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Abstract

Graph matching has a wide spectrum of applications and

in its general form is known NP-hard. In many vision tasks,

one realistic problem arises for finding the global node

mappings across a batch of corrupted weighted graphs.

This paper is an attempt to connect graph matching, es-

pecially multi-graph matching to the matrix decomposition

model and its relevant convex optimization algorithms. Our

method aims to extract the common inliers and their syn-

chronized permutations from disordered weighted graphs in

the presence of deformation and outliers. Under the pro-

posed framework, several variants can be derived in the

hope of accommodating to specific types of noises. Experi-

mental results empirically show that the proposed paradigm

exhibits interesting behaviors and often performs competi-

tively with the state-of-the-arts.

1. Introduction

Graph matching (GM) is one of the essential prob-

lems in computer science and mathematics. It has re-

ceived wide attentions over the last decades [13, 19], and

lies at the heart of many important computer vision prob-

lems and applications as diverse as object recognition [15],

flow analysis [40, 36], object tracking [53], person re-

identification [45], and image labeling [63] among others,

which require correspondence matching between feature

sets. Different from the point based matching methods such

as RANSAC [18] and Iterative Closet Point (ICP) [64], GM

methods incorporate both unary node-to-node, as well as

second-order edge-to-edge similarity as structural informa-

tion. By encoding the geometric information in the graph

representation and matching process, GM methods can usu-

ally produce more satisfactory node correspondence results

than other methods. Due to its NP-hard nature, current

GM methods either involve finding approximate solutions
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[65, 10, 29] or obtaining the global optimum in polynomial

time for particular types of graphs [17, 39, 1].

Most GM methods focus on establishing correspon-

dences between two feature sets [30, 21, 10, 5, 16]. In

general, the pairwise GM problem can be formulated as a

quadratic assignment problem (QAP), which can be divided

into two categories [65]: i) the Koopmans-Beckmann’s

QAP [25] written by tr(X⊤FiXFj) + tr(K⊤

p X) where X

refers to the assignment matrix between two graphs. Fi, Fj

are the weighted adjacency matrices and Kp is the node-to-

node similarity matrix; ii) the more general Lawler’s QAP

[26] by vec(X)⊤Kvec(X) where K is the second-order

affinity matrix. Note the Koopmans-Beckmann’s QAP can

always be represented as a special case of the Lawler’s by

setting K = Fj ⊗ Fi and a large portion of extant GM

works including both two-graph matching [21, 10, 49, 65]

and multi-graph matching [56, 57, 55] adopt the Lawler’s

formula perhaps due to its generality and compactness.

Nevertheless, in many applications it is often required to

find the global matchings across a batch of graphs. With the

advance of imaging and scanning technologies, there is an

increasing need for multi-graph matching [52]. Moreover,

graphic shape analysis and search often require to model

objects by multi-view assembly [20] that also lends itself

to the problem of graph clustering, classification and index-

ing. A recent work [37] applies multi-graph matching to the

problem of multi-sources topic alignment.

2. Related Work

Pairwise graph matching Pairwise graph matching that in-

volves matching two graphs one time has been extensively

studied in literature. Most pairwise graph matching meth-

ods [22, 28, 48, 29, 10, 49, 16] are based on the general

Lawler’s QAP and relax the solution domain from the per-

mutation (assignment) matrix space to the (sub) doubly-

stochastic matrix space. Meanwhile there is another thread

[50, 43, 44, 2, 4, 61, 38] that explores a more special case:

the Koopmans-Beckmann’s QAP. Note the weighted adja-

cency matrix F1,F2 cannot be recovered from the pairwise
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affinity matrix K in the Lawler’s problem, as it directly en-

codes the pairwise affinity between edges and nodes.

We also briefly mention several works in parallel with

the present work: i) learning the affinity over graphs [5,

31, 30, 9]; ii) encoding higher-order affinity terms [31, 8,

14, 27, 59]; iii) progressive matching [11] or a pipeline for

integrating feature detection and matching [12].

