
Camera Pose Voting for Large-Scale Image-Based Localization

Bernhard Zeisl Torsten Sattler Marc Pollefeys
Department of Computer Science, ETH Zurich, Switzerland

{bernhard.zeisl,torsten.sattler,marc.pollefeys}@inf.ethz.ch

Abstract

Image-based localization approaches aim to determine

the camera pose from which an image was taken. Find-

ing correct 2D-3D correspondences between query image

features and 3D points in the scene model becomes harder

as the size of the model increases. Current state-of-the-

art methods therefore combine elaborate matching schemes

with camera pose estimation techniques that are able to

handle large fractions of wrong matches. In this work

we study the benefits and limitations of spatial verifica-

tion compared to appearance-based filtering. We propose

a voting-based pose estimation strategy that exhibits O(n)
complexity in the number of matches and thus facilitates

to consider much more matches than previous approaches

– whose complexity grows at least quadratically. This new

outlier rejection formulation enables us to evaluate pose es-

timation for 1-to-many matches and to surpass the state-of-

the-art. At the same time, we show that using more matches

does not automatically lead to a better performance.

1. Introduction

Estimating the camera pose from which a given image was

taken is a fundamental problem for many interesting appli-

cations such as navigation of autonomous vehicles, Aug-

mented Reality, and (incremental) Structure-from-Motion

(SfM). Given a 3D model of the scene, the camera pose can

be computed from 2D-3D matches between 2D measure-

ments in the image and 3D points in the model by applying

an n-point-pose solver [3] inside a RANSAC loop. Since

RANSAC’s run-time increases exponentially with the per-

centage of false matches, it is crucial to avoid accepting too

many wrong matches. At the same time, distinguishing be-

tween correct and incorrect correspondences is an ill-posed

problem for large datasets, as they contain many points with

(nearly) identical local appearance. This is especially true

for urban scenes which often possess repetitive structures.

Consequently, Lowe’s widely used ratio test [17] is too re-

strictive and thus often fails in these cases. Many current

state-of-the-art localization algorithms therefore use rather

complicated matching procedures that combine 2D-to-3D

and 3D-to-2D search with filtering based on co-visibility

Figure 1: Given n 2D-3D matches, our approach makes ex-

tensive use of geometric filtering and votes for a 4 DoF cam-

era pose (translation and rotation around the gravity direc-

tion) in O(n) while naturally integrating location priors if

available (white circle). The heatmaps encode the number

of geometrical correct matches for 2D positions.

information [7, 16, 22]. However, geometric verification is

still only performed on a final, small set of correspondences.

In this work we propose to shift the task of finding cor-

rect correspondences from the matching stage to the pose

estimation step, by leveraging geometric cues extensively,

which are local and thus independent of the model size.

First, instead of using 1st nearest neighbors and only re-

taining matches that are likely to be inliers, we simplify

the matching problem and consider 1-to-many correspon-

dences. This results in a large number of matches with a

very small inlier ratio. Second, we aim to perform extensive

spatial verification early on in the pose estimation proce-

dure. As such the core questions we tackle is: How can we

make geometric verification scalable to thousands of tenta-

tive correspondences and what can we expect to gain from

it? To that end, we introduce a voting-based spatial verifica-

tion process that exploits a known gravity direction and an

approximate knowledge of the camera height using a setup

similar to [27]. Exemplary results of our voting procedure

are illustrated in Fig. 1. Our contributions are as follows:

– We formulate spatial verification as a Hough voting prob-

lem in pose parameter space, obtaining a run-time that

grows only linearly in the number of matches.

– We show that we can detect a large fraction of wrong

matches using simple but efficient filtering operations

based on local (image) geometry.

