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Abstract

Test data plays an important role in computer vision

(CV) but is plagued by two questions: Which situations

should be covered by the test data and have we tested

enough to reach a conclusion? In this paper we propose

a new solution answering these questions using a stan-

dard procedure devised by the safety community to vali-

date complex systems: The Hazard and Operability Anal-

ysis (HAZOP). It is designed to systematically search and

identify difficult, performance-decreasing situations and as-

pects. We introduce a generic CV model that creates the ba-

sis for the hazard analysis and, for the first time, apply an

extensive HAZOP to the CV domain. The result is a publicly

available checklist with more than 900 identified individ-

ual hazards. This checklist can be used to evaluate existing

test datasets by quantifying the amount of covered hazards.

We evaluate our approach by first analyzing and annotat-

ing the popular stereo vision test datasets Middlebury and

KITTI. Second, we compare the performance of six popular

stereo matching algorithms at the identified hazards from

our checklist with their average performance and show, as

expected, a clear negative influence of the hazards. The

presented approach is a useful tool to evaluate and improve

test datasets and creates a common basis for future dataset

designs.

1. Introduction

Many safety-critical systems depend on CV technologies

to navigate or manipulate their environment and require a

strong safety assessment due to the evident risk to human

lives [24]. Unfortunately, people working in the field of

CV will often notice that algorithms scoring high in public

benchmarks [32] perform rather poor in real world scenar-

ios. The reason is that those limited benchmarks are ap-

plied to open world problems. While every new proposed

algorithm is evaluated based on these benchmark datasets,

the datasets themselves rarely have to undergo independent

evaluation.

This work presents a new way to facilitate this safety as-

sessment process and goes beyond the basic scope of bench-

marking: applying a proven method used by the safety com-

munity for the first time to the CV domain. It provides an

independent measure that counts the challenges in a dataset

that are testing the robustness of CV algorithms.

The typical software quality assurance process uses two

steps to provide objective evidence that a given system ful-

fills its requirements: verification and validation [16]. Veri-

fication checks whether or not the specification was imple-

mented correctly (e.g. no bugs) [2]. Validation addresses

the question whether or not the algorithm meets the original

requirements, e.g., is robust enough under difficult circum-

stances. Validation is performed using test datasets as inputs

and comparing the algorithm’s output against the expected

results (ground truth, GT).

While general methods for verification can be applied to

CV algorithms, the validation part is rather specific. A big

problem when validating CV algorithms is the enormous

amount of possible input datasets, i.e. test images (e.g. for

640×480 8bit image inputs there are 256640∗480 ≈ 10
739811

different test images). An effective way to overcome this

problem is to find equivalence classes and to test the system

with a representative of each class. However, the definition

of equivalence classes for CV is tough: How can we de-

scribe in mathematical terms, say, all possible images which

show a tree or not a car? This leads to two main challenges

for CV validation:

1. What should be part of the test dataset to ensure that

the required level of robustness is achieved?

2. How can redundancies be avoided to allow the identi-

fication of problematic flaws (wastes time and creates

a bias towards repeated elements)?

Traditional benchmarking tries to characterize perfor-

mance of multiple implementations using fixed datasets to

create a ranking based on this data. Contrary, validation

tries to show that the algorithm can reliably solve the task

at hand, even under difficult conditions. Although both use

application specific datasets, their goals are not the same

and benchmarking sets are not suited for validation.
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The intent of validation is to find shortcomings and poor

performance by using “difficult” test cases [34]. The main

challenge for validation in CV is a definition of elements

and specific relations which are known to be “difficult”

for CV algorithms (comparable to optical illusions for hu-

mans). In this paper, the term visual hazard will refer to

such elements and specific relations. By creating an ex-

haustive checklist of these visual hazards we can answer

the questions above:

1. Ensure completeness of test datasets by including all

relevant hazards from the list.

2. Reduce redundancies by excluding test data that only

contains hazards that are already identified.

Our main contributions presented in this paper are:

• application of the HAZOP risk assessment method to

the CV domain (Sec. 3),

• creation of a generic CV system model useful for risk

analysis (Sec. 3.1),

• a publicly available hazard checklist (Sec. 3.6) and a

guideline for using this checklist as a tool to measure

hazard coverage of test datasets (Sec. 4).

