
Multi-scale recognition with DAG-CNNs

Songfan Yang

College of Electronics and Information Engineering,

Sichuan University, China

syang@scu.edu.cn

Deva Ramanan

Robotics Institute,

Carnegie Mellon University, USA

deva@cs.cmu.edu

Abstract

We explore multi-scale convolutional neural nets (CNNs)

for image classification. Contemporary approaches extract

features from a single output layer. By extracting features

from multiple layers, one can simultaneously reason about

high, mid, and low-level features during classification. The

resulting multi-scale architecture can itself be seen as a

feed-forward model that is structured as a directed acyclic

graph (DAG-CNNs). We use DAG-CNNs to learn a set of

multi-scale features that can be effectively shared between

coarse and fine-grained classification tasks. While fine-

tuning such models helps performance, we show that even

“off-the-self” multi-scale features perform quite well. We

present extensive analysis and demonstrate state-of-the-art

classification performance on three standard scene bench-

marks (SUN397, MIT67, and Scene15). In terms of the

heavily benchmarked MIT67 and Scene15 datasets, our re-

sults reduce the lowest previously-reported error by 23.9%

and 9.5%, respectively.

1. Introduction

Deep convolutional neural nets (CNNs), pioneered by

Lecun and collaborators [19], now produce state-of-the-art

performance on many visual recognition tasks [17, 30, 33].

An attractive property is that it appear to serve as univer-

sal feature extractors, either as “off-the-shelf” features or

through a small amount of “fine tuning”. CNNs trained on

particular tasks such as large-scale image classification [5]

transfer extraordinarily well to other tasks such as object

detection [11], scene recognition [40], image retrieval [12],

etc [28].

Hierarchical chain models: CNNs are hierarchical

feed-forward architectures that compute progressively in-

variant representations of the input image. However, the ap-

propriate level of invariance might be task-dependent. Dis-

tinguishing people and dogs requires a representation that

is robust to large spatial deformations, since people and

dogs can articulate. However, fine-grained categorization

coarse classes Fine classes

sedanSUVdogperson

LayerN
Output

classifier

Layer2

Layer1

LayerN
Output

classifier

Layer2

Layer1

LayerN

Layer2

Layer1

Output
layer

CNN Multi-scale CNN DAG-CNN

Figure 1. Recognition typically require features at multiple scales.

Distinguishing a person versus dog requires highly invariant fea-

tures robust to the deformation of each category. On the other

hand, fine-grained recognition likely requires detailed shape cues

to distinguish models of cars (top). We use these observations to

revisit deep convolutional neural net (CNN) architectures. Typical

approaches train a classifier using features from a single output

layer (left). We extract multi-scale features from multiple layers

to simultaneously distinguish coarse and fine classes. Such fea-

tures come “for free” since they are already computed during the

feed-forward pass (middle). Interestingly, the entire multi-scale

predictor is still a feed-forward architecture that is no longer chain-

structured, but a directed-acyclic graph (DAG) (right). We show

that DAG-CNNs can be discriminatively trained in an end-to-end

fashion, yielding state-of-the-art recognition results across various

recognition benchmarks.

of car models (or bird species) requires fine-scale features

that capture subtle shape cues. We argue that a universal

architecture capable of both tasks must employ some form

of multi-scale features for output prediction.

Multi-scale representations: Multi-scale representa-

tions are a classic concept in computer vision, dating back

to image pyramids [4], scale-space theory [21], and multi-

1215



query

florist

grocery store toy store buffet shoeshop

Mid-level 

feature

High-level 

feature

bakery

(a) mid-level feature is preferred

query

church inside

mallairport living room mall jewelleryshop

shoeshop

shoeshop

l 

l 

(b) high-level feature is preferred

Figure 2. Retrieval results using L2 distance for both mid- and high-level features on MIT67 [26], computed from layer 11 and 20 of the

Caffe model. Green (Red) box means correct (wrong) results, in terms of the scene category label. The correct label for wrong retrievals

are provided. The retrieval results are displayed such that the left-most image has the closest distance to the query, and vice versa. Certain

query images (or categories) produce better matches with high-level features, while others produce better results with mid-level features.

