact regions of Fi

with M , despite minor geometric disparity between the sub-

ject and template. Our template matching algorithm has two

steps: (1) feature extraction and initial correlation; (2) cor-

respondence refinement. The output are ranked 3D trans-

formation lists {T j
i } that align Fi with M .

Feature extraction and initial correlation. According

to the comparison in the recent survey [30], among widely

used 3D feature detectors, the Intrinsic Shape Signatures

(ISS) [36] offers great repeatability and efficiency in rigid
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partial matching. The ISS constructs the covariance matrix

of the support region of each 3D point and whose largest

eigenvalues differs much with its second largest eigenvalues

are identified as features. We extract features using ISS on

Fi and M respectively. Fig. 2(a) illustrates an example of

extracted features.

To accommodate geometric disparity between the tem-

plate and subject, a shape descriptor that is not too sensitive

to local geometric variance is preferred. The histogram-

based descriptor, such as spin images [16] and shape con-

text [4], can stably reflect geometric variance. The Signa-

ture of Histograms of OrienTations (SHOT) [29] is another

effective histogram-based descriptor. SHOT first constructs

a unique and unambiguous local reference frame, then cal-

culates the descriptor by compressing the geometric infor-

mation into bins along these three axes. This descriptor

outperforms the spin image in partial matching applications

such as object recognition and 3D multi-view reconstruc-

tion. Therefore, we use SHOT to describe and compare fea-

ture points on M and on Fi.

For each feature p on M , its SHOT descriptor, denoted

as S(p), is a 352-dimensional vector, and its top k most

similar features on Fi are extracted. Specifically, p ∈ M
and q ∈ Fi is considered as potential corresponding pair

if (i) D(p, q) = |S(p) − S(q)| < δS and (ii) D(p, q) is

one of the k smallest D(p, ·) values that satisfies (i). Then

(p, q) is kept and added into an initial correspondence set C̄
(δS = 0.05 and k = 5 in all our experiments).

(a) (b)

Figure 2. Feature Extraction and Matching. (a) ISS keypoints on

the template and a fragment, (b) refined feature correspondences.

Correspondence Refinement. To ensure enough num-

ber of features are extracted on smaller fragments, M usu-

ally contains many keypoints. This makes finding correct

feature correspondence difficult: The size of innitial corre-

spondence set C̄ is big, since keypoints from other irrelevant

regions on M (that does not correspond with Fi) could in-

troduce irrelevant correspondences into C̄. So the correct

correspondence pairs are significantly fewer than the out-

liers. Due to the big size of C̄, powerful correspondence

refinement algorithms such as graph matching [7] and for-

ward search [15] turn out to be too computationally ex-

pensive for our pipeline. The RANSAC algorithm [11],

instead, is efficient and suitable for correspondence re-

finement here. To extract correct correspondence pairs

from outliers, we evaluate geometric consistency among

correspondence pairs. Given two correspondence pairs

c1 = (p1, q1), c2 = (p2, q2), where p1, p2 ∈ M, q1, q2 ∈
Fi, c1, c2 ∈ C̄, c1 and c2 are geometrically consistent if the

Euclidean distance between p1 and p2 is similar to the dis-

tance between q1 and q2, namely, |‖p1p2‖ − ‖q1q2‖| < δt.
δt can be chosen according to similarity between the tem-

plate and subject (δt = 5mm in our experiments).

In the RANSAC algorithm, for each extracted transfor-

mation model, if the ratio of size of inlier set to size of C̄ is

bigger than a threshold δr, this transformation is accepted.

To estimate a suitable threshold δr, we observe that it is

mainly affected by (1) the size of Fi and (2) k value in the

initial correspondence extraction. We set δr = λ V (Fi)
k×V (M) ,

where V (Fi), V (M) are volumes of the fragment and the

template approximated by their bounding box volumes, and

λ is a weighting factor.
V (Fi)
V (M) roughly estimates the ratio

of features from M that have corresponding features in Fi,

among which only 1/k is correct (since top k matches is

preserved). We conservatively use λ = 0.5 to set δr in all

our experiments. Fig. 2 (b) shows an accepted correspon-

dence between a skull fragment and a template.

