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Abstract

Video segmentation is the task of grouping similar pix-

els in the spatio-temporal domain, and has become an im-

portant preprocessing step for subsequent video analysis.

Most video segmentation and supervoxel methods output

a hierarchy of segmentations, but while this provides use-

ful multiscale information, it also adds difficulty in select-

ing the appropriate level for a task. In this work, we pro-

pose an efficient and robust video segmentation framework

based on parametric graph partitioning (PGP), a fast, al-

most parameter free graph partitioning method that identi-

fies and removes between-cluster edges to form node clus-

ters. Apart from its computational efficiency, PGP performs

clustering of the spatio-temporal volume without requir-

ing a pre-specified cluster number or bandwidth parame-

ters, thus making video segmentation more practical to use

in applications. The PGP framework also allows process-

ing sub-volumes, which further improves performance, con-

trary to other streaming video segmentation methods where

sub-volume processing reduces performance. We evaluate

the PGP method using the SegTrack v2 and Chen Xiph.org

datasets, and show that it outperforms related state-of-the-

art algorithms in 3D segmentation metrics and running

time.

1. Introduction

Image segmentation is a mature field, with the output of

the segmentation methods being used for object detection

and segmentation [24][12], semantic understanding [32],

shadow detection [26], etc. It started with several seminal

works that cluster pixels with similar intensity and/or color

features into groups [8][20][6], and gradually moved into

clustering superpixels that share similar low level features

[27][31][5][14][19]. The increased importance of video

analysis necessitates efficient video segmentation, due to

the heavy processing cost of video data. Video segmen-

tation methods in general attempt to cluster similar pixels

together under a spatio-temporal setting, either by meth-

ods that generate a set of hierarchical segmentations (from

very detailed to more coarse) [10][7][30], or by methods

that group superpixels together to form spatio-temporal su-

perpixels or supervoxels [2][15][25]. The latter methods

are significantly more efficient computationally, albeit less

accurate. In this paper, we propose a ”superpixel group-

ing” method that improves the state-of-the-art by as much

as 30%, and is approximately 20 times faster.

Hierarchical video segmentation methods have demon-

strated excellent 3D (spatiotemporal) segmentation results

on standard datasets such as Segtrack [23] and Chen’s

Xiph.org [4] using a variety of metrics [28]. However, their

applicability in video processing pipelines remains limited,

due to computational complexity and the difficulty of au-

tomatically selecting the appropriate hierarchical layer for

particular applications. As an attempt to address these ob-

stacles, the recently proposed Uniform Entropy Slice (UES)

method ([29]) selects different supervoxels from the several

hierarchical layers to form a single output segmentation, by

balancing the amount of feature information of the selected

supervoxels [29]. UES builds on top of hierarchical seg-

mentation pre-processing techniques such as [10] and [7] to

produce a single segmentation that is more practical for fur-

ther use. This comes at the cost of increased computation

and decreased performance in 3D quantitative performance

metrics compared to [10] and [7]. To obviate the use of

expensive hierarchical segmentation as pre-processing, we

adopt the commonly used approach of grouping superpixels

under a spatio-temporal setting with a novel and efficient

clustering algorithm that performs parametric graph parti-

tioning (PGP) on the spatio-temporal superpixel graph.

PGP is a graph partitioning method that performs cluster-

ing without needing the user to specify the number of clus-

ters, or search-window parameters as in mean-shift [6]. The

method optimizes a number of two-component parametric

mixture models over the edge weights of a graph (one model

per feature type). The edges are bi-partitioned into a within-

cluster and a between-cluster group by performing infer-
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Figure 1. The overview of our proposed PGP method. First, a spatio-temporal superpixel graph is constructed from the video (dashed

lines indicate temporal connections). Then, the edge weights are modeled by a mixture of Weibull distributions, computed separately for

individual features. The mixture models generate information about the inter- and intra-cluster edges (intra-cluster edges in bold). The

inter-cluster edges are discarded and each of the remaining groups of superpixels becomes a final video segment.

ence on these mixture models. Thus the between-cluster

edges of the graph can be identified and removed, in or-

der to create a variable amount of isolated clusters in an

efficient manner (see also [33]). Each of these clusters cor-

responds to a 3D video segment. It is safe to assume that

Lp-norm based similarity distance statistics in general are

Weibull distributed [1]. Based on this observation, a previ-

ous method produced high quality single image partitioning

results and segmented contiguous image regions well [33].

Using PGP has a number of advantages:

• PGP is computationally efficient; its run time is linear

in the number of superpixels. This is especially suit-

able for processing big data such as video.