This motivates our multi-scale approach.

resolution models [23]. Though somewhat fundamental no-

tions, they have not been tightly integrated with contempo-

rary feed-forward approaches for recognition. We introduce

multi-scale CNN architectures that use features at multiple

scales for output prediction (Fig. 1). From one perspective,

our architectures are quite simple. Typical approaches train

a output predictor (e.g., a linear SVM) using features ex-

tracted from a single output layer. Instead, one can train

an output predictor using features extracted from multiple

layers. Note that these features come “for free”; they are

already computed in a standard feed-forward pass.

Spatial pooling: One difficulty with multi-scale ap-

proaches is feature dimensionality - the total number of fea-

tures across all layers can easily reach hundreds of thou-

sands. This makes training even linear models difficult

and prone to over-fitting. Instead, we use marginal acti-

vations computed from sum (or max) pooling across spa-

tial locations in a given activation layer. From this per-

spective, our models are similar to those that compute

multi-scale features with spatial pooling, including multi-

scale templates [10], orderless models [12], spatial pyra-

mids [18], and bag-of-words [32]. Our approach is most

related to [12], who also use spatially pooled CNN fea-

tures for scene classification. They do so by pooling to-

gether multiple CNN descriptors (re)computed on various-

sized patches within an image. Instead, we perform a single

CNN encoding of the entire image, extracting multi-scale

features “for free”.

End-to-end training: Our multi-scale model differs

from such past work in another notable aspect. Our en-

tire model is still a feed-forward CNN that is no longer

chain-structured, but a directed-acyclic graph (DAG). DAG-

structured CNNs can still be discriminatively trained in an

end-to-end fashion, allowing us to directly learn multi-scale

representations. DAG structures are relatively straightfor-

ward to implement given the flexibility of many deep learn-

ing toolboxes [35, 15]. Our primary contribution is the

demonstration that structures can capture multi-scale fea-

tures, which in turn allow for transfer learning between

coarse and fine-grained classification tasks.

DAG Neural Networks: DAG-structured neural nets

were explored earlier in the context of recurrent neural nets

[1, 13]. Recurrent neural nets use feedback to capture dy-

namic states, and so typically cannot be processed with

feed-forward computations. Recent networks have explored

the use of “skip” connections between layers [27, 33, 29],

similar to our multi-scale connections. [27] show that such

connections are useful for a single binary classification task,

but we motivate multi-scale connections through multi-task

learning: different visual classification tasks require fea-

tures at different image scales. [33] use skip connections

for training, but not at test-time (implying the final model

not a DAG). Finally, our work aligns with approaches that

predict local pixel labels using features extracted from mul-

tiple CNN layers [14, 22]. We show that such features also

improve global image classification.

Overview: We motivate our multi-scale DAG-CNN

model in Sec. 2, describe the full architecture in Sec. 3,

and conclude with numerous benchmark results in Sec. 4.

We evaluate multi-scale DAG-structured variants of ex-

isting CNN architectures (e.g., Caffe [15], Deep19 [30])

on a variety of scene recognition benchmarks including

SUN397 [39], MIT67 [26], Scene15 [9]. We observe a

consistent improvement regardless of the underlying CNN

architecture, producing state-of-the-art results on all 3

datasets.

2. Motivation

In this section, we motivate our multi-scale architecture

with a series of empirical analysis. We carry out an analysis

on existing CNN architectures, namely Caffe and Deep19.

1216



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
c
c
u

ra
c
y

Layers

Figure 3. The classification accuracy on MIT67 [26] using activa-

tions from each layer. We use an orange color fill representing the

output of a ReLU layer, where there are 7 in total for the Caffe

model. We tend to see a performance jump at each successive

ReLU layer, particularly earlier on in the model.

Caffe [15] is a broadly used CNN toolbox. It includes a

pre-trained model “AlexNet” [17] model, learned with mil-

lions of images from the ImageNet dataset [5]. We de-

note the output of each convolution, rectification, normal-

ization, pooling, and fully-connected inner product oper-

ation as a unique layer. Under this definition, the Caffe

AlexNet model has 20 layers, while the state-of-the-art

Deep19 model [30] has a total of 43 layers. To develop our

motivation, we analyze the behavior of the “off-the-shelf”

Caffe model on the heavily benchmarked MIT Indoor Scene

(MIT67) dataset [26], using 10-fold cross-validation.