Multi-graph matching Multi-graph matching (MGM) is

less studied compared with two-graph matching. Very re-

cently, there is an emerging trend for devising advanced

MGM (or specifically registration) methods [46, 23, 41, 56,

47, 55, 7, 58], because directly borrowing on-the-shelf two-

graph solvers does not fully utilize the global affinity and

matching consistency information. These various MGM

methods are mostly motivated to better address or capture

the following aspects of the problem:

i) Matching cycle-consistency. One drawback of em-

ploying a two-graph matching solver for multi-graph is

that the so-called cycle-consistency cannot be automatically

fulfilled. Consider a simple and concrete example, given

graphs Gi, Gj , Ga, Gb of equal size in the absence of outliers,

the four pairwise matchings Xij , Xia, Xaj , Xib computed

by two-graph matching independently may lead to cycle-

inconsistency i.e. XiaXaj 6= XibXbj .

Multi-graph matching models are devised to capture

consistency either iteratively or in a one-shot fashion: a) It-

erative methods [47, 56, 57, 55] try to maximize the affinity

and in the mean time account for consistency. [56, 57] en-

force the cycle-consistency by strictly enforcing the equal-

ity constraints Xij = XibXbj during the whole iterative

variable updating procedure. This mechanism works in a

‘hard’ expectation-maximization fashion. Thus the perfor-

mance can be sensitive to the initial point and variable rotat-

ing order and inherently vulnerable to error accumulation.

Similar mechanism is devised by [47] which extends the

Graduated Assignment algorithm for two-graph matching

[21] to multi-graph one. A more flexible and robust mech-

anism is proposed in [55] and the journal extension [54],

where the consistency is gradually infused for optimization

over iterations. b) In contrast, one-shot methods are devised

to achieve overall consistency in one shot. By employing

spectral techniques, [41, 7, 66] all enforce consistency as

a post-processing step whose inputs are the putative pair-

wise matchings {X}Ni,j=1 calculated by a two-graph match-

ing solver. Since no reinforcement is performed to boost

the overall affinity as done by the above iterative methods,

these two methods are found dependent on the input match-

ings by a two-graph matching solver.

ii) Affinity across graphs. In [47, 56, 57, 55], the objec-

tive for multi-graph matching is explicitly written by adding

up pairwise affinity terms {vec(X)⊤Kvec(X)}Ni,j=1 under

the Lawler’s form, and the pairwise matchings {X}Ni,j=1

are updated iteratively which strictly (or gradually) satisfy

the cycle-consistency constraints. While for the aforemen-

tioned two non-iterative methods [41, 7], affinity informa-

tion is only considered locally for a pair of graphs at hand.

In their post-process step where consistency is enforced,

affinity cues are totally dropped off.

Based on the above discussion, we make two impor-

tant observations: i) cycle-inconsistency is fundamentally

caused by the use of pairwise matchings {X}Ni,j=1 – a

distributed and redundant representation for multi-graph

matching; ii) for affinity modeling, existing multi-graph

matching methods are mostly based on the pairwise affin-

ity representation, regardless of Lawler’s or Koopmans-

Beckmann’s QAP. Though the pairwise affinity matrix K in

Lawler’s QAP is general and flexible for two-graph match-

ing, while employing this pairwise affinity metric to the N -

graphs problem is unnatural. In fact, the affinity matrix be-

comes an N -order tensor if one refers to an N -graph affinity

as a counterpart to the pairwise affinity matrix. However,

this extension is not efficient nor compact, and will cause

additional mathematical difficulties and computational cost

due to the involvement of tensors.

Motivated by seeking a fresh and compact framework

for addressing the above two shortcomings, this paper ex-

plicitly uses the per-graph weighted adjacency matrices

{Fi}
N
i=1 instead of the pairwise affinity matrices {K}Ni,j=1

since the latter we believe is not a natural nor effective affin-

ity metrics for multi-graph matching. For a similar reason,

we abandon the widely used pairwise matching representa-

tion {X}Ni,j=1 and turn to a compact set of N permutations

{X}Ni=1 to an virtual common reference. However, such a

reformulation can be challenging for optimization due to

the strong multi-modality of the energy landscape. Yet fo-

cusing on {Fi}
N
i=1 and {X}Ni=1 naturally allows us to take a

matrix decomposition perspective towards the multi-graph

matching problem, in the hope of dismissing some noises to

alleviate the optimization difficulty. Another good news is

that matrix decomposition is known robust to noise and well

studied by sound theory e.g. Robust PCA [6], efficient algo-

rithms [33, 34] and successful applications [42, 60, 62] for

vision problems – but still relatively new to graph matching.