2704



Camera angleFeature

orientation

Pose votingMatching Feature scale Pose solverVoting shape

creation

Query image Camera height

Gravity dir. 3D model points

VisibilityOrientation Scale

Location prior

1:N matches Matches + angles Voting shapes Filtered inliers

Final 6DoF

camera pose

Prior location

intersection

Known geometric information

Figure 2: Overview of our linear filtering and location voting process (blue path) extensively utilizing spatial verification

based on (known) properties. The cyan colored boxes denote steps of the voting procedure and are discussed in Sec. 2 and 3.

Boxes marked in red correspond to the proposed filtering steps based on geometric constraints, which are explained in Sec 4.

– Our approach naturally integrates and profits from pose

priors, e.g., from GPS data, inertial measurements or van-

ishing point information, when those are available.

– Our formulation yields a multi-modal distribution over

possible camera poses without any additional cost and

thus is well suited to handle repetitive scenes.

– We study the applicability of different matching strate-

gies and the influence of allowing 1-to-many matches.

The resulting method localizes considerably more images

than current state-of-the-art techniques [1,6,16,28] on large

scale datasets and processes tens of thousands of matches

with an inlier ratio below 1% in a few seconds – which

is well beyond what current methods [16, 27] can handle.

Interestingly, while our results demonstrate that geomet-

ric constraints are well suited for outlier filtering, they also

clearly indicate that simply using more matches does not au-

tomatically lead to a better localization. Thus, one intention

of this paper is to stimulate further research on defining the

quality of matches and how to find good correspondences.

The rest of the paper is structured as follows. The re-

mainder of this section discusses related work. Sec. 2 out-

lines our voting method, while Sec. 3 explains the com-

putation of spatial votes from matches. Sec. 4 shows

how to exploit local geometric constraints to filter wrong

matches. Finally, Sec. 5 discusses our experimental evalua-

tion. Additional material is available from our project web-

site www.cvg.ethz.ch/research/location-voting.

Related Work: There exist two possible approaches to

obtain the 2D-3D matches need for pose estimation. Meth-

ods based on direct matching perform approximate nearest

neighbor search in descriptor space and apply Lowe’s ratio

test [17] for outlier filtering. While 2D-to-3D search is in-

herently more reliable than 3D-to-2D matching [21], state-

of-the-art approaches use the latter to recover correspon-

dences missed or rejected during the former [7,16,22]. This

enables them to better counter the problem that the ratio test

rejects more and more correct matches for larger datasets

due to the increased descriptor space density [16, 23]. Re-

cently, alternatives [16, 27] to aggressive outlier filtering

during the matching stage have been proposed. These

works are most related to our approach, as they can han-

dle significantly lower inlier ratios. Li et al. [16] use co-

visibility information to guide RANSAC’s sampling pro-

cess, enabling them to avoid generating obviously wrong

camera pose hypotheses. Following a setup equivalent to

ours, Svärm et al. [27] derive a deterministic outlier rejec-

tion scheme based on a 2D registration problem. The run-

time of their method is O(n2 log n), where n is the number

of matches, which severely limits the number of correspon-

dences that can be processed in reasonable time. In con-

trast, the method proposed in this paper runs in time O(n),
enabling us to solve significantly larger matching problems.

Location recognition and indirect localization methods

apply image retrieval techniques [4, 8, 19, 26] to restrict

correspondence search to the 3D points visible in a short-

list of retrieved database images. In order to improve the

retrieval performance, [13, 24] remove confusing features,

[28] explicitly handle repetitive structures, and [11] gener-

ates synthetic views to increase the robustness to viewpoint

changes. Most relevant to this paper are the methods from

[1,6,28,29]. Chen et al. [6] show how to exploit GPS infor-

mation and viewpoint normalization to boost the retrieval

performance. Similar to us, Zamir et al. [29] consider mul-

tiple nearest neighbors as potential matches, while [1] adapt

Hamming embedding to account for varying descriptor dis-

tinctiveness. We show that our approach achieves superior

localization while providing the full camera pose.