2.1. Single­scale models

Image retrieval: Recent work has explored sparse re-

construction techniques for visualizing and analyzing fea-

tures [36]. Inspired by such techniques, we use image re-

trieval to begin our exploration. We attempt to “reconstruct”

a query image by finding M = 7 closest images in terms

of L2-distance, when computed with mean-pooled layer-

specific activations. Results are shown for two query im-

ages and two Caffe layers in Fig. 2. The florist query

image tends to produces better matches when using mid-

level features that appear to capture objects and parts. On

the other hand, the church-inside query image tends to

produce better matches when using high-level features that

appear to capture more global scene statistics.

Single-scale classification: Following past work [28],

we train a linear SVM classifier using features extracted

from a particular layer. We specifically train K = 67 1-

vs-all linear classifiers. We plot the performance of single-

layer classifiers in Fig. 3. The detailed parameter options for

both Caffe model are described later in Sec. 4. As past work

has pointed out, we see a general increase in performance

as we use higher-level (more invariant) features. We do see

a slight improvement at each nonlinear activation (ReLU)

layer. This makes sense as this layer introduces a nonlinear

rectification operation max(0, x), while other layers (such

an convolutional or sum-pooling) are linear operations that

can be learned by a linear predictor.

Scale-varying classification: The above experiment re-

quired training K × N 1-vs-all classifiers, where K is the

number of classes and N is the number of layers. We can

treat each of the KN classifiers as binary predictors, and

score each with the number of correct detections of its tar-

get class. We plot these scores as a matrix in Fig. 4. We tend

to see groups of classes that operate best with features com-

puted from particular high-level or mid-level layers. Most

categories tend to do well with high-level features, but a

significant fraction (over a third) do better with mid-level

features.

Spatial pooling: In the next section, we will explore

multi-scale features. One practical hurdle to including all

features from all layers is the massive increase in dimen-

sionality. Here, we explore strategies for reducing dimen-

sionality through pooled features. We consider various

pooling strategies (average versus max), pooling neighbor-

hoods, and normalization post-processing (with and without

L2 normalization). We saw good results with average pool-

ing over all spatial locations, followed by L2 normalization

(though we will re-examine these issues further in the next

section). Specifically, assume a particular layer is of size

H ×W ×F , where H is the height, W is the width, and F

is the number of filter channels. We compute a 1 × 1 × F

feature by averaging across spatial dimensions. We then

normalize this feature to have unit norm.

2.2. Multi­scale models

Multi-scale classification: We now explore multi-scale

predictors that process pooled features extracted from mul-

tiple layers. As before, we analyze “off-the-shelf” pre-

trained models. We evaluate performance as we iteratively

add more layers by feature concatenation. Fig. 3 suggests

that the last ReLU layer is a good starting point due to its

strong single-scale performance. Fig 5(a) plots performance

as we add previous layers to the classifier feature set. Per-

formance increases as we add intermediate layers, while

lower layers prove less helpful (and may even hurt perfor-

mance, likely do to over-fitting). Our observations suggest

that high and mid-level features (i.e., parts and objects) are

more useful than low-features based on edges or textures in

scene classification.

Multi-scale selection: The previous results show that

adding all layers may actually hurt performance. We veri-

fied that this was an over-fitting phenomena; additional lay-

ers always improved training performance, but could de-

crease test performance due to over-fitting. This appears es-

pecially true for multi-scale analysis, where nearby layers

may encoded redundant or correlated information (that is

susceptible to over-fitting). Ideally, we would like to search

for the “optimal” combination of ReLU layers that max-

imize performance on validation data. Since there exists

1217



L
a

y
e

r

11

13

15

18

20

1

0.8

0.6

0.4

0.2

A
c
c
u

ra
c
y

Layer-11 Layer-15Layer-13 Layer-18 Layer-20
Best 

classified 

by

�

�

�

�

�

�

�

�

�

	

�

�

�




�

�

�

�

�

�

�




�

�




�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�




�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�




�

�

�

�

�




�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�




�

�

�




�

	

�

�

�

�

�

�

�

�




�

�

�

	

�

�

�

�

�

�

�

�

�

�




�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

	

�




�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�




�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

	

�

�

�

	

�

�

�

�

�

�

�

	

�




�

�




�

�

	

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�




�

�

�

�

�

�

�

�




�

�

�

	

�

�

�

�

�

�

�

	

�

�

�

�




�

	

�

�

�

�

�

�

�

�

�

�

�

�




�

�

	

�

�

�

�

�

�

�

�

�

	