Novelty We summarize the fresh ideas of our approach:

i) Compact and global representation Our model dis-

penses with pairwise terms for both affinity {K}Ni,j=1 and

matchings {X}Ni,j=1 which dominate extant MGM meth-

ods. As a result, our model is inherently free from matching

cycle-inconsistency, and can also capture more global affin-

ity clues beyond two graphs at one time;

ii) Matrix decomposition perspective Our formulation

connects the MGM problem to the intensively studied ma-

trix decomposition model. Different matrix decomposi-

tion variants can be readily borrowed which correspond to

choosing a solver tailored to a certain type of noise, e.g. ℓF
and ℓ1 norm for Gaussian and Laplacian noise respectively.
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iii) Explicit use of the number of common inliers Our

model has a parameter for the number of common inliers.

Thus the knowledge of common liner number can be ex-

plicitly leveraged. In many cases, this number is known by

given a template consisting of common inliers, or can be es-

timated from graphs (this paper also tentatively provides an

inlier number estimation method). In contrast, extant MGM

methods have few mechanisms to utilize this information,

though obtaining accurate nc is often challenging.

3. Proposed formulation and algorithm

3.1. Problem formulation

Let nc as the number of common inliers across N graphs
{Gi}

N
i=1, and ni as the number of total nodes in graph Gi

(ni ≥ nc), where the number of outliers is ni − nc vary-
ing by each graph. Denote Fc

i ∈ R
nc×nc as the weighted

adjacency matrix formed by nc inliers in graph Gi, which
is augmented by random column permutation with outliers,
to the augmented version of Fi ∈ R

ni×ni . The goal is to
identify the nc common inliers, and establish the one-to-
one node correspondences among them. Also, we use X
to denote the node-to-node assignment matrix between two
graphs. We further define the assignment matrix domain:
Xi that matches the ith graph to a virtual reference graph
that only includes nc common inliers:

Xi = {Xi ∈ {0, 1}ni×nc , 1
⊤
ni

Xi = 1
⊤
nc

Xi1nc ≤ 1ni
} (1)

where 1nc
∈ R

nc×1 (resp. 1ni
∈ R

ni×1) denotes the col-

umn vector for all its entries being 1.
For GM, one considers not only the unary affinity, but

also the second-order edge-wise measurements. In line with
the Koopmans-Beckmann’s QAP that explicitly makes use
of the weighted adjacency matrix, the two-graph matching

problem for G1, G2 can be written by ‖X⊤F1X − F2‖ [50].
For MGM, by implicitly setting a virtual reference graph,

we can vectorize X⊤

i FiXi ∈ R
nc×nc for each graph Gi and

stack them in one matrix: D ∈ R
n2
c×N .

D = [vec(X⊤
1 F1X1), . . . , vec(X⊤

NFNXN )]

where each variable {Xi}
N
i=1 reorders the inliers to enforce

the columns similar to each other in D. Hence D is sup-
posed to be rank-deficient, ideally rank(D)=1 when exact
graph matching (all graphs are the same except their nodes
are permuted) is supposed. Or its rank would be smaller
than the number of graphs as in practice the weighted ad-
jacency matrices are often coupled with noises, which vi-
olates the low-rank assumption. Moreover, the noises are
often sparse and randomly imposed. This observation leads
to the low-rank sparsity decomposition formulation: By re-
placing rank(·) and ℓ0 norm by their convex surrogates, i.e.
nuclear norm ‖ · ‖∗ and ℓ1-norm respectively [6], we reach
a widely adopted formulation in computer vision [60]

min
{Xi}

N
i=1

∈Xi,L,S
‖L‖∗ + λ‖S‖1 s.t. D = L + S (2)

Note the above formula is a regularized consensus prob-

lem, which is popularly tackled by Alternative Direction

Method of Multiplier (ADMM) [3] in literature such as

[33, 62, 24, 32]. For instance, the previous work [62, 24]

employ the ADMM style solver to solve a similar regu-

larized consensus problem. However, the graph matching

problem we address in this paper involves the second-order

weighted adjacency matrix, beyond the unary point-wise

feature vector such as SIFT descriptor or point coordinate

information. This leads to a more complicated optimization

problem, since the objective function involves quadratic

term X⊤FX in D, instead of linear terms as considered in

[62, 24] for first-order point set alignment.

In the following, we will present the formulation and

solvers in the presence of outliers and not, followed by a

brief discussion on possible extensions to cope with differ-

ent types of noises. Finally, a cycle-consistency based ap-

proach for estimating the number of common inliers nc will

be presented, which can serve as a general preprocessing

baseline for our method when the parameter nc is unknown.