• PGP is a one-pass algorithm that produces a non-

hierarchical result, which eliminates the need to select

the appropriate hierarchical layer.

Figure 1 gives an overview of our method. In summary

our main contributions are:

1. A novel general graph partitioning algorithm, that re-

quires the differences between the feature vectors to

be correlated and non-identically distributed. Our fea-

tures satisfy this requirement (Section 3.1).

2. An efficient and robust video segmentation method

that outputs a single segmentation map. We use PGP

to partition the spatio-temporal superpixel graph. PGP

models parametrically the similarity distance statistics

for the features of interest. In this paper they are: in-

tensity, hue, ab (from the Lab colorspace), motion (op-

tic flow), and gradient orientation. We integrate these

cues with an adaptive feature weighting scheme.

3. An extensive evaluation and comparison with the pre-

vious state-of-the-art method[29] on two widely used

benchmark video datasets. Our video segmentation

method improves the state-of-the-art significantly in 7

out of 8 total evaluation metrics, using less than 1/20th

of the computation time and memory.

We describe the details and our adaptation of the PGP

method in Section 2, followed by a series of experiments

and quantitative evaluations with related work using Seg-

Track v2 [15] and Chen’s Xiph.org datasets [3] in Section

3. Finally, possible improvements and future work for our

proposed work is discussed in Section 4.

2. Segmentation via superpixel clustering

In image segmentation, it is common to build a graph

where the nodes represent superpixels and the edges con-

nect adjacent superpixels, weighted by the similarity dis-

tance of some feature [26][27]. Then an algorithm parti-

tions this graph to obtain a set of disjoint superpixel groups

as the resulting segmentation. For video segmentation,

pixel-based methods tend to perform better than super-

pixel segmentation methods ([10][7]) because superpixels

segmented on individual frames can be temporally unsta-

ble. However, since superpixel image segmentation meth-

ods are more computationally efficient compared to work-

ing with pixels, they are sometimes the only viable choice

[11][18]. The most prominent methods for grouping su-

perpixels are spectral clustering [11][9] and agglomerative

clustering [18]. However, spectral clustering requires a

quadratic increase in storage and computation as data in-

stances grow, which is particulatly costly for videos, while

the computational efficiency of agglomerative clustering

comes at the cost of reduced segmentation performance.

We propose a novel clustering method for video seg-

mentation via superpixel grouping, called parametric graph

partitioning (PGP). The algorithm attempts to label and re-

move between-cluster edges of a graph by fitting a two-
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component Weibull mixture model (WMM) over the distri-

bution of similarity distances between the connected nodes

(i.e. the edge weights) of the entire graph. The value at

the cross-over point (critical value) between the two compo-

nents represents the split between the intra- and inter-cluster

edge weights. The edge weights that are higher than the

critical value are removed and identified as the inter-cluster

edges. An edge of a graph can only be labeled as inter- or

intra-cluster, hence the algorithm fixes the number of mix-

ture components at two.

In the next section, we describe the PGP algorithm in de-

tail, including the motion features used for video segmen-

tation, our adaptive feature weighting scheme, and branch

reduction method as parts of an integrated framework.

2.1. Spatio­temporal superpixel graph

Given a graph G = (V,E), an edge eu,v ∈ E connects

two neighboring nodes (superpixels) u, v ∈ V . Let xi be the

weight of the ith edge ei of the graph, the task is to assign

a binary label to ei by an indicator function yi = I(xi),
such that yi = 1 if ei is an intra-cluster edge that should be

retained, or yi = 0 if ei is a inter-cluster edge that should

be removed from the graph. For a given feature f ∈ F, xi

is the similarity distance between the feature histograms of

nodes (superpixels) va and vb connected by the ith edge ei
such that xi = D(va, vb|f), and we denote x as similarity

distances of different features.

Neighboring nodes in a spatio-temporal graph are de-

fined as nodes that are spatially or temporally adjacent to

one another, where temporal adjacency in our framework is

defined differently depending on whether the motion feature

(described in Section 3.2) is used: if the motion feature is

used, the temporal neighbors of va are nodes located within

a n×n window on the next temporal frame, where the cen-

ter of the window is specified by the mean motion vector

of va; if the motion feature is not used, then temporal adja-

cency is defined by a 4n × 4n window directly on the next

temporal frame using the centroid of va as the center of the

window.