To evaluate the feasibility of the approach, the guideline is

applied to three stereo vision test datasets: KITTI, Middle-

bury 2006 and Middlebury 2014. The impact of identified

hazards on the output of multiple stereo vision algorithms

is compared in Section 6.

2. Related Work

Bowyer et al. [6] analyze the problems coming along

with validating CV systems and propose that the use of so-

phisticated mathematics goes hand in hand with specific as-

sumptions about the application. If those assumptions are

not correct, the actual output in real world scenarios will

deviate from the expected output.

A very popular CV evaluation platform is dedicated

to stereo matching, the Middlebury stereo database.

Scharstein et al. [32] developed an online evaluation plat-

form which provides stereo datasets consisting of the im-

age pair and the corresponding GT data. The datasets show

indoor scenes and are created with a structured light ap-

proach [33]. Recently, an updated and enhanced version

was presented which includes more challenging datasets as

well as a new evaluation method [31]. To provide a simi-

lar evaluation platform for road scenes, the KITTI database

was introduced by Geiger et al. [10]. A general overview

of CV performance evaluation can be found in Thacker et

al. [39]. They summarize and categorize the currently used

techniques for performance validation of algorithms in dif-

ferent subfields of CV. Some examples are shown in the

following: Bowyer et al. [5] present a work for edge detec-

tion evaluation based on Receiver Operator Characteristics

(ROC) curves for 11 different edge detectors. Min et al. [26]

describe an automatic evaluation framework for range im-

age segmentation which can be generalized to the broader

field of region segmentation algorithms. Strecha et al. [37]

present a multi-view stereo evaluation dataset that allows

to evaluate pose estimation and multi-view stereo with and

without camera calibration. They additionally incorporate

GT (LIDAR-based) quality in their method to enable fair

comparisons between benchmark results. Kondermann et

al. [20] discus the effect of GT quality on evaluation and

propose a method to add error bars to disparity GT.

Ponce et al. [29] analyze existing image classification

test datasets and report a strong database bias. Typical poses

and orientations as well as lack of clutter create an unbal-

anced training set for a classifier that should work robustly

in real world applications. Pinto et al. [28] demonstrate by

a neuronal net, used for object recognition, that the cur-

rently used test datasets are significantly biased. Torralba

and Efros [40] successfully train image classifiers to iden-

tify the test dataset itself (not its content), thus, showing the

strong bias each individual dataset contains. Current test

datasets neither provide clear information about which chal-

lenges are covered nor which issues remain uncovered. Our

approach can fill both gaps: By assigning a reference-table

entry to each challenging hazard, we create a checklist ap-

plicable to any dataset. To the best knowledge of the authors

there is no published work considering the vision system as

a whole, which identifies risks on such a generic level.

2.1. Robustness

In the safety context, robustness is about the safe han-

dling of abnormal situations or input data in general. In CV

robustness is mostly considered to refer to a statistic defi-

nition. Popular methods like RANSAC (Random Sample

Consensus) [9], M-Estimators [14] in general, or specific

noise modeling techniques arose of the need to use sys-

tems in “real world applications”. However, these methods

are not necessarily tackling the problem of robustness by

the safety definition. They do not assess the system’s re-

sponse to highly unexpected data. In the safety context, the

analysis of the vulnerabilities with respect to robustness are

based on so-called Fault Injection Methods [12] (e.g. Fuzz-

testing [38]).

2.2. Risk Analysis

Risk-oriented analysis methods are a subset of valida-

tion and verification methods. Basically, all technical risk

analysis methods have the goal to assess one or several risk

related quality attributes (e.g. safety or reliability) of sys-

tems, components or even processes with respect to causes

and consequences. In addition, they try to identify exist-

ing risk reduction measures and to propose additional ones

if necessary. Since the topic of risk identification became

relevant, first in chemical industries around 1980, it was

also applied to software (see Fenelon et al. [8] and Goseva-
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Popstojanova et al. [11] for UML models). The most com-

monly used methods are:

• HAZOP [7, 19] - Hazard and Operability Analysis,

• FME(C)A [1] - Failure Modes, Effects, (and Critical-

ity) Analysis,

• FTA [42, 22] - Fault Tree Analysis.