4. Pairwise Fracture Region Matching

Matching with a template object only roughly positions

big fragments. And sometimes, no template is available.

Therefore, effective matching of shared fracture regions of

adjacent fragments is a critical component to successful re-

assembly. We extracts potential alignments between each

pair of fragments Fi and Fj , and each such alignment is

referred to as a relative transformation Tij .

Computing reliable fracture matching is harder than tem-

plate matching, because the corresponding fracture regions

are significantly smaller than intact regions and possess-

ing less geometric saliency, especially if the subjects are

thin-shell objects. Very few effective feature points on frac-

ture regions can be extracted to support reliable matching

between fragments. Therefore, rather than using feature

points, matching based on boundary curves [33, 32] or fea-

ture regions [15] are used in existing work for aligning adja-

cent fragments. The region-based matching extracts salient

geometric areas on fracture regions to compute alignments

between fragment pieces. Unfortunately, thin-shell objects

often have very simple and flat fracture regions, lacking

salient region to help matching computation. In contrast,

sharp ridge and valley curves are more salient features for

effective partial matching. Thus, solving pairwise align-

ments using feature curves extracted on fragments is a better

strategy here.
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Figure 3. Feature Curve Matching. (a) Extracted feature segments

(orange) on a fragment, (b) pruned feature network, (c) sampled

wide bases (red crosses).

4.1. Feature Curve Extraction

We extract a set of feature curves on fragments follow-

ing [24] which was shown to be robust against noise. First,

extract points with high mean curvature. Then build a min-

imum spanning tree (MST) to connect all these points into

a curve network. The weights of edges are designed [24]

to make MST passing through sharp regions as much as

possible. The MST contains many short branches, making

the matching of curve network difficult. Then a bottom-up

graph pruning is used to eliminate these short branches on

the MST tree: (1) sort all leaves of the tree based on their

depth; (2) determine the longest path by traversing this tree.

(3) remove short branches from the tree. Iterate this prun-

ing until no short branch is left on the tree. Then the final

feature curve network, consisting of the remaining salient

feature curve paths are extracted. Note that, this algorithm

does not rely on the initial root of MST and can remove

noisy short feature line segments reliably. Fig. 3(a,b) illus-

trate an example of feature curve extraction.

4.2. Feature Curve Matching

In existing fragment reassembly work, a few curve

matching algorithms [17, 9, 21, 32, 33] have been de-

veloped to match adjacent fragments. However, in these

curve matching formulations, each fragment’s contour is

extracted as a simple curve loop, and the matching is

performed to find certain “Longest Common Substrings”

(LCS) shared by two curve loops. They assume the frag-

ment can be scanned in a way that only intact surfaces are

obtained. Unfortunately, such a scan and the clear sepa-

ration between intact and fracture regions are too difficult

when fragments are small. Following our feature extrac-

tion, the curve networks obtained from fragments are much

more complicated than a curve loop, and their alignment

need more sophisticated matching strategy.

To match two feature curve networks C1 and C2 reduces

to finding a rigid transformation T that T (C1) and C2 have

the largest overlap. Inspired by [1], we formulate this prob-

lem as a Largest Common Point-set (LCP) problem: given

two point sets X and Y , the LCP under δD-congruence is

to find a transformation T and a subset P = {pi} ⊂ X with

the largest cardinality, such that given a distance threshold

δD, Dist(T (pi), Y ) < δD, where Dist(T (pi), Y ) mea-

sures the distance from transformed point T (pi) to point

set Y . We also call the cardinality of P the LCP score.