2.2. Parametric graphic partitioning

Since the edges can only be either intra-cluster or inter-

cluster, the distribution of the edge weights x computed

from a given feature f is therefore composed of the two

respective populations, where the lower values are more

likely to be intra-cluster distances and the higher values are

more likely to belong to the inter-cluster group. Given a

single feature, there is one ideal critical value that separates

x into these two components. Finding this critical value

would solve the edge labeling problem. To find the critical

value, one can naively perform k-means with k = 2 or fit

a two-component Gaussian mixture model over the distri-

bution of x (assuming the similarity distances are Normally

distributed). However, the underlying structure of the sim-

ilarity distance is unknown, so these assumptions are po-

tentially wrong. However, it has been shown [1] that, if

an Lp-norm based distance (e.g. Earth Mover’s Distance

[33]) is used as the similarity distance metric for the fea-

ture histograms, that Lp distance follows a Weibull distri-

bution if the differences between the two feature vectors to

be compared are correlated and non-identically distributed.

We show that our features satisfy the above assumptions in

Section 3.1. It is therefore theoretically plausible to find

the critical value by fitting a 2-component Weibull mixture

model over the distribution of Lp distance statistics, and re-

tain the cross-point of the two components as the critical

value for graph partitioning. The Weibull mixture model

(WMM) has the general form:

WK(x|θ) =
K
∑

k=1

πkφk(x; θk) (1)

φ(x|α, β, c) =
β

α
(
x− c

α
)β−1e−( x−c

α
)β (2)

where θk = (αk, βk, ck) is the parameter vector for the

kth mixture component, and φ denotes the three-parameter

Weibull p.d.f. with the scale (α), shape (β), and location

(c) parameter, and mixing parameter π such that
∑

k πk =
1. In this case, the two-component WMM contains a 6-

parameter vector θ = (α1, β1, α2, β2, c2, π) that yields the

following complete form:

W2(x|θ) = π(
β1

α1
(
x

α1
)β1−1)e−( x

α1
)β1

+ (1− π)(
β2

α2
(
x− c2
α2

)β2−1)e−(
x−c2
α2

)β2

(3)

To optimize the above mixture model, we estimate

the parameters using both maximum likelihood estimation

(MLE) and Nonlinear least squares (NLS) and compare the

results in Tables 1 and 2. The log-likelihood function of

W2(x; θ) is given by:

lnL(θ;x) =

N
∑

n=1

ln{π(
β1

α1
(
xn

α1
)β1−1)e−( xn

α1
)β1

+ (1− π)(
β2

α2
(
xn − c2

α2
)β2−1)e−(

xn−c2
α2

)β2

}

(4)

We adopt the Nelder-Mead algorithm as a derivative-free

optimization method of MLE [17] due to the complexity

of the likelihood function. With NLS, we approximate x

with histograms where the appropriate bin-width is adap-

tively computed by l = 2(IQR)n−1/3, where IQR is the

interquartile range of x with sample size n [13]. Then, NLS
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Figure 2. The nonlinear least-squares fits of Weibull Mixture Models (one and two components) on the Earth Mover’s Distance statistics

of the five features with model selection done for the BMX-1 video. The blue lines are the posterior probability and the red lines are the

probability of individual mixture components. The models in the red boxes are the selected ones by AIC. a: intensity, b: hue, c: ab, d:

motion, and e: gradient orientation.

optimizes the parameters of Eq. 3 by treating the height of

each bin as a curve fitting problem; the least squares mini-

mizer is computed by applying the trust-region method [21].

Both optimization methods require a well chosen initial

guess parameter vector θ′ to avoid local minima. The initial

guesses are intuitive in our graph framework. Given a node

vi and its set of adjacent neighbors vN
i , the neighbor that is

most similar to vi is most likely to belong to the same cluster

as vi. We therefore fit a single Weibull over the minimum

neighbor distance of all superpixels as the initial guess of

the first mixture component. For the initial guess of the

second mixture component, we extract the edge weights that

are more than some percentile of x, where p = 0.6 was

found to be a good point in our experiments.

2.3. Model selection and edge labeling

While the edge weights x are composed of the two popu-

lations (intra- and inter-cluster), there are several situations

when the distribution of x appears more uni-modal than bi-

modal (as per our assumption), such as when there are very

few inter-cluster edges, or more frequently when the differ-

ences between the two populations are less pronounced and

more tapered. Therefore, we also fit a single Weibull model

over x in addition to the two-component WMM, and select

the appropriate model via the Akaike Information Criterion

(AIC) (Figure 2). AIC suits our two-population assumption

because it penalizes the more complex (two-component)

model less. Standard AIC is used with MLE. For NLS, we

use the corrected AIC (AICc) with residual sum of squares

(RSS) because the sample size is smaller (generally if n/k
≤ 40, where n is the number of histogram bins, and k is

number of model parameters):