Finally, Quennesson et al. [20] find a density of camera

viewpoints from high level visibility constraints in a voting

like procedure. Similar to us, Baatz et al. [2] verify geomet-

ric consistency early on in their voting for view directions.

2. Voting-Based Camera Pose Estimation

In this paper we relax the matching filter and aim to exploit

geometric cues instead. To handle the massive amount of

outliers there exists the need for a fast and scalable outlier

filter. To this end, we borrow a setup from Svärm et al. [27]

which facilitates geometric constraints on the camera (grav-

ity direction and approximate height) and transform it to a

voting procedure. In addition we augment the voting with

2705

www.cvg.ethz.ch/research/location-voting


voting shape

most likely

camera location

in
v
isib

le area

model

points

Figure 3: (Left) 2D error shape generation from a 3D repro-

jection error cone. (Right) Voting shapes are rotated around

their 3D points, thus intersecting in the most likely camera

location (visualized as marginalization over all rotations).

other filters utilizing global geometric constraints from the

3D model (feature orientations, visibility and scale of 3D

points) and, if available, a positional prior for the camera

location. An overview of our linear outlier filter is visual-

ized in Fig. 2. It reduces the problem of finding a camera

pose that maximizes the number of inliers to several 2D vot-

ing problems, one for each distinct camera orientation. In

the following we will explain the voting procedure in more

detail, while Sec. 4 covers the proposed geometric filters.

2.1. Pose Estimation as a Registration Problem

Given the camera gravity direction, we can define a rota-

tion matrix Rg that transforms the local camera coordinate

system into a coordinate frame which is gravity-aligned

(w.l.o.g. we assume that the 3D scene model is gravity-

aligned as well). This reduces the pose estimation problem

from 6DoF to finding a rotation Rϕ 2 R
2⇥2 around the

gravity direction and a translation t 2 R
3. A 2D-3D match

between a 3D point X and a 2D image observation x is de-

fined to be an inlier if X is projected within r pixels next

to x. This is equivalent to the transformed 3D point falling

into the 3D error cone

c(x, r) = ν · r(x+ u), 8u 2 R
2, kuk = r, ν 2 R≥0 (1)

defined by the reprojection error r and x. Here, r(x) =
RgK

−1(x 1)T is the viewing ray corresponding to x trans-

formed into the gravity-aligned coordinate frame. We re-

quire that the intrinsic calibration K is known. Assuming

that we know the height h of the camera above the ground

plane, the problem of registering the 3D point with the cone

simplifies to estimating a 2D translation t0 such that


Rϕ 0
0 1

]

X+



t0

−h

]

2 c(x, r), t = [t0,−h]T . (2)

As a result the registration problem gets further restricted to

the conic section at offset Xz − h, i.e., cz(x, r) = Xz − h
and thus is fully described on a 2D plane.

Obviously we do not know the camera height exactly up-

front. However, we can often approximate the ground plane

by interpolating the positions of the cameras represented in

the model. At the same time, the height of the query camera

position is usually close to the ground plane within a cer-

tain interval, e.g. ±5m. Centering the inverted error cone

at the matching 3D point X and rotating it around grav-

ity direction defines a space in which the camera has to lie

(see the following Sec. 2.2 for an explanation of the inver-

sion). Intersecting it with the ground plane thus allows us

to estimate the height interval [hmin, hmax] for the camera

pose. This uncertainty in camera height corresponds to in-

tersecting the error cone c(x, r) by two horizontal planes.

As shown in [27], we can project these capped error cones

onto the ground plane and thus reduce the camera pose esti-

mation to a 2D registration problem between projected error

cones (Fig. 3 left) and projected 3D point positions.

Definition 1. A 2D error shape for a given 2D-3D point

correspondence is the union of all projected conic sections

between the reprojection error cone c(x, r) and heights in

the interval [hmin, hmax].

Hence, the uncertainty in camera height is propagated to the

camera location, reflected by the larger area covered by the

error shape. In case the cone does not intersect the height

interval, the correspondence is immediately invalidated.