We develop a voting algorithm to solve this LCP prob-

lem. (1) Extract 4-point congruent sets (Section 4.2.1)

on C1 and C2, compute their matchings. (2) Conduct a

voting and get the transformations that are top k favor-

ably voted (Section 4.2.2). After the top-k LCP transfor-

mations are obtained, we refine each transformation using

the iterative closed points (ICP) [5] algorithm and discard

alignments that lead to fragment penetration. The penetra-

tion is checked by the collision detection package named

SWIFT++ [10]. Note that, unlike [1] which conduct a

RANSAC for randomly generated points on surfaces, we

conduct a thorough extraction of 4-point congruent sets on

pruned feature curves. Such a thorough extraction on well

pruned samples makes our curve matching much more ro-

bust than [1] when there is a high percentage of outliers,

which always happens in pairwise fragment matching.

4.2.1 4-Points Wide Base Extraction and Matching

Inspired by [1], we match curve networks using a modified

4 points congruent set (4PCS) algorithm. A 4-points wide

base is a set of 4 points that are coplanar. The coplanar 4

points set is wide if the length between each two points is

larger than a threshold. A wide base created by selecting

points that are far from each other results in more stable

alignments [14]. However, if the points are too far away,

the selected points will not all lie in the overlap regions.

Therefore, with two controlling parameters dmin, dmax, we

first randomly pick 3 points such that the distance between

each two points is in the range of [dmin, dmax], then se-

lect the 4th point that is in the same distance range and is

coplanar with these three points. dmin and dmax are chosen

according to the estimated thickness dt of the fragments:

dmin = 0.5 ∗ dt and dmax = 2 ∗ dt. Fig. 3(c) shows an

example of the 4-points wide bases on the curve network.

Given a 4-points wide base X = {a, b, c, d}. Let ab
and cd be the two lines intersecting at an intermediate

point e. We can build a 5-dimensional descriptor vector

v = {l1, l2, θ, r1, r2}
T , where l1 = ‖ab‖ and l2 = ‖cd‖ are

the lengths of segments ab and cd, θ is the angle between

them, and r1 and r2 are computed as r1 = ‖ae‖/‖ab‖,

r2 = ‖ce‖/‖cd‖. Two 4-points wide bases are congruent if

their descriptors are similar, and matching them introduces

a rigid transformation by a least square fit.

4.2.2 Voting and Evaluation of Alignments

We first compute the sets of 4-point wide bases S1 and S2

for feature curve networks C1 and C2. Then for any wide

base Bi ∈ S1, find its congruent wide base Bj ∈ S2 and

compute the transformation between Bi and Bj . The num-
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ber of transformations introduced by congruent wide base

is large, and directly evaluating all their effects is computa-

tionally expensive. Therefore, based on the observation that

valid transformations are usually supported by many mu-

tually congruent corresponding base pairs, we do a voting

to pre-select potential transformations. First, a transforma-

tion inferred by two 4-point wide bases is transformed into a

6D vector (ax, ay, az, x, y, z), where ax, ay , az are rotation

(Euler) angles and x, y, z are translations. Then the 6D pa-

rameter spaces are divided into buckets. Finally, the k buck-

ets with most vectors are selected as the transformation.

The total time complexity of this algorithm is O(n log n).
Each pre-selected transformation receives a certain number

of votes, but it does not necessarily have high LCP scores.

Therefore, to re-rank the transformations following the LCP

scores, for each pre-selected transformation Ti, we compute

Ti(C1) and count points in Ti(C1) within δD-distance to

C2. We use Approximate Nearest Neighbor (ANN) [2] for

efficient neighborhood query. Then, the transformations are

re-ranked, and the top Kp (in our experiments, Kp = 200)
transformations are kept.

5. Multi-piece Matching

The template matching (Section 3) suggests a set of pos-

sible alignments between the fragments and template; and

the pairwise matching (Section 4) suggests a set of possible

alignments among the fragment pairs. We perform a graph-

based search algorithm to extract globally coherent pairwise

matchings from the above possible alignments.