AICc = n ln(
RSS

n
) + 2k +

2k(k + 1)

n− k − 1
(5)

When the two-component model is selected such that

AIC(W2) ≤ AIC(W1), the critical value γ is the cross-

point between the two components. Otherwise γ is set at a

given sample percentile parameter τ , computed by the in-

verse c.d.f. of W1:

if AIC(W2) ≤ AIC(W1)

γ = x, s.t. π1φ1(x|θ1) = π2φ2(x|θ2)

otherwise

γ = −α1(ln(1− τ))1/β1

After obtaining γ, we combine the n features to compute

the label for xi as the weighted-sum over the scaled x:

yi = I(

n
∑

k=1

wiσ(xi, γ) < 0 | fk) (6)

where σ(xi, γ) is a scaling function that linearly scales

[min(x), γ] to [−1, 0], and [γ,max(x)] to [0, 1]. σ(xi, γ)
is a piecewise function with γ being the breakpoint:
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σ(xi, γ) =











(xi − γ)/(γ −min(x)) if xi < γ

(xi − γ)/(max(x)− γ) if xi ≥ γ

(7)

Notice that when there is only one feature being considered,

Eqs. 6 and 7 combine into a simple threshold function and

γ becomes a threshold that partitions the graph such that

yi = I(xi >= γ).
When multiple features are considered, we expect that

in different parts of the image, different features will be

most prominent. For instance if two neighboring superpix-

els both undergo significant motions, their mean motion fea-

ture value will be higher than most other superpixel pairs,

indicating that motion similarity is of higher importance

when combined with the other features in Eq. 6. Hence, for

each such superpixel pair, we want to promote the weight

wi of the most prominent feature by computing wi adap-

tively. This adaptive scheme comes from the intuition that

the importance of a feature depends on how much of it is

present. wi is the mean feature value of va and vb (con-

nected by ei), normalized by the maximum feature value

for the entire video: wi = avg((fk|va), (fk|vb))/max(fk).
Specifically, the saturation value is used to measure how

much color is present, while the intensity feature weight is

1 minus the weight of the color feature.

As a final step before labeling the edges, we compute

the minimum spanning tree (MST) of the fully connected

graph G before making the cuts. This step has been shown

to reduce the under-segmentation of the graph by remov-

ing cycles and retaining only the most essential edges of the

graph [33]. The MST is computed over the product of the

edge weights for the n features, further multiplied by the

distance d between the centroids of the neighboring super-

pixels, to ensure that closer neighbors are more likely to be

under the same cluster. E′ is the list of edges from the MST:

E′ = MST (d
n
∏

k=1

xk | fk) (8)

Edge labeling is performed over E′ according to Eq. 6.

2.4. Branch reductions

After removing the between-cluster edges that are iden-

tified by PGP, we obtain a set of disjoint superpixel clusters

which are merged into separate video segments. However,

a single frame slice of a spatio-temporal segment may re-

sult in several non-contiguous regions (branches) on that

single frame. Although the branches may be the result of

minor occlusion, they are undesirable in most cases and

care should be taken to address this issue [18]. Therefore,

we separate the branches of the spatio-temporal segments

by post-processing using a greedy algorithm: we iterate

Figure 3. Example process of our greedy branch reduction method.

Given the nodes (representing superpixels), the red edge is re-

moved first, followed by the green edge.

through every spatio-temporal segment and check if it pro-

duces non-contiguous regions in any single video frame. If

found, the algorithm picks the two largest regions on that

frame and removes the edge with the highest weight along

the path between the two regions. This step is repeated un-

til all branches of the given spatio-temporal segment are re-

moved, or a pre-defined number of iterations is reached .

Figure 3 illustrates an example of this process.

3. Experiments and results

We evaluate our PGP video segmentation method quan-

titatively using two video datasets: Segtrack V2 [15] and

Chen’s Xiph.org [4]. The recently proposed Segtrack V2 is

an extended version of the Segtrack V1 dataset [23], where

the number of videos increased from 6 to 14. Videos vary in

length and each has multiple objects and pixel-level ground-

truth. Chen’s dataset is a 8-video subset of the Xiph.org

videos that contains semantic pixel-level labeling of multi-

ple classes as ground-truth.

The features f that we use in this work are i) inten-

sity (256-bin 1D histogram), ii) hue of the HSV colorspace

(77×77 2D histogram), iii) the color component (AB) of

the LAB colorspace (20×20 2D histogram), iv) motion op-

tic flow (50×50 2D histogram), and v) gradient orientation

(360-bin 1D histogram). Earth Mover’s Distance (EMD) is

used for all features. We generate superpixels using [16].