3.2. Approach overview and algorithm details

Overview The key idea for solving problem (2) by La-

grangian multipliers to take care of i) the decomposition

residue from the raw matrix D and its additive components

L, S as well as the node equality correspondence constraint

as shown in Eq.1, which is encoded by W in this paper;

ii) the residue between the raw matching variable {Xi}
N
i=1

and the relaxed continuous variable {Xi}
N
i=1. A coordinate

descent fashion variable updating procedure is applied to

reach a solution (perhaps a local optimum), with respect to

variable {Xi}
N
i=1, {Xi}

N
i=1, the decompositions L, S, and

the Lagrangian multipliers Y and Z as depicted in the algo-

rithmic chart of Alg.1. More details are as follows.
We start with the general case in the presence of outliers.

The relaxed form (2) is still not directly trackable due to the
optimization with respect to the N number of Xi is highly
nonlinear and fundamentally a combinatorial problem. We
introduce the following notations for W(L, S, {Xi}

N
i=1) ∈

R
(n2

c+nc)×N , G ∈ R
nc×N , Mi ∈ R

(ni+ninc)×ninc and
hi ∈ R

(ni+ninc)×1 to facilitate the later exposition:

G = [(Inc ⊗ 1
⊤
n1

)vec(X1), . . . , (Inc ⊗ 1
⊤
nN

)vec(XN )],

W(L, S, {Xi}
N
i=1) =

[

D

G

]

−

[

L + S

1nc1⊤
N

]

,

Mi =

[

1⊤
nc

⊗ Ini

−Incni

]

,

hi =

[

1ni

0ncni

]

Here Incni
is the square identity matrix with size ncni, and

0ncni
∈ R

ncni×1 is a vector with all zero entries. By explic-
itly writing out Xi ∈ Xi, and relaxing Xi to the continuous
domain within [0,1] as widely adopted by graph matching
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methods [22, 49, 65] etc., we reach:

min
L,S,{Xi}

N
i=1

‖L‖∗ + λ‖S‖1 (3)

s.t. W(L, S, {Xi}
N
i=1) = 0, {Mivec(Xi) ≤ hi}

N
i=1

The equality constraint W=0 refers to the decomposition

of low-rank and sparsity components from the raw matrix

(the upper part), as well as the one-to-one matching for each

inliers (the lower part). The inequality Mivec(Xi) ≤ hi

relates to the fact for each node (inlier/outlier) in the graph,

there is at most one correspondence from another graph.
To simplify the mathematical difficulty in handling the

quadratic terms X⊤

i FiXi in W, we introduce the new vari-

able Xi by replacing X⊤

i FiXi with X⊤

i FiXi for Xi = Xi.

We define D ∈ R
n2
c×N as the relaxed version of D:

D = [vec(X⊤
1 F1X1), . . . , vec(X⊤

NFNXN )]

Accordingly, we use D to replace D in W, which is term as

W(L, S, {Xi,Xi}
N
i=1). It induces the new expression:

min
L,S,{Xi,Xi}

N
i=1

‖L‖∗ + λ‖S‖1 (4)

s.t. W(L, S, {Xi,Xi}
N
i=1) = 0,

{Xi = Xi,Mivec(Xi) ≤ hi}
N
i=1

We use the augmented Lagrangian multiplier method
to solve this problem. By introducing the new variable

Y ∈ R
(n2

c+nc)×N and {Zi ∈ R
ni×nc}Ni=1, the augmented

Lagrangian function of problem (4) is written as:

L(L, S,Y, {Xi,Xi,Zi}
N
i=1) (5)

=‖L‖∗ + λ‖S‖1+ < Y,W > +
µ1

2
‖W‖2F

+
N
∑

i=1

< Zi,Xi − Xi > +
N
∑

i=1

µ2

2
‖Xi − Xi‖

2
F

µ1, µ2 are positive scalars which follow the updating rule

µt+1
1 = ρ1µ

t
1 (µt+1

2 = ρ2µ
t
2) for ρ1>1(ρ2>1) over it-

eration t, and Y, {Zi}
N
i=1 are the Lagrange multipliers.