All risk analysis methods define systematic processes for

identifying potential risks. The first step in a HAZOP is to

identify the essential components of the system to be ana-

lyzed. The parameters for each component, which define its

behavior, have to be identified. These parameters often de-

scribe the I/O of the component. A set of predefined guide

words which describe deviations are applied to the param-

eters (e.g. “less” or “other than”) and the resulting combi-

nations are interpreted by experts in order to identify pos-

sible consequences (potential hazards) and counteractions.

While FME(C)A also starts with identifying the system’s

components and their operating modes, it then identifies the

potential failure modes of the individual components. Fur-

ther steps are comparable to the HAZOP.

FTA starts with a hazardous “top event” as root of the

fault tree. Recursively, to each current bottom event, leaves

are added in Boolean combination that can lead to that

event until elementary events are encountered (e.g. “own

car hits the front car” if “speed too high” and “braking in-

sufficient”).

3. CV-HAZOP

The identification and collection of CV hazards should

follow a systematic manner and the results should be appli-

cable to many CV solutions. To create an accepted tool

for the validation of CV systems, the process has to be

in line with well-established practices from the risk and

safety assessment community. The most generic method

HAZOP [19] is chosen over FME(C)A and FTA because it

is feasible for systems for which little initial knowledge is

available. In addition, the concept of guide words adds a

strong source of inspiration that all other concepts are miss-

ing.

The following Sections address the main steps of a HAZOP:

1. Model the system.

2. Partition the model into subcomponents, called loca-

tions.

3. Find appropriate parameters for each location which

describe its configuration.

4. Define useful guide words.

5. Assign meanings for each guide word / parameter

combination and derive consequences as well as haz-

ards from each meaning.

3.1. Generic Model

The first step of any HAZOP is deriving a model of the

system that should be investigated. In case of this HAZOP,

Light

Sources Observer AlgorithmMedium

Object

Figure 1. Information flow within the generic model

the generic CV algorithm has to be modeled together with

the observable world (its application). Marr [23] proposes a

model for vision and image perception from the human per-

ception perspective. Aloimonos and Shulman [3] extended

it by the important concepts of stability and robustness. We

propose a novel model which is entirely based on the idea of

information flow: The common goal of all CV algorithms

is the extraction of information from image data. There-

fore “information” is chosen to be the central aspect han-

dled by the system. It should be noted, that “information”

is used in the context “Information is data which has been

assigned a meaning.” [41] rather than in a strict mathemati-

cal sense [36]. In this context, hazards are all circumstances

and relations that cause a loss of information. Even though

hazards ultimately propagate to manifest themselves in the

output of the algorithm, an effective way to find a feasible

list of hazards is to look at the entire system and attribute

the hazard to the location where it first occurred (e.g. un-

expected scene configuration or sensor errors). Multiple in-

puts from different disciplines are used to create the system

model:

Information Theory: Communication can be abstracted

according to information theory [36] as information flow

from the transmitter at the source with the addition of noise

to the receiver at the destination.

Sampling Theorem: Sampling is a key process in the

course of transforming reality into discrete data. Artifacts

that can be caused by this process, according to Nyquist [27]

and Shannon [35], will result in a loss of information.

Rendering Equation: The rendering equation [18] is a

formal description of the process of simulating the output

of a virtual camera within a virtual environment. The dif-

ferent parts of the standard rendering equation amount to

the different influences that arise when projecting a scenery

light distribution into a virtual camera.

The entire flow of information is modeled as follows:

1. Initially all necessary data of an observed scene exists.

In addition, every necessary interpretation of it is given

to derive full and precise information for solving the

problem at hand.