For the temporal neighbors’ n × n search window size, we

empirically set n to be 2.5% of the (video width + video

height)/2; and cap the branch reduction iteration at 100 per

spatio-temporal segment.

3.1. Feature properties

In order for the Lp distance statistics to follow a Weibull

distribution, the compared feature differences must be cor-

related but non-identically distributed random variables, as

mentioned in Section 2.2. We follow [1] to test the 5 fea-

tures used in this paper.

In summary, for each feature, we take its feature his-

togram from a randomly selected reference superpixel s
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SegTrack V2

3D Accuracy (AC) 3D Under-segmentation Error (UE) 3D Boundary Recall (BR) 3D Boundary Precision (BP)

Video-obj MLE+ NLS- NLS+ [29]a [29]b MLE+ NLS- NLS+ [29]a [29]b MLE+ NLS- NLS+ [29]a [29]b MLE+ NLS- NLS+ [29]a [29]b

Bird of P. 93.2 96.3 93.5 97.6 95.3 3.1 2.9 3.0 1.6 2.6 85.4 91.7 87.8 94.8 91.6 10 6.7 8.2 6.9 5.8

Birdfall 67.3 71.3 70.7 65.3 53.8 81.5 50.9 44.4 28.8 23.2 83.6 84.7 83.8 88.5 82.1 1.5 0.8 1.1 0.8 0.9

BMX-1 95.6 95.0 95.6 90.3 65.6 7.1 7.1 6.9 6.3 7.7 97.3 97.4 97.5 97.7 93.6 4.7 4.2 4.5 5.1 3.6

BMX-2 78.2 78.9 79.0 44.3 27.1 9.4 8.4 10.0 11.7 16.8 90.6 91.5 91.0 92.6 88.1 4.3 3.9 4.1 4.7 3.3

Cheetah-1 72.8 74.3 73.9 0 39.4 9.0 6.5 9.5 47.4 34.1 93.4 97.2 94.7 63.8 75.3 1.1 1.1 1.1 1.4 1.6

Cheetah-2 69.9 70.1 69.7 0 12.0 8.7 6.9 8.9 54.5 34.4 98.4 98.5 98.4 76.8 75.3 1.5 1.4 1.5 2.2 2.0

Drift-1 92.4 92.2 92.6 83.0 75.6 6.7 3.9 6.0 3.5 7.1 92.9 93.6 93.5 94.9 90.6 1.2 1.0 1.1 1.0 1.2

Drift-2 91.9 93.2 92.8 84.9 56.8 7.5 4.1 7.3 4.2 10.0 91.3 92.7 91.6 87.6 82.9 0.9 0.8 0.9 0.7 0.8

Frog 14.3 33.5 25.6 n/a 62.4 16.5 15.8 15.7 n/a 13.1 29.5 55.1 44.6 n/a 81.4 13.2 8.7 7.1 n/a 1.7

Girl 87.2 88.4 87.9 65.5 63.5 9.9 10.3 9.3 12.3 13.5 90.3 91.7 92.0 75.6 83.2 4.3 5.2 4.1 5.2 4.6

Hbird-1 64.5 64.1 69.5 55.9 0 9.1 20.1 8.8 7.8 14.5 76.3 80.7 86.8 79.8 35.0 2.8 5.8 3.2 6.3 3.3

Hbird-2 78.4 67.5 81.9 70.6 0 7.8 11.2 7.9 8.0 13.4 90.4 83.3 95.5 92.7 86.0 5.0 9.0 5.3 11 12

Monkey 88.8 87.5 90.7 87.5 0 6.7 3.5 5.7 11.7 19.6 91.8 94.3 93.6 92.0 64.0 1.7 1.5 1.6 1.7 3.4

Mdog-1 86.7 88.2 88.1 41.7 79.9 12.6 11.0 11.6 41.4 43.2 94.8 95.7 95.7 94.3 91.0 1.6 1.5 1.5 2.1 3.0

Mdog-2 56.9 65.0 66.7 43.2 0 8.0 8.1 6.5 27.9 22.0 84.5 88.5 90.0 78.5 44.0 1.0 1.0 1.0 1.3 1.0

Parachute 93.5 93.4 93.4 90.9 89.3 22.0 7.2 19.9 18.5 38.6 94.9 97.3 96.0 95.7 87.4 1.3 0.7 1.1 1.5 10