2.2. Linear Time Pose Voting

So far the error shapes are defined in the local, gravity-

aligned coordinate system of the camera. As such, the reg-

istration problem can also be imagined as translating and ro-

tating the camera in 2D space and for each unique transfor-

mation (discretized in location and angle) count the number

of projected 3D points that fall into their voting shape. This

procedure is not optimal since the 2D space is unbounded

and we would need to test an infinite number of translations.

Thus, we propose to view the problem from a different

perspective and to transform the error shapes into the global

coordinate system; i.e., for a given correspondence we set

the projected 3D point position as fixed and by this trans-

form the uncertainty to the camera location. The locations

of the transformed error shapes – called voting shapes in the

following – thereby also depend on the orientation of the

camera. We exploit this fact to design a linear time camera

pose estimation algorithm (cf. Fig. 3 right): Iterating over a

fixed set of rotations, each 2D-3D match casts a vote for the

region contained in its voting shape. Accumulating these

votes in several 2D voting spaces, one per camera orienta-

tion, thus enables us to treat every match individually. As

a result we obtain a (scaled) probability distribution in the

3-dimensional pose parameter space. The best camera pose

is then defined by the orientation and position that obtained

most votes. The final 6DoF pose is computed with a 3 point

solver inside a RANSAC loop on the voted inlier set. In

case of similar structures in the scene, our voting creates

a multi-modal distribution. We obtain its modes via non-

maximum suppression and verify each of them separately,

accepting the pose with most support.

The ideal voting space would be concentric wrt. each

matching 3D point (cf. Fig. 3 right), but this complicates in-

2706



tersection computation significantly. Instead we use a uni-

form sampling to guarantee O(n) runtime. During voting

we account for the quantization by conservatively consider-

ing each bin contained in, or intersected by a voting shape.

Proof of Coordinate System Transformation: Consider the

error shape M of a match m = (x,X). Setting the reprojec-

tion error for this match to 0 is equivalent to adding uncer-

tainty to the camera position (which is at the camera frame

origin 0). With M̄ being the center of M, the error shape

for the camera location is given by the Minkowski differ-

ence MC(m) = {0− p+ M̄ | p 2 M}. If the match m is

correct, the translation from the camera coordinate system

to the global world coordinate system (both gravity- and

thus axis-aligned) is given as t0 = X0−M̄, where X0 is the

2D position of the projected point X. Therefore, the camera

center in world coordinates has to fall into the global voting

shape V(m) = MC + t0, which was obtained without alter-

ing the orientation of the camera. For a different orientation,

we simply rotate the local camera coordinate system by an

angle φ before performing a translation t0φ = X0 −RφM̄.

Hence, a rotated voting shape is obtained via

V(m,φ) = RφMC + t0φ = {X0 −Rφp | p 2 M} . (3)

Eq. (3) reveals that changing the camera orientation results

in the voting shape being rotated around the 2D position X0

of the matching point (cf. Fig. 3 right).

Time Complexity O(n): First, given a rotation angle, a

single iteration over all n correspondences is sufficient to

aggregate votes for the 2D camera location. Second, to ob-

tain the full distribution and by this the best inlier set also

wrt. a discriminative camera angle, the procedure needs to

be performed separately for k discretized angles. Third, for

a large variation in the camera height, the propagated un-

certainty leads to less discriminative votes. To avoid this

property we also quantize the considered height range into

l smaller intervals and test for each of them. Consequently,

the number of used angle-height pairs is constant, i.e., our

method performs kl · n iterations. The size of the voting

shapes is bounded as well, meaning that we cast a constant

number of votes for each shape (In principle a conic section

can be unbounded, e.g., a parabola; however, as will be in-

troduced in Sec. 4, we leverage the feature scale to constrain

its extent). As a result, our approach has an overall compu-

tational complexity of O(n). We will show later that the

constant is significantly reduced by our filters, e.g., on aver-

age only 8% of the camera orientations need to be tested and

as few as 15% of the matches survive the geometric tests.