�

�

�

�

	




�

	

�

�

�




�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�




�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�




�

�

�

�

�




�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�




�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�




�

�

�

�

�

�

�

�

�




�

�

�

	

�

�

�

�

�

�

�

�







�

�

�

�

�




�

�

�

�

�

�

�

�

�

�

	

�

�

�

	

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�




�

�

�




�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�




�

�

�

�

�

	

�

�

�

�

	

�




�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�




�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�




�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�




�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

Figure 4. The “per-class” performance using features extracted from particular layers. We group classes with identical best-performing

layers. The last layer (20) is optimal for only 15 classes, while the second-to-last layer (18) proves most discriminative for 26 classes. The

third-most effective layer (11) captures significantly lower-level level features. These results validate our underlying hypothesis; different

classes require different amounts of invariance. This suggests that a feature extractor shared across such classes will be more effective

when multi-scale.

59

60

61

62

63

64

65

20 +18 +15 +13 +11 +7 +3

A
c
c
u
ra

c
y

Layers

(a) Multi-scale

60

61

62

63

64

65

18 +13 +15 +11 +20

A
c
c
u

ra
c
y

Layers

(b) Forward Selection

Figure 5. (a) The performance of a multi-scale classifier as we add

more layer-specific features. We start with the last ReLU layer,

and iteratively add the previous ReLU layer. The “+” sign means

the recent-most added layer. Adding additional layers help, but

performance saturates and even slightly decreases when adding

lower-layer features. This suggests it may be helpful to search

for the “optimal” combination of layers. (b) The performance

trend when using forward selection to incorporate the ReLU lay-

ers. Note that layers are not selected in high-to-low order. Specif-

ically, it begin with the second-to-last ReLU layer, and skip one

or more previous layers when adding the next layer. This sug-

gests that layers encode some redundant or correlated information.

Overall, we see a significant 6% improvement.

an exponential number of combinations (2N for N ReLU

layers), we find an approximate solution with a greedy

forward-selection strategy. We greedily select the next-best

layer (among all remaining layers) to add, until we observe

no further performance improvement. As seen in Fig. 5(b),

the optimal results of this greedy approach rejects the low-

level features. This is congruent with the previous results in

Fig. 5(a).

Multi-scale pooling: We use our greedy scale-selection

strategy to re-examine pooling strategies. Specifically, we

divide the spatial features from a particular layer into M ×

M non-overlapping windows, where M varies from 1 to

3. We average-pool features within each window and con-

catenate the M2 pooled features together into a final L2-

normalized descriptor. When greedily searching over lay-

ers to add, we also greedily search over the 3 possible pool-

ing windows for each layer. Interestingly, when evaluat-

60

61

62

63

64

65

1 2 3 4 5

A
c
c
u
ra
c
y

Number of layers included

1x1 2x2

3x3 all

Figure 6. We evaluate spatial pooling strategies to see if retain-

ing spatial information (by pooling over smaller windows) helps

multi-scale performance. The answer is essentially ‘no’: global

pooling (using a 1 × 1 window covering the entire layer) does

as well as or better than local windows, either of a fixed-size or

adaptive-size dynamically selected during the greedy search (all).

We posit two reasons: (1) finer spatial cues may already be cap-

tured by multiscale features extracted from neighboring layers and

(2) additional training data might be needed to realize the benefit

of local pooling windows since they generate larger descriptors.

Dotted line means the layer will not be selected by greedy pro-

cedure. For reference, we also experimented with max-pooling

strategies, but saw consistently worse results.

ing pooling windows for single-scale classification, smaller

pooling windows sometimes improved performance for cer-

tain layers. But in the multi-scale setting, there is essen-

tially no improvement over global pooling (Fig. 6), perhaps

because finer spatial cues may already be captured in multi-

scale features extracted from neighboring layers. We posit

that with more training data, locally-pooled features may

perform better. In our subsequent analysis we consider only

globally-pooled features, as they are simpler to implement

and generate smaller descriptors.

Our analysis strongly suggest the importance (and ease)

of incorporating multi-scale features for classification tasks.

For our subsequent experiments, we use scales selected by

the forward selection algorithm on MIT67 data (shown in

Fig. 5(b)). Note that we use them for all our experimental

benchmarks, demonstrating a degree of cross-dataset gen-

eralization in our approach.

1218