2. All information about the observed scene available to

a CV component can only be provided by the elec-

tromagnetic spectrum (simply referred to as “light” in
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Guide Word Meaning Example

Basic

No No information can be derived No light at all is reflected by a surface

More Quantitative increase (of parameter) above expected level Spectrum has a higher average frequency than expected

Less Quantitative decrease below expected level Medium is thinner than expected

As well as Qualitative increase (additional situational element) Two lights shine on the same object

Part of Qualitative decrease (only part of the situational element) Part of an object is occluded by another object

Reverse Logical opposite of the design intention occurs Light source casts a shadow instead of providing light

Other than Complete substitution - another situation encountered Light source emits a different light texture

Additional - Spatial

Where else “Other than” for position / direction related aspects Light reaches the sensor from an unexpected direction

Spatial periodic Parameter causes a spatially regular effect A light source projects a repeating pattern

Spatial aperiodic Parameter causes a spatially irregular effect The texture on object shows a stochastic pattern

Close / Remote Effects caused when s.t. is close to / remote of s.t. else Objects at large distance appear too small

In front of / Behind Effects caused by relative positions to other objects One object completely occludes another object

Additional - Temporal

Early / Late Deviation from temporal schedule Camera iris opens too early

Before / After A step is affected out of sequence, relative to other events Flash is triggered after exposure of camera terminated

Faster / Slower A step is not done with the right timing Object moves faster than expected

Temporal periodic Parameter causes a temporally regular effect Light flickers periodically with 50Hz

Temporal aperiodic Parameter causes a temporally irregular effect Intensity of light source has stochastic breakdowns

Table 1. Guide Words used in the CV-HAZOP

this paper) received by the “observer” (i.e. the sensor

/ camera) from any point in the scene. Hence, the in-

formation in the scene has to be converted into light in

some way.

3. At the same time, any generation of light and interac-

tion of light with the scene distorts and reduces this

information.

4. The sensing process, i.e. the transformation of received

light into digital data, further reduces and distorts the

information carried by the received light.

5. Finally, the processing of this data by the CV algo-

rithm may also loose or distort information (through

rounding errors, integration etc.).

In essence, two information carriers are distinguished:

light outside of the system under test (SUT) and digital data

within the SUT. At each transition, this information can

be distorted (e.g. by reduction, erasure, transformation, and

blending).

3.2. Locations

The system model is now partitioned into specific loca-

tions (i.e. subsystems) of the overall system. Light sources

that provide illumination start the process flow (illustrated

in Fig. 1). The light traverses through a medium until it ei-

ther reaches the observer or interacts with objects. This sub-

process is recursive and multiple interactions of light with

multiple objects are possible. The observer is a combina-

tion of optical systems, the sensor, and data pre-processing.

Here the light information is converted into digital data as

input to a CV algorithm. The CV algorithm processes the

data to extract information from it.

Each entity (box in Fig. 1) represents a location for the

HAZOP. The recursive pattern (loop) results in an addi-

Parameter Meaning

Transparency Dimming factor per wavelength and distance

unit

Spectrum Color, i.e. richness of medium with re-

spect to absorption spectrum (isotropic or

anisotropic)

Texture Generated by density fluctuations and at sur-

faces (e.g. water waves)

Wave properties Polarization, coherence

Particles Influences and effects of the particles that

make up the medium

Table 2. Parameters used in the location Medium

tional location called “Objects” for aspects arising from the

interactions between multiple objects. For convenience, the

observer is represented by two components: “Observer -

Optomechanics” and “Observer - Electronics”.

3.3. Parameters

Each location is characterized by parameters. They refer

to physical and operational aspects that describe the config-

uration of the subcomponent. The set of parameters chosen

for a single location during the HAZOP should be adequate

for its characterization. Table 2 shows the parameters cho-

sen for the location “Medium” as an example1.

3.4. Guide Words

A guide word is a short expression that shall help to trig-

ger the imagination of a deviation from the design / process

intent. Number and extent of guide words must be selected

to ensure a broad view on the topic. Nevertheless, their

number is proportional to the time needed for performing

the HAZOP, so avoiding redundant guide words is essential.

1See supplemental material for all parameters
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The used guide words and their interpretation in the context

of CV are listed in Table 1. The first seven “basic” guide

words are standard guide words used in every HAZOP and

the remainder are adaptations and additions.