5.1. Notation: Reassembly Graph Representation

We encode the fragments, the template (if used), together

with all the extracted potential correspondences in a re-

assembly graph G = (V,E). Each node ni ∈ V , denoting

a fragment Fi, is associated with a transformation matrix

Xi that needs to be solved, to get its final position Xi(Fi)
in the reassembly. Xi is a 3 × 4 matrix [R|t] where R is a

3 × 3 rotation matrix and t indicates a 3D translation. The

template model M is denoted as a base node n0 ∈ V in G.

To get a unique solution, we set template’s transformation

matrix X0 to be [I3|03], where I3 is the 3×3 identity matrix

and 03 is the 3D zero vector.

A directed edge eki,j ∈ E from node ni to nj denotes

an alignment from fragment Fi to Fj . This alignment is

represented by a relative transformation T k
i,j on each edge

eki,j . Note that between a pair of nodes ni and nj , multiple

edges (k = 1, 2, . . .) may exist, so G is not a simple graph.

These relative transformations T k
i,j are pairwise alignments

computed in the previous steps. The matches from each

fragment Fi to the template M are also represented as edges

eki,0 and relative transformations T k
i,0.

To simplify the formulation in the following, given a di-

rected edge eki,j , we can also consider it in its opposite di-

rection, as ekj,i, from nj to ni. Accordingly, the associated

alignment is naturally defined as T k
j,i = (T k

i,j)
−1. With this

we can study G as an undirected graph. For example, we

can say edges e11,2 and e21,2 form a loop, without specifically

modifying the order of the subscripts.

5.2. Objective Function and Constraints

We define a few matching scores to measure how well

fracture or intact regions overlap. Two regions are con-

sidered overlapped if their Hausdorff distance is smaller

than a threshold ξh (based on the precision of the 3D scan-

ner, ξh = 3mm in our experiments). Given two nodes

ni and nj and their associated transformation Xi and Xj ,

we define a fracture matching score Sf (Xi, Xj) as the

area of the overlapping regions between these two frag-

ments after applying Xi and Xj . Similarly, we define an in-

tact matching score Si(Xi, X0) as the area of overlapping

regions between Xi(Fi) and the template M . Naturally,

Si(Xi, Xj) = 0 between fragment nodes for i, j 6= 0, and

Sf (Xi, X0) = 0 between each fragment node and the tem-

plate node. Then, combining them together, between each

pair of nodes ni and nj , we define a total region matching

score Sr(Xi, Xj) = Sf (Xi, Xj) + αSi(Xi, Xj), where α
is a weighting factor that can be adjusted according to the

availability of a good template. By adding template node

n0 and the intact matching term, our algorithm can make

good use of available template to guide multi-piece match-

ing. α and the available template affect the reassembly re-

sults. Ideally, when template is similar to the ground truth,

α should be set big, while when no good template is avail-

able, α should decrease. When a wrong template is used,

the reassembly will be bad if α is big. Setting α = 0 makes

the reassembly to only rely on fracture region matching of

adjacent pieces. By default, we set α = 0.1, allowing the

pairwise fragment matching to play a more important role.

Finally, the multi-piece matching problem reduces to

solving an optimal subgraph G′ = (V ′, E′), V ′ ⊆ V,E′ ⊂
E, and a set of transformations {Xi|ni ∈ V ′} maximizing

the following accumulated region matching score Φ(G′),

Φ(G′) =
∑

ni,nj∈V ′

Sr(Xi, Xj), (1)

subject to the following validity constraints.

Validity Constraints. A subgraph G′ = (V ′, E′) and

associated transformations infers a valid reassembly if

1) G′ is a simple graph. At most one edge can exist be-

tween two nodes, hence a unique alignment is selected

between these two fragments.

2) Loop closure constraint: for any loop in G′, composing

the relative transformations along this loop should yield

an identity transformation.

3) Non-intersection constraint: reassembled fragments

should not spatially penetrate each other.
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It is not hard to verify that a graph that satisfies the loop clo-

sure constraint must be a simple graph. Because two differ-

ent transformations between a fragment pair automatically

infer a non-identity loop between these two nodes.