Implementation Details: Since the size of each voting

shape can vary drastically, we use a hierarchical voting ap-

proach. For each shape, we select the level in the hierarchy

such that all shapes cast at most a fixed number of votes

(e.g., for 100 bins). On the finest level, the size of each

bin is 0.25m2. For each level the 2D voting space is imple-

mented as a hash-map (indexed via discretized camera loca-

side view

top view

(a) Voting shape construction (b) Camera orientations

Figure 4: (a) Voting shape construction: A quadrilateral is

modeled by the rays rn|f intersecting the height interval and

the bounding rays rl|r. (b) The location prior constrains the

camera rotation for a match to the interval [ϕmin, ϕmax].

tions) and due to its sparse structure not bounded in space.

The height interval is typically ±5m and discretized in 1m

steps. For the angular resolution we chose 2◦ degrees.

3. Efficient Voting Shape Computation

In the following, we present an efficient computation of the

voting shapes and show how to account for the errors intro-

duced by the voting space quantization and gravity direction

inaccuracy. In Sec. 2.2 we pointed out that a voting and er-

ror shape only differ by a proper rigid transformation. Thus,

we base our derivation on Def. 1 and approximate an error

shape via its bounding quadrilateral (cf. [27]) for efficiency.

The quadrilateral can be described via its near and far dis-

tance dn|f to the camera center and the two bounding rays

rl|r, as illustrated in Fig. 4a. A quadrilateral for a particular

camera orientation is then efficiently computed by rotating

the projected rays rn|f as derived in Eq. (3).

W.l.o.g. let us define that the projected optical axis points

in the x direction in gravity aligned camera coordinates. The

left- and rightmost rays have extremal y value; i.e., we are

looking for stationary points of the y-component of c(x, r).
The cone parameterization from Eq. (1) for ν = 1 describes

points on the image plane with reprojection error r. There-

fore, rl|r intersect the image plane at keypoint offsets

u⇤
l|r = argmin

u,λ
cy(x, r) +

λ

2
(uTu− r2)

= ⌥ r
(

r21 r22
)T

.
∥

∥

∥

(

r21 r22
)T

∥

∥

∥
, (4)

with rij = Rg(i, j). In a similar manner the offsets corre-

sponding to the near and far rays are derived as

u⇤
n|f = ⌥ r

(

r31 r32
)T

.∥

∥

∥

(

r31 r32
)T

∥

∥

∥
. (5)

They are orthogonal to u⇤
l|r. As one would expected, all

offsets are independent of the particular feature location x.

To account for the bounded heights, rn|f = r(x+ u⇤
n|f ) is

intersected at heights hn|f = {Xz − hmax, Xz − hmin},

resulting in the distances of the error shape to the camera,

i.e., di = krix:y
hi/rizk, 8i 2 {n, f}. To account for the

2707



discretization in angles, rl|r = r(x + u⇤
l|r) is rotated apart

around the z-axis by half the angular resolution.

3.1. Accounting for Gravity Direction Uncertainty

The measurement of the camera gravity direction is likely to

exhibit a certain amount of noise, which we want to account

for during voting. The introduced uncertainty will lead to a

roll and tilt of the camera and hence rotate a feature point

ray and reprojection error cone. Therefore, he union of all

conic sections of rotated cones now defines the error shape,

which is again approximated by a quadrilateral. For a fixed

gravity orientation the keypoint offsets u⇤ have been com-

puted before. What remains is to derive the extremal image

plane positions in dependence of the camera tilt and roll.

We will mainly present the results of our derivation, while

more details are found in the supplementary material.