3.5. Execution

The actual execution of the HAZOP is the systematic in-

vestigation of each combination of guide words and param-

eters at every location in the system. It is performed re-

dundantly by multiple contributors. Afterwards, the results

are compared and discussed to increase quality and com-

pleteness. Each HAZOP contributor assigns at least one

meaning per combination. In addition, for each meaning

found the contributors investigate the direct consequences

of this deviation on the system and subsequently into which

hazards this can be translated. One meaning can result in

multiple consequences at different levels and they are per

se not considered harmful or helpful. The hazards, on the

other hand, amount to actual decreases in the total system’s

performance or quality. Combinations that result in mean-

ingful interpretations by any contributor are considered to

be “meaningful” entries while combinations without a sin-

gle interpretation are considered to be “meaningless”. The

execution of the CV-HAZOP, including various meetings

and discussions by the contributors (with expertise in test-

ing, analysis, and CV), took one year. Each location is cov-

ered by at least three of the authors. The additional experts

are mentioned in the acknowledgments. The 52 parame-

ters from all seven locations, combined with the 17 guide

words, result in 884 combinations. Each combination can

have multiple meanings assigned to it. Finally, 947 unique

and meaningful entries have been produced. Table 3 shows

an excerpt of entries from the final HAZOP2. The entries in

the list can include multiple meanings for each parameter

as well as multiple consequences and hazards per meaning.

The whole resulting dataset of the CV-HAZOP is publicly

available at www.vitro-testing.com.

3.6. Resulting List

In total, 947 entries are considered meaningful by the

experts. A detailed analysis of the resulting amount of

meaningful entries achieved for each guide word / parame-

ter combination is shown in Fig. 3. One goal is to maximize

the meaningful entries - and the graphic shows reasonably

high entries for most of the basic guide words (see Tab. 1).

Lower valued entries in the matrix can be explained as well:

The concepts of the spatial aspects “Close” and “Remote”

are simply not applicable to the properties of the electronic

part of the observer (Obs. Electronics) and the concept of

space in general is not applicable to a number of parameters

at various locations. This also counts for the temporal guide

words which are not fitting very well to the Optomechanical

2See supplemental material for more entries

and Medium locations. Nevertheless, even here the usage of

guide word / parameter combinations inspire the analysts to

find interpretations which would have been hard to find oth-

erwise.

4. Application

The remainder of this paper focuses on the application

of the checklist as an evaluation tool for existing datasets.

The creation of new test datasets is the logical next step as

our checklist can also be used to optimize completeness in

terms of robustness, but this is beyond the scope of this pa-

per. Initially, the evaluators have to clarify the intent and

domain of the specific task at hand. This specification cre-

ates the conceptual borders that allow the following analy-

sis to filter the hazards. The intent includes a description

of the goals, the domain defines the conditions, and the en-

vironment under which any algorithm performing the task

should work robustly. With the intent and domain specified,

the evaluators can now check each entry of the CV-HAZOP

list to see if that entry applies to the task at hand. Often

it is useful to reformulate the generic hazard entry for the

specific algorithm to increase readability. In the following a

process outline is given:

1. Check if the preconditions defined by the column

Meaning and the according Consequences apply.

2. Check if the Hazard itself applies to the specific task.

3. If the Hazard in the list is too generic to be feasible,

specify the hazard for the specific task.

Previous evaluations for comparable tasks can be used as

templates to speed up this process and to reduce the effort

compared to evaluating the whole generic list. Specialized

hazards can be added to the checklist so that they can be

used directly in future evaluations. With the reduced list

of possible hazards, the evaluators are able to go through

test datasets and mark the occurrence of a hazard. Usually

a simple classification per test case is enough. Individual

pixel-based annotations can also be used to indicate the lo-

cation of specific hazards in test images (see Sec. 5). After

this process, the missing hazards are known and quantifi-

able (e.g. 70% of all relevant hazards are tested using this

test dataset). This is a measure of completeness which can

be used to compare datasets. Even more important: If a

hazard cannot be found in the test data, the CV-HAZOP en-

try states an informal specification for creating a new test

case to complement the test dataset. The extensiveness of

the checklist allows a thorough and systematic creation of

new test datasets without unnecessary clutter.