5.3. Optimizing Multi­piece Matching

We develop an iterative algorithm to optimize the multi-

piece matching. First, initialize an empty graph G′. Then,

iteratively grow it by adding a new node with its incident

edges from G, maximizing Φ(G′) subject to the validity

constraints. During the growing of G′, we simultaneously

refine all the alignments added in G′. This algorithm is for-

mulated as follows.

In: G = (V,E) and {T k
ij};

Out: G′ = (V ′, E′), V ′ ⊆ V,E′ ⊂ E, and Xi for ni ∈ V ′.

1. G′ = ∅; add n0 to G′ and let X0=[I3|03];

2. Find an edge eki,j ∈ E where ni ∈ V ′, nj ∈ V \V ′,

such that adding eki,j to G′ does not violate validity con-

straints and leads to maximal increase of Φ(G′). Add

this eki,j to E′ and add nj to V ′; set Xj = (T k
i,j)

−1 ∗Xi.

3. Perform a graph optimization refinement on G′;

4. If V ′ = V or no further edge e ∈ E can be added into

G′, STOP; otherwise, GOTO Step 2.

Evolving G′ through Beam Search. In the above Step

2, we add a new edge whose insertion results in a valid new

G′ with largest increase of F . G′ is called the evolution

of G. This greedy approach usually stops in local minima.

In this problem, between fragment pairs, multiple T k
i,j ex-

ist and the actually correct alignment may not be highest

ranked. To more robustly circumvent such local minima, we

implement a beam search strategy [26]. In each iteration,

instead of choosing the single best alignment, we explore

m highest-scored eki,j . First, G′ evolves into m different

graphs. On each of these graphs, expand its n best subse-

quent evolutions, which will result in totally n×m possible

graphs. Among these graphs, the m highest-scored graphs

are selected and preserved (to avoid exponential space and

time expansion). This process repeats until no new edge

can be added into G′. Through beam search, G′ has a better

chance to circumvent small local minima.

5.4. Multi­piece Reassembly Refinement

Transformations Xi are computed through the compo-

sition of relative transformations during the growth of G′,

small errors can accumulate and affect the subsequent Xi

computation and penetration test. To minimize this error

accumulation, we apply a graph optimization on G′ to glob-

ally refine existing transformations. We minimize the fol-

lowing least square function defined on G′,

φ(X) =
∑

ei,j∈E′

||T k
i,j −Xi ×X−1

j ||2 × Sr(Xi, Xj), (2)

where X = {X1, . . . , X|V ′|}. Node transformation Xi

should be coherent with the selected relative transforma-

tions Ti,j on its incident edges. Xi is first computed by

one Ti,j by Xi = Ti,j ×Xj when ni was added to G′. But

a later added node nr may introduce another edge ei,r and

associated Ti,r. This consistency Xi = Th
i,r ∗ Xr may not

exactly be satisfied due to accumulated noise or numerical

errors. Therefore, we globally refine x following Eq. (2)

on G′. We implement this optimization following the al-

gorithm of [18]. With analytic derivative information avail-

able, this optimization converges very efficiently.

6. Experimental Results

Experiment Setting. We evaluate our reassembly al-

gorithm on various ceramic models and real forensic skull

data. For ceramic models, we first scan the complete mod-

els as ground truth for result evaluation. Then break each

object into fragments and scan them individually. Our al-

gorithm reassembles the digital fragments and we compare

our result with the ground truth. We also use our algorithm

to compose real fragmented skull data provided by foren-

sic specialists. In practical law investigation cases, forensic

specialists restore the skull geometry from fragments man-

ually, then perform subsequent ancestry analysis, facial re-

construction for body identification. Our digital restoration

results on these skulls are visualized. All the 3D objects and

fragments are digitized using a NextEngine scanner (with

reported accuracy ±0.3mm). We also estimate and doc-

ument our scanning accuracy in these experiments by per-

forming multiple scans on each model and computing Haus-

dorff distances between different scans.