All possible rays for a feature point x are given by

r̃(x,a) = Rα(a) r(x), where the rotation matrix is param-

eterized via the angle α and an axis a (which lies in the

horizontal plane). First, for the near and far extremal po-

sition stationary points of the z-component of rays are of

interest, such that the two extremal rotation axes are

a⇤n|f = argmin
a,λ

r̃z(a) +
λ

2
(aTa− 1)

= ⌥
(

− ry, rx, 0
)T
.

∥

∥

(

− ry, rx
)
∥

∥ . (6)

Second, for the left and right positions the optimization

problem wrt. the extremal y-components of rays reads as

a⇤
l|r = argmina,λ r̃y(a)+

λ
2
(aTa− 1). It’s derivative wrt.

a forms a 2 ⇥ 2 linear system A(λ)a = b. Solving for a

and evaluating the norm constraint on a results in a fourth

order polynomial in λ. We compute its roots as the Eigen-

values λ1...4 of the 4 ⇥ 4 companion matrix. The two ro-

tation axes are obtained by evaluating the original function

wrt. its minimum and maximum value:

a⇤l|r =

⇢

arg min
λ1...4

r̃y(a(λ)), arg max
λ1...4

r̃y(a(λ))

}

with a(λ) = A(λ)−1b (7)

Compared to the case with fixed gravity direction, now the

extrema positions are dependent on the feature position x.

This is intuitive, since the further a keypoint is located from

the principal point, the more influence a camera tilt and roll

will have. To account for the reprojection error, results from

Eq. (4) and (5) are added and we obtain the extremal posi-

tions of a cone under gravity uncertainty as

c(x,u⇤,a⇤) = r̃(x,a⇤) +Rα(a
⇤)Rg

✓

u⇤/f
0

◆

. (8)

4. Filtering Based On Geometry Constraints

In the following, we present a set of filters that can individ-

ually be applied to each match. They are based on geomet-

ric relations between properties of the 3D model and local

descriptors and aim to reduce the total number of votes to

cast. The advantages are twofold. First, the consideration

of different camera orientations introduces a constant factor

in the time complexity. By applying some simple filters we

can decrease both the number of relevant matches and the

constant factor and thus gain a considerable speedup. Sec-

ond, eliminating false votes upfront boosts the recall rate of

our method by up to 20% as will be shown in Sec 5.

Relative Feature Orientation: Usually, local descriptors

are defined relative to a feature orientation. Similar to

[2,12], who use orientations to improve image retrieval, we

can thus use the local feature orientations to reject matches.

Given the known gravity direction, we express the query

feature orientation in a fixed reference frame and compare

it to the feature orientations from the database images. The

latter typically form an interval of possible feature orienta-

tions. A match is rejected if the query orientation differs

by more than a fixed threshold from the orientations in the

interval belonging to the matching 3D point. Notice that

this filtering step works similar to upright-normalized de-

scriptors, only that we do not need to warp the query im-

age. Moreover, our filtering works on established corre-

spondences and allows for a weaker rejection via a conser-

vative, experimentally evaluated threshold of 30◦ degrees.

3D Point Visibility from SfM Model: Local descriptors

are not invariant to viewpoint changes. For each 3D point

in the scene model, the set of viewpoints under which it was

observed is known. This enables us to determine the mini-

mum and maximum rotation angle under which a 3D point

is visible. It is used to bound the interval of camera rota-

tions per correspondence for which voting is performed. To

account for the viewpoint robustness of feature descriptors,

we extend the bounding camera angles for a match by con-

servative ±60◦ degrees in each direction1.

Feature Scale: We also utilize the scale at which a feature

was detected in the image to reason about the feasibility of a

correspondence. Given a database image with focal length

f observing a feature belonging to the 3D point p with scale

sI , we use the concept of similar triangles to obtain the scale

s3D of the 3D point as s3D = sI
d
f

, where d is the depth

of p in the local camera coordinate system. All observa-

tions of p thus form an interval of 3D scales. Following the

same formula, we can use this interval to derive the interval

[dmin, dmax] of possible (camera to 3D point) depth val-

ues such that the 3D scales projected into the query image

are similar to the scale of the matching feature. As derived

in Sec. 3, the camera height interval defines the near and far

distance (dn|f ) between camera and matching 3D point. We

thus limit the extent of the voting shape to the intersection

of both distance intervals, rejecting the match if it is empty.