5. Example

As proof of concept, the authors apply the described pro-

cess to a specific task. For simplicity, we chose canonical

stereo vision: The intent of the algorithm is the calcula-
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Location/Parameter Guide Word Meaning Consequences Hazards

Light source / Inten-

sity

More Light source shines stronger

than expected

Too much light in scene Overexposure of lit objects

Object / Reflectance As well as Obj. has both shiny and dull sur-

face

Diffuse reflection with high-

light/glare

Object recognition distorted by

glares

Object / Texture No Object has no texture Object appears uniform No reliable correspondences can

be found

Objects / Close Reflectance Reflecting Obj. is closer to Ob-

server than expected

Reflections are larger than ex-

pected

Mirrored scene taken for real

Objects / Positions Spatial peri-

odic

Objects are located regularly Same kind of objects appear in a

geometrically regular pattern

Individual objects are confused

Optomechanics /

Aperture

Where else Inter-lens reflections project out-

line of aperture

Ghosting appears in the image Aperture projection is mis-

interpreted as an object

Electronics / Expo-

sure

Less Shorter exposure time than ex-

pected

Less light captured by sensor Details uncorrelated due to un-

derexposure

Table 3. Excerpt from CV-HAZOP Entries (simplified)

Figure 2. Examples for each entry in Table 3 taken from the datasets described in Table 4

tion of a dense disparity image (correspondence between

the pixels of the image pair) with a fixed epipolar, two cam-

era setup. To further simplify the analysis, we only use

greyscale information and assume that the cameras are per-

fectly synchronous (exposure starts and stops at the same

instants), and omit the use of any history information so

that many time artifacts can be disregarded. Note that this

evaluation is not designed to compare stereo vision algo-

rithms themselves but to be a clear proof of concept for

the usefulness of the CV-HAZOP list. The simplifications

in domain / intent analysis and algorithm evaluation were

performed to reduce complexity / workload and should be

re-engineered for a specific stereo vision evaluation. The

domains of the algorithm are indoor rooms or outdoor road

scenarios. Problematic conditions like snow, fog, and rain

are included.

First, six experts in the field of CV (some had experience

with the CV-HAZOP list, others were new to the concept)

analyzed the initial 947 entries and identified those apply-

ing to the stereo vision use case. During this step, 552 en-

tries are deemed to be not applicable and 106 entries are

non-determinable (not verifiable by only surveying the ex-

isting test data; more background knowledge needed). The

remaining 289 entries are deemed to be relevant for stereo

vision. About 20% of the hazard formulations are further

specified to simplify the following annotation work while

the rest is already specific enough. For each identified haz-

ard, the experts analyzed three test datasets commonly used

for stereo vision evaluation (see Tab. 4).

The hazard entries are evenly distributed. All evaluators

had the task to annotate each assigned hazard at least once

in each dataset (if present at all). The step to annotate all

occurrences of individual hazards in all images is omitted

as the required effort would exceed the resources reason-

able for this proof of concept. The annotation tool is set

to randomly choose the access order to reduce the impact

of the individual image ordering and, thus, reduce the data

base bias. Table 4 summarizes the results of the evaluation

showing the number of images with hazards and the num-

ber of uniquely identified hazards. Not surprisingly, KITTI

contains the most hazards. The reason is not only that it

contains the most test cases, it is also created in the least

controlled environment (outdoor street scenes). There are

many deficiencies in recording quality manifesting as haz-

ards and it includes images with motion blur as well as re-

flections on the windshield.

Many effects stemming from interactions of multiple

light sources, medium effects, and sensor effects are miss-

ing in all three test datasets. The majority of identified haz-

ards deal with specific situations that produce overexposure,

underexposure, little texture, and occlusions.

6. Evaluation

In this Section we evaluate the effect of identified haz-

ards on algorithm output quality itself. The example hazard

evaluation from the last Section is used as a starting point.