Penguin-1 96.2 96.4 94.6 94.8 85.0 3.4 3.3 3.3 2.2 1.8 49.3 48.8 49.3 77.3 65.5 1.1 0.9 1.1 1.4 0.9

Penguin-2 96.4 96.5 96.6 85.1 93.1 4.7 4.6 4.7 3.3 2.1 69.6 74.9 71.7 66.8 75.3 1.6 1.5 1.6 1.3 1.1

Penguin-3 96.2 95.6 96.1 87.6 83.7 4.0 3.8 4.0 2.9 2.5 70.7 74.2 71.6 54.2 72.7 1.6 1.4 1.6 1.0 1.0

Penguin-4 96.0 95.8 96.1 83.8 82.8 3.9 3.9 3.8 2.0 2.4 73.4 75.4 74.0 45.7 56.7 1.4 1.2 1.4 0.7 0.7

Penguin-5 87.9 89.3 89.3 81.8 72.3 8.2 9.7 8.1 4.6 4.1 72.9 76.0 74.9 59.2 54.0 1.2 1.1 1.2 0.8 0.6

Penguin-6 96.7 98.8 97.0 85.7 86.8 4.1 4.1 4.0 2.2 2.5 61.1 47.1 66.2 66.4 63.3 1.2 0.8 1.3 1.1 0.8

Soldier 88.5 87.1 89.5 65.3 67.2 10.0 4.9 4.9 8.3 10.8 91.6 94.4 94.3 88.4 86.3 3.2 1.9 2.2 1.9 2.5

Worm 90.9 92.4 91.2 n/a 0 23.0 20.3 21.3 n/a 32.8 87.1 90.3 90.0 n/a 69.2 1.9 1.5 1.6 n/a 1.8

Average 82.5 83.8 84.2 68.4 53.8 12.0 9.7 9.8 14.2 15.5 81.7 84.0 84.4 80.2 74.8 2.9 2.6 2.5 2.7 2.8

Median 88.7 88.9 89.6 82.4 64.6 8.1 7.0 7.6 7.9 13.3 88.7 90.9 90.5 83.7 78.4 1.6 1.5 1.5 1.5 1.8

Table 1. Quantitative evaluation on the SegTrack v2 dataset, [29]a is UES+SWA, and [29]b is UES+GBH. For the 3D under-segmentation

metric, the lower the error the better. For all the other metrics, the higher the score, the better. Best values are shown in bold. For the

variants of our methods, the letters stand for the optimization method used, and +/- indicates the use of motion feature. All of the reported

variants were based on 300 initial superpixels per frame at a 1/4 sub-volume processing mode. This table shows that our method’s averages

outperformed [29] in all 4 metrics, while our medians came out on top in 3. The n/a entry indicates that the method failed to converge to a

result, the cases here were due to memory overload.

Chen Xiph.org

3D Accuracy (AC) 3D Under-segmentation Error (UE) 3D Boundary Recall (BR) 3D Boundary Precision (BP)

Video MLE+ NLS- NLS+ [29]a [29]b MLE+ NLS- NLS+ [29]a [29]b MLE+ NLS- NLS+ [29]a [29]b MLE+ NLS- NLS+ [29]a [29]b

Bus 61.7 68.2 69.3 55.5 8.1 37.6 6.8 37.0 33.2 656 73.8 80.7 74.6 84.5 29.1 41.5 38.4 39.2 35.5 55.5

Container 82.2 89.8 90.2 89.2 77.3 11.6 3.6 7.5 1.8 4.5 58.6 71.8 69.4 64.7 51.5 14.9 8.3 14.9 9.9 11.6

Garden 82.7 83.8 83.3 83.8 63.1 1.8 1.9 1.8 1.6 3.3 69.9 73.6 70.6 76.1 40.0 13.9 13.4 13.9 12.1 25.3

Ice 89.6 87.6 87.5 79.4 46.6 29.3 26.0 27.1 16.6 69.1 83.3 84.3 83.0 80.6 50.3 33.8 31.4 32.4 36.1 43.8

Paris 49.5 52.0 50.9 47.6 2.0 14.7 12.4 14.3 19.2 40.2 46.4 53.0 50.8 44.8 34.1 4.7 4.4 4.6 3.8 5.3

Salesman 71.1 82.2 72.5 64.6 0 4.0 4.4 4.1 3.4 12.7 38.0 51.0 38.0 40.0 1.0 6.4 7.1 6.6 5.7 0.7

Soccer 72.9 79.4 78.3 70.9 26.4 46.6 32.7 34.0 17.0 145 73.3 76.1 74.9 75.2 58.8 16.7 14.4 16.3 16.3 29.2