Evaluation of Reassembly Error. To numerically eval-

uate reassembly accuracy, we define two error metrics: the

Reference Error εR and Matching Error εM . The com-

pleted model S =
⋃

Xi(Fi) (accordingly, also fragments)

is scaled to a unit box for consistent error evaluation. If

the ground truth model Ŝ is available, we can measure the

Reference Error εR by comparing S and Ŝ: compute a

displacement field ηr(x) on Ŝ to record the distance from

each point x ∈ Ŝ to its nearest point on S, then use the av-

erage, εR =

√∑
v∈Ŝ

f2(v)

|Ŝ|
, where |Ŝ| represents the num-

ber of points of Ŝ. When ground truth is not available, we

can use a Matching Error εM to estimate how well the

adjacent fragments align with each other after the reassem-

bly. For each point p on the Xi(Fi), if its nearest corre-

sponding point q on an adjacent fragment Xj(Fj) has an

opposite normal direction from p’s normal, then p and q
are paired, and d(p) = ‖pq‖. Then the average distance of

paired points is calculated εM =

√∑
p∈Xi(Fi)

d(p)

|P | , where

|P | represents the number of such pairs. Note that, the nor-

mal constraint in pairing is used to avoid measuring points

2143



from intact regions.

6.1. Reassembly Results

Our reassembly program was run on a laptop with

2.0GHz Core i7 CPU and 6GB RAM. The Runtime Ta-

ble 1 documents the efficiency of our experiments. The to-

tal computation needs from 4 to 14 minutes, depending on

the number of fragments and their geometry. The pairwise

matching to collect potential alignment between fragments

is the most time-consuming step in this reassembly pipeline.

Table 1. Runtime Table: #V is the total point number of each set of

scanned object, #F is the number of fragments, Tt, Tp, and Tm are

computational times (in seconds) for template-guided reassembly,

pairwise matching, and multi-piece matching, respectively.

Models # V # F Tt Tp Tm

Child 1066 k 8 123 89 31

Chicken 882 k 11 183 244 37

Buddha Head 1152 k 12 – 142 43

Skull 1 1294 k 19 146 614 64

Skull 2 427 k 10 93 141 20

Figure 4. Reassembling the Child-Buddha and Chicken models.

We first test a simpler scenario on ceramic objects, us-

ing the ground truth model as the template. Fig. 4 illus-

trates reassembly of the fragmented Child Buddha model

and chicken model. The physical dimensions of the small-

est pieces here are about 3cm × 2cm × 0.4cm. Note that

the scan resolution is about 0.3mm, and the final matching

error εM about 0.8mm. These experiments show that small

fragments are reassembled effectively and accurately.

We also examine our algorithm when only template with

relatively big geometric difference is available. Fig. 5 shows

a reassembly example of a gnome model. The broken

Figure 5. (a) The subject gnome model and its fragments; (b) an-

other gnome model as the template; (c,d) two reassembly results

when setting α = 1 and α = 0.01, respectively.

gnome model (a) is geometrically different from the avail-

able template gnome (b). When a big template-guidance

weight α = 1 is used, the template (b) more strongly af-

fects the composition and leads to the result (c). Coming

with a better align the shoes (red box in (c)), there is a big-

ger gap in the final reassembly (see the region in the blue

box). When a small α = 0.01 is used, the reassembly, after

initial positioning, more relies on inter-fragment alignment,

yields a more tightly composed (i.e., smaller matching er-

ror) reassembly result (d).

Figure 6. Reassembling a 19-piece fragmented skull model.

Figure 7. Reassembling a fragmented evidence skull in a real law

investigation case.
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Skull Reassembly. Human skulls possess geometric

similarity. Hence, complete human skulls are suitable tem-

plates in fragmented skull reassembly. We collected a

group of standard skull models from all the major ances-

tries: {male, female} × {white, black, and Asian} skulls,

using them in guiding skull reassembly. Fig. 6 shows our

reassembly on a ceramic skull model. The model was bro-

ken into 19 pieces. We randomly used a white male skull

model as a template to perform the reassemblies. Despite

the geometric disparity between the template and the ce-

ramic models (see the accompanying video for details), the

fragmented skull was successfully reassembled, showing

that our reassembly is robust against template-fragment dis-

parity. Fig. 7 shows our reassembly on a real fragmented

skull from forensic anthropologists in which the victim’s

skull is severely damaged due to a gun shot. The two sides

of the skull are highly fragmented and some are missing.