Evaluators annotated the test data to mark the areas in each

image that correspond to a specific hazard. A coarse out-

line of relevant areas in an image is deemed to be sufficient

for this evaluation, no pixel accurate labeling of the images

is needed. A specific hazard can only impact the system

2071



W(FF

W(FF

W(FF

W(FF

W(FF

W(FF

W(FF

W(FF

W(FF

W(FF

W(FF

W(FF

W(FF

W(FF

W(FF

W(FF

W(FF

W(FF

W(FF

W(FF

W(FF

W(FF

W(FF

W(FF

W(FF

F(9I

W(FF

W(FF

F(6I

F(6F

F(9W

W(FF

W(FF

W(FF

W(FF

F(56

F(8F

F(9W

F(8C

F(75

F(8F

W(FF

F(78

W(FF

W(FF

F(88

W(FF

W(FF

W(FF

W(FF

F(8F

W(FF

W(FF

F(69

W(FF

W(FF

W(FF

F(8F

W(FF

W(FF

F(86

W(FF

W(FF

F(67

F(CF

W(FF

F(7W

F(64

F(8I

W(FF

F(7I

F(CF

W(FF

F(75

F(69

W(FF

W(FF

F(6F

F(8I

F(9F

W(FF

F(75

W(FF

W(FF

F(C5

F(8F

F(6F

F(7W

F(6C

W(FF

W(FF

F(67

F(8F

F(5F

F(9C

F(9C

F(8F

F(8I

F(88

W(FF

F(9W

W(FF

F(85

W(FF

F(57

F(75

W(FF

F(9C

F(86

F(8I

W(FF

F(5F

F(6I

F(8F

F(8C

W(FF

F(75

F(FF

F(7W

F(I8

W(FF

F(7I

W(FF

F(67

F(FF

F(8I

F(56

F(4F

F(IF

W(FF

F(5F

F(CF

F(II

F(56

F(4F

F(IF

W(FF

F(58

F(CF

F(II

LightaSource

Medium

Object

Objects

Obs(aOptomechanics

Obs(aElectronics

Algorithm

Generic Temporal Spatial

N
o

M
or

e
Le

ss

A
sa
w
el
laa

s

P
ar

tao
f

R
ev

er
se

O
th

er
ath

an

Tem
p(

ap
er

io
di
c

Tem
p(

aa
pe

rio
di
c

B
ef

or
ea

wte
m

p(
P

A
fte

r

Fas
te

r

S
lo
w
er

W
he

re
ae

ls
e

S
pa

t(a
pe

rio
di
c

S
pa

t(a
ap

er
io
di
c

C
lo
se

aws
pa

t(P

R
em

ot
ea

ws
pa

t(P

In
afr

on
tao

faw
sp

at
(P

B
eh

in
da

ws
pa

t(P

Figure 3. Ratio of meaningful combinations for each guide word per location (averaged over all parameters of each location)

Figure 4. Example for annotation masks for hazard ’No Texture’

(from left to right): input image, shape, box, rand, all

if it is visible in the image. We validate that the annotated

area itself (and, thus, the included hazard) is responsible for

the output quality decrease by adding four maskings as con-

trols. The different masks represent a step-by-step increase

of influence of the annotated areas:

• shape: masks with the annotated outlines as filled

polygons,

• box: masks with boxes of equal size and center of grav-

ity as each annotated outline,

• rand: masks with boxes of equal size as the annotated

outlines but a randomly placed center of gravity,

• all: masks with all pixels except the left border region.

Figure 4 gives an example of the generated masks. The

rand mask only represents the annotated area’s size, box

represents area and position while shape represents the full

annotation. The rand vs. all masks verify if the output qual-

ity is affected by using smaller image parts for evaluation

instead of the whole image, while box vs. shape evaluates

the influence of specific shapes of the annotations.

Table 4 lists the resulting number of annotations created

for each dataset. Some hazards require the selection of split

areas, thus, resulting in multiple annotations. We calculate

the amount of pixels covered by GT in our individual masks

and only use these pixels for evaluation. Unfortunately,

many of the hazards (e.g. reflections, transparencies, occlu-

sions, very dark materials) also have a negative influence

on the laser scanner used for the GT generation in KITTI.

The GT data is generally sparse and even more sparse in the

annotated areas.

For evaluation of the stereo vision test dataset we used

the following popular stereo vision algorithms: SAD + Tex-

ture Thresholding (TX) & Connected Component Filter-

Dataset SAD CEN SGBM CVF PM SCAA

MB06 1.61 1.83 1.95 1.60 1.49 1.15

MB14 1.47 1.58 1.67 1.76 1.65 1.97

KITTI 1.17 1.68 1.84 1.29 2.23 1.05

Table 5. Ratio between the error threshold of shape and all

ing (CCF) [21], SGBM + TX & CCF [13], Census-based

BM + TX & CCF [15, 17], Cost-Volume Filtering (CVF)

& Weighted Median Post Processing Filtering (WM) [30],

PatchMatch (PM) & WM [4], and Cross-Scale Cost Ag-

gregation using Census and Segment-Trees & WM [43, 25].