Stefan 74.5 84.3 85.4 65.5 64.3 8.2 6.6 6.3 19.0 13.4 62.7 82.2 81.0 72.1 63.9 12.7 11.1 11.5 13.2 13.4

Avgerage 73.0 78.4 77.2 69.6 36.0 19.2 11.8 16.5 14.0 107 63.2 71.6 67.8 67.2 41.1 18.1 16.1 17.4 16.6 23.1

Median 73.7 83.0 80.1 68,2 36.5 13.2 6.7 10.9 16.8 26.8 66.3 74.8 72.6 73.7 45.2 14.4 12.3 14.4 12.7 19.4

Table 2. Quantitative evaluation on the Chen Xiph.org dataset. All of the settings are exactly the same as Table 1. For this dataset, both our

average and median values outperformed [29] in 3 out of 4 metrics.

and 100 other randomly selected superpixels T , and com-

pute the difference ∆i = |si − Ti|
p, at all histogram bins

i. Then, we compute the Wilcoxon rank sum test between

the difference values ∆i and ∆j of all possible pairs of in-

dices, i 6= j. We set the confidence level at 0.05, and re-

sample s and T 500 times per video, for all 5 features. As

a result, we found that over 98% of the feature differences

for all 5 features for both video datasets are non-identically

distributed. This procedure is repeated for testing whether

the feature differences are correlated, the second required

assumption for satisfying the Weibull distribution property

of Lp-norm based distance statistics. In this case we used

Pearson’s correlation, and we again found that over 98%

of all feature differences for all 5 features are significantly

correlated. This is not surprising as [1] showed that even

for hand-designed-features such as SIFT, SPIN, and GLOH

over 85% of the feature differences satisfy both conditions.

3.2. Quantitative evaluations

In the following, we compare our methods with the state-

of-the-art related method on two datasets, and discuss the

effects of the motion feature, number of superpixels ex-

tracted in pre-processing, sub-volume processing, the per-

centile parameter τ , and provide run time analysis.

Method Comparisons. Table 1 and 2 shows our quan-

titative results using the metrics proposed by [28] and com-
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Figure 4. The plots that show the effects of varying different conditions (initial number of superpixels, size of the sub-volume processing,

and with or without motion), for Segtrack V2 dataset: +/-M means with or without motion feature, vol stands for the sub-volume’s size as

a portion of the original video. These plots suggest that there is no clear indication of the benefit in using the motion feature (dotted lines)

within the PGP framework, and that sub-volume processing performs approximately the same as processing the full volume.

Figure 5. The plots show the effects of varying different conditions for Chen’s dataset. Sub-volume processing seems to slightly outperform

full video mode, and better performance tends to be associated with the exclusion of motion feature.

pared to the Uniform Entropy Slice (UES) method [29].

Like our method, UES also aims to produce just one single

segmentation output, by automatically selecting and com-

bining the appropriate supervoxels from the multiple lay-

ers of segmentations using SWA [7] or GBH [10]. We test

several variants of our method: MLE+ for MLE optimized

results, NLS+ and NLS- for optimization done using NLS,

where +/- refers to the inclusion of motion feature or not,

respectively. Due to space constraints, we report only one

variant of MLE, since in our experiments MLE performed

slightly but consistently worse than NLS optimization. The

table shows that all the variants of our method outperform

considerably both UES variants in all categories other than

3D BP in Chen’s dataset. Their higher 3D BP is likely due

to the significant overall under-segmentation of UES-GBH

which heavily raises precision values.

Motion feature. When the motion feature is used, our

algorithm uses the optical flow vectors for a more refined

search of the temporal neighbors. Similar to the other fea-

tures, we model a WMM over the similarity distance statis-

tics based on motion feature histograms, and find the crit-

ical point γ that indicates the point of dissimilarity, which

defines the inter-cluster values. In particular, motion feature

similarity is considered only by spatial neighbors. The tem-

poral neighbors just use motion vectors to specify the loca-

tion of the search window. If the motion feature is not used,

we search for temporal neighbors within a pre-defined win-

dow. We extract the motion feature using [22], but any opti-

cal flow extraction algorithm can be used. As both tables 1

and 2, and Figures 4 and 5 show, the results of using motion

features within our framework are mixed, as motion seems

to have improved the results for the SegTrack v2 dataset but

not for Chen’s dataset. Furthermore, not using motion low-

ers run time because optical flow extraction methods can be

time consuming. Furthermore, Figure 6 shows that exam-

ple results with (2nd row) and without (3rd row) motion are

qualitatively similar.