Its manual restoration becomes challenging for two reasons.

First, on some small pieces the fracture and intact regions

are hard to distinguish. Second, the fracture regions of the

fragments are very thin and hard to align. By effectively

integrating the guidance from a template skull model and

fracture region matching, our algorithm reassembled this

damaged skull satisfactorily.

The numerical reassembly error on different models are

documented in Table 2. The error distribution is also illus-

trated in our accompanying video. From the table we can

see the algorithm is effective, and in particular, can handle

small fragments that are not processed well by existing al-

gorithms such as [34, 15].

Table 2. The Reference Error and Matching Error on different

models. #F is the number of fragments. εR and εM are the ab-

solute reference error and the absolute matching error (in millime-

ter). δR and δM are the reference and the matching error ratios.

The error ratio is measured as a percentage of the bounding box di-

agonal length (i.e., average error / diagonal length ×100%). Intu-

itively, for a model with the bounding box diagonal is 1 decimeter,

1% error is 1 millimeter. Some reference errors are not available

due to the lack of ground truth model.

Model #F εR δR εM δM
Child Buddha 8 0.853 0.33% 0.118 0.42%

Chicken 11 0.820 0.27% 0.633 0.21%

Gnome 8 0.575 0.15% 0.697 0.19%

Head 12 n/a n/a 0.760 0.13%

Skull 1 19 0.435 0.16% 0.595 0.23%

Skull 2 10 n/a n/a 2.688 0.83%

6.2. Comparison With Existing Methods

Compared with existing algorithms, our algorithms

demonstrate better reliability in handling small thin-shell

object reassembly. (1) Algorithms using pure pairwise

matching, such as [23], cannot not effectively handle am-

biguity in pairwise alignment. (2) Algorithms treat frag-

ments as surface patches, such as [33, 32, 31, 34], require

(a) (b) (c)

Figure 8. Reassembling a Buddha Head model. (b) The algorithm

of [15] fails to reassemble small pieces (in red circles in (a)). (c)

Our algorithm correctly reassemble all the small pieces.

that only intact surfaces are scanned and fragment bound-

aries are simple curve loops. This is practically difficult

when fragments are small. (3) Algorithms purely relying

on fracture region matching, such as [15], require explicit

segmentation of intact and fracture regions which is often

difficult for small fragments; and require fracture regions to

be big and possess salient geometric variance to allow reli-

able fracture region alignment, making the approaches more

suitable for solid rather than thin-shell objects. Our algo-

rithm effectively tackle the above unsolved challenging is-

sues in thin-shell object reassembly. In Fig. 8, the reassem-

bly of Buddha head model was reported [15] to be difficult

due to the existence of small fragments. The algorithm of

[15] fails to reassemble the two small pieces (marked in red

circles in (a)). In contrast, our algorithm successfully re-

assembles all the fragments including these small pieces, as

shown in (c). In this experiment, no template is available

and α = 0 is used.

7. Conclusion

We present a new algorithm to integrate template match-

ing and inter-fragment matching for effective reassembly of

thin-shell fragmented objects with small pieces. The algo-

rithm extracts many potential alignments, then utilize both

template guidance (if available) and groupwise fracture re-

gion matching among multiple pieces to prune and refine

these alignments and obtain final reassembly. The pipeline

is practically effective in composing small pieces that lack

geometric saliency and have small overlap regions with ad-

jacent pieces. Our method is demonstrated effective and

robust in restoring various fragmented ceramic objects and

skull models in forensic cases.

Limitations. In the current algorithm, only one template

can be used to guide the reassembly. Incorporating informa-

tion from multiple template sources may improve the flexi-

bility and accuracy of the reassembly.
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