The resulting disparities of each stereo vision algorithm is

compared to the GT disparities of the test dataset. The num-

ber of wrong pixels (error threshold of 2px) is then com-

pared to the number of pixels within the respective mask

that had valid ground truth values. Invalids in the result are

counted as being above any threshold. Figure 5 shows the

result of the evaluation for all three datasets.

6.1. Interpretation

The effect of applying the masks based on the identi-

fied hazards can be clearly seen. Table 5 summarizes the

ratios between the error values of shape and all. The cor-

rectly masked areas (shape) have higher error ratios than

the mean for the full image (all). The results for KITTI

are much more erratic than the rest. The large amount of

missing GT data in this dataset reduced its value for this

evaluation drastically. The majority of shape mask areas

have higher error ratios than the same-sized box mask areas.

Newer and more complex algorithms generally score lower

errors and have lower absolute differences between shape

and all errors. There are two distinct groupings: rand masks

have comparable results as all masks while box is compara-

ble to shape 3. This allows for the following conclusions

3This suggests that box annotations can often be used instead of the

time-consuming shape annotations.
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Algorithm Image

Pairs

Images w.

Hazards

Found

Hazards

# Anno-

tations

% GT

all

% GT

rand

% GT

box

% GT

shape

Middlebury Stereo Evaluation (MB06) [32] 26 19 34 55 95.9 92.3 94.8 92.5

Middlebury Stereo Eval. “New” (MB14) [31] 23 17 57 80 96.9 94.8 93.4 91.2

The KITTI Vision Benchmark (KITTI) [10] 194 62 76 101 45.7 45.6 37.1 37.4

Table 4. Stereo vision test datasets used in our evaluation, number of found hazards and percentage of masks covered by GT
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Figure 5. Percentage of pixels with an error above 2px for all algorithms (false positives) and the different applied maskings

based on the different maskings: algorithms have higher

error rates at annotated areas and score even higher error

rates if the annotation’s shape is preserved (shape vs. box).

The effect of sampling patches of different sizes in each im-

age is not prevalent (rand vs. box) and can be neglected.

The evaluation paints a clear picture: Areas identified by

the CV experts as containing a visual hazard guided by the

CV-HAZOP checklist are especially challenging to the CV

algorithms. Thus, these challenging areas need to be fo-

cused on for robustness evaluations.

7. Conclusion

The creation of a checklist containing critical situations

and relations that have the potential to reduce the quality

and functionality of CV systems is a crucial component on

the road towards systematic validation of CV algorithms.

This paper presents the efforts of several experts from the

fields of CV as well as risk and safety assessment to system-

atically create such a list. To the authors’ best knowledge,

this is the first time that the risk analysis method HAZOP

has been applied extensively to the field of computer vision.

The CV-HAZOP is performed by first introducing a

generic CV model which is based upon information flow

and transformation. The model partitions the system into

multiple subsystems which are called locations. A set of

parameters for each location, that characterize the location’s

individual influence on information is defined. Additional

special CV-relevant “guide words” are introduced that rep-

resent deviations of parameters with the potential to create

hazards. The execution of the HAZOP is performed by a

number of authors in parallel, assigning meanings to each

combination of guide words and parameters to identify haz-

ards. The individual findings are discussed and merged into

one resulting CV-HAZOP list. A guideline for using the

hazard list as a tool for evaluating and improving the qual-

ity and thoroughness of test datasets is provided.

The CV-HAZOP has produced a comprehensive check-

list of hazards for the generic CV algorithm with over 900

unique entries. It supports structured analysis of existing

datasets and calculation of their hazard coverage in respect

to the checklist. We present an example by applying the

proposed guidelines to popular stereo vision datasets and

finally evaluate the impact of identified hazards on stereo

vision performance. The results show a clear correlation:

identified hazards reduce output quality.

Our HAZOP checklist is not considered final. It will be

updated to include lessons learned during evaluations, test-

ing or even after tested systems are put into operation. By

sharing this information with the community over our pub-

lic HAZOP database we hope for further improvements of

quality and feasibility of the process and reduction of the

effort needed for CV robustness evaluation. At this stage,

the CV-HAZOP becomes a structured and accessible refer-

ence hub for sharing experiences with CV algorithm devel-

opment, usage, and maintenance.
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