Initial superpixel resolution. While our method pro-

duces a single segmentation result, the effects of varying

the initial superpixel resolution are worth investigating. We

evaluate our method with 100, 200, 300, and 400 initial

superpixels per frame. Figures 4 and 5 show that a low

number of superpixels tends to cause under-segmented

results, most likely because the initial segmentation is less

precise. The plots in Figures 4 and 5 also indicate that, after

a point, increasing the superpixel resolution does not further

improve results. Our method is robust to different initial

superpixel resolutions as long as the number of superpixels

is enough to produce a good initial over-segmentation (i.e.

300 per frame for the tested datasets). Figure 6 shows

examples of the results that started with 300 (2nd and 3rd

row) and 100 (4th row, somewhat under-segmented result)

initial superpixels per frame.
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Sub-volume processing. So far, we have been describ-

ing how our method processes the edge weights from the

entire video. However, it can also be used to fit WMMs over

sub-volumes and find the ‘local critical values’ that best de-

scribe the feature similarities at certain shots. The stream-

ing GBH method [30] processes videos in chunks for effi-

ciency, but loses information when optimizing only a group

of frames at a time. In contrast, our PGP framework ben-

efits from making the right divisions into sub-volumes for

the WMM to optimize locally, as the feature similarities are

more specific within a shot boundary. An example would

be a change in activity: a triathlete is bike riding for the first

10 seconds of the video, followed by the swimming part

of the contest for the next 10 seconds. Optimizing the en-

tire video would effectively scramble the similarity distance

values from both shots and result in a γ that is non-specific.

However, if the video is processed at the two shots sepa-

rately, the PGP method would obtain more specific, shot-

appropriate γ’s. Figures 4 and 5 show that optimizing at

the entire video (vol = 1) is not always optimal, and better

performance is achived when sub-dividing the volume for

processing. Although we used a fixed set of subdivisions:

1, 1/4, and 1/8, processing smaller, appropriate sub-volumes

is still beneficial. This would also allow for parallel video

processing, where the sub-volumes can be optimized sepa-

rately without performance cost.

Method parameter τ . Our proposed PGP video seg-

mentation method has only one parameter value τ , used

when a single Weibull model is selected by the model selec-

tion, to obtain the critical value γ at the τ percentile of the

fitted Weibull. We have observed that the two-component

WMM were selected by AIC in the vast majority of the

cases; hence the selection of τ has a minimal effect on the

overall accuracy. Indeed we varied τ from 0.5 to 0.9 and the

resulting accuracies did not vary more than 1%. We have

uniformly set τ at 0.6 throughout the presented evaluations.

Run time analysis. We conducted our experiments on

a Xeon X3470 at 2.93Ghz with 32 Gb of memory. All ex-

periments used a single core. Superpixels take roughly 1

second per frame, and our method on average takes about

170 seconds for an 85-frame video after superpixel extrac-

tion for the results of Table 2. This is more than 20 times

faster than [29]’s processing time of around 4000 seconds;

our combined end-to-end run time of 250 seconds on aver-

age is again 20 times faster than the total run time of 4700

- 6600 seconds of [29], which include the expensive GBH

and SWA methods. Furthermore, our run time is on par

with the leading streaming video segmentation method [30]

although our current implementation is offline and not opti-

mized for parallel processing.

Figure 6. Example outputs for video BMX from SegTrack v2.

From left to right: frame 1, 10, 20, and 30; Top to bottom: orig-

inal frame, our results of 300 superpixels with motion (NLS+M

in Table 1, 300 superixels without motion (NLS-M), and 100 su-

perpixels without motion. Additional results can be found in the

supplementary material.

4. Conclusion

We have proposed a fast and robust video segmenta-

tion method under PGP, a novel parametric graph parti-

tioning framework. Our framework groups superpixels by

modeling two-component mixtures of Weibull distributions

over the edge weights, that permit low computational cost

and robust inference on the parametric model (theoreti-

cally known to be the underlying structure of the Lp-norm

based similarity distance statistics). We conducted exten-

sive quantitative evaluations on the recently proposed Seg-

Track v2 and the well-known Chen Xiph.org dataset, and

shown that our method significantly outperforms the re-

lated state-of-the-art method in most 3D metrics. We have

also shown that our run time is on par with the state-of-

the-art streaming methods, with the potential of paralleliz-

ing the bulk of the processing. Our framework is versa-

tile and can be further improved with our sub-volume pro-

cessing scheme. As a next step, we plan to investigate the

application of shot-boundary techniques to explore the op-

timal sub-volume division that would further improve our

method’s performance.
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