Positional Prior: Besides orientation information, mo-

bile devices often also provide location information (e.g.,

1We found that a threshold of 30◦ degrees (cf. [18]) is too restrictive.

2708



Figure 5: Exemplary voting results for query images from the San Francisco (left) and Dubrovnik (right) dataset. Without

usage of GPS information (top left, and most right column) votes are cast in the entire map. With GPS (white circle) the

voting is restricted to the uncertainty region. In case of repetitive scenes (2nd column), e.g., similar buildings or symmetric

structures, our voting procedure returns a multi-modal distribution. In addition the localization accuracy, e.g., depending on

the distance to the scene, is reflected by the size of the returned distribution. The image framed in red shows a failure case.

network-based cell tracking, GPS, etc.). We represent the

measured location and an upper bound to its uncertainty as

a circular area in the voting space. For each match, we then

only need to consider the intersection of its voting shapes

with this prior region, usually enabling us to reject many

wrong matches early on. This is achieved by our voting for-

mulation in global world coordinates. It allows to directly

filter based on the expected camera location for each cor-

respondence individually, rather than restricting the part of

the model to consider (e.g., [6]) – which we believe is a

much more natural way to include a pose prior. In compari-

son, [27] operate in local camera coordinates where a global

location prior is not applicable. In addition there is a strong

relation between the orientation of the query camera and its

possible locations, which is explained visually in Fig. 4b.

Using pose priors to limit the set of feasible camera loca-

tions thus also restricts the set of feasible rotations for each

matching 3D point falling outside the uncertainty region.

5. Experiments and Results

To evaluate our approach we have conducted experiments

on two real-world datasets which are summarized in Tab. 1.

Exemplary voting results are visualized in Fig. 5.

The San Francisco dataset [6] contains street-view like

database images, while query images were captured on mo-

bile devices and provided with (coarse) GPS locations. It

is the most challenging dataset for image localization pub-

lished so far, thus we base our analysis mostly on it. The

datasets comes in four different types. Our evaluation is

based on SF-0, which has the smallest size and thus rep-

resents the most challenging case for localization (unfortu-

nately we could not obtain the SF-1 model). For each query

image, its gravity direction is derived from the vertical van-

ishing point; thereby considering an uncertainty of 2◦ de-

grees in the voting procedure (cf. Sec 3.1). As in [6], we

evaluate the performance of our method as the recall rate

given a fixed precision of 95%. An image is considered to

be correctly localized if it registers to points of the correct

building ID according to the ground truth annotation; this is

the same evaluation criterion as in [16]. Note that for SF-0,

there exists an upper bound on the recall rate of 91.78%,

since for 66 query images the corresponding building IDs

are missing in the reconstructed model.

Second, we evaluate on the Dubrovnik [15] dataset

which is a typical example for a 3D model build from

image collections and has been widely used in the liter-

ature. As such database and query image follow a simi-

lar spatial distribution, which makes pose estimation easier.

Consequently localization can be regarded as solved on the

dataset, which especially [16] has shown recently.

Correspondence Generation: Similar as others [16, 22,

27] we use SIFT features for keypoint matching where de-

Dataset
San Francisco

Dubrovnik
SF-0 SF-1 PCI PFI

DB images 610k 790k 1.06M 638k 6k

3D points 30.34M 75.41M - - 1.96M

Query images 803 803 803 803 800

Table 1: Characteristics of the datasets used for evaluation.

PCI and PFI are sets of images used for retrieval tasks. SF-0

and SF-1 use parts of PCI to reconstruct a SfM model.

2709