‖ · ‖F denotes the Frobenius norm i.e. ‖A‖F=
√

∑

i,j a
2
ij ,

and < ·, · > denotes the matrix inner product such that

< A,B >= Trace(A⊤B) for the input matrix A and B.
Now we solve the above augmented Lagrangian function

in an alternating optimization manner, over iteration t.
Update L, E: The problem of updating L, S are both con-
vex programs, which can be written in the form of proximal
operators associated with a nuclear or ℓ1 norm respectively.
Moreover, when updating L, S, only the first n2

c rows of

Y are involved. Thus we use Y ∈ R
n2
c×N to denote these

rows. Then the partial minimization is as follows and can
be solved in a closed form by the technique used in [33].

(Lt+1, S
t+1) = argmin

L,S
‖L‖∗ + λ‖S‖1 (6)

+ < Y
t,D

t − L − S > +
µ1

2
‖D

t − L − S‖2F

Update Y: Y can be updated efficiently by:

Y
t+1 = Y

t + µ1W(Lt, S
t, {X

t
i,X

t
i}

N
i=1) (7)

Update X1, . . . ,XN : By fixing other variables, the partial
objective function w.r.t. {Xi}

N
i=1 can be written as:

min
{Xi}

N
i=1

〈

Y
t+1,

[

Dt

Gt

]

−

[

Lt+1 + St+1

1nc1⊤
N

]〉

(8)

+
µ1

2

∥

∥

∥

∥

[

Dt

Gt

]

−

[

Lt+1 + St+1

1nc1⊤
N

]
∥

∥

∥

∥

2

F

+

N
∑

i=1

< Z
t
i,Xi − X

t
i > +

N
∑

i=1

µ2

2
‖Xi − X

t
i‖

2
F

This can be equivalently written as:

min
{Xi}

N
i=1

µ1

2

∥

∥

∥

∥

[

Lt+1 + St+1

1nc1⊤
N

]

+
Yt+1

µ1
−

[

Dt

Gt

]
∥

∥

∥

∥

2

F

+

N
∑

i=1

µ2

2

∥

∥

∥

∥

X
t
i +

1

µ2
Z

t
i − Xi

∥

∥

∥

∥

2

F

(9)

Note that (9) can be decoupled into N independent sub-
problems where the ith subproblem corresponds to solving
the following optimization problem w.r.t. Xi, where we re-
lax Xi to the continuous domain from its constrained dis-
crete domain Xi as defined in formula (1).

min
Xi

vec(Xi)
⊤
(µ1

2
B

t⊤
i B

t
i +

µ2

2
Ininc

)

vec(Xi) (10)

−
(

µ1A
t+1⊤
i B

t
i + µ2C

t⊤
i

)

vec(Xi)

s.t. Mivec(Xi) ≤ hi

{At+1
i , Bt

i, bt
i, Ct

i}
N
i=1 are defined as follows, where ei is

the binary column vector. Its ith element is 1 and others 0.

A
t+1
i =

([

Lt+1 + St+1

1nc1⊤
N

]

+
1

µ1
Y

t+1

)

ei

B
t
i = Inc ⊗ b

t
i, b

t
i =

[

Xt⊤
i Fi

1⊤
ni

]

C
t
i = vec

(

X
t
i +

1

µ2
Z

t
i

)

Update X1, . . . ,XN : Similarly, Xi is solved by:

min
Xi

vec(X⊤
i )

⊤
(µ1

2
B

t+1⊤
i B

t+1
i +

µ2

2
Ininc

)

vec(X⊤
i ) (11)

−
(

µ1A
t+1⊤
i B

t+1
i + µ2C

t⊤
i

)

vec(X⊤
i )

s.t. Mivec(Xi) ≤ hi

where {At+1
i , Bt+1

i , bt+1
i , Ct

i}
N
i=1 are defined by:

A
t+1
i =

(

L
t+1 + S

t+1 +
1

µ1
Y

t+1

)

ei,

B
t+1
i = b

t+1
i ⊗ Inc , b

t+1
i = (FiX

t+1
i )⊤,

C
t
i = vec

(

X
t+1⊤
i −

1

µ2
Z

t⊤
i

)

202



Algorithm 1 Graph Matching via Matrix Decomposition

1: Input {Fi}
N
i=1, initial P0

i , µ1, µ2, λ, T ;

2: for t = 1 : T do

3: Update L, S and Y by Eq.6 and Eq.7 respectively;

4: Update {Xi}
N
i=1, {Xi}

N
i=1, {Zi}

N
i=1 by Eq.8, 11, 12;

5: Update D and G by Eq.13 and Eq.14 respectively;

6: Update µ1 = µ1ρ, µ2 = µ2ρ;

7: end for

8: Obtain the binarized {Pi}
N
i=1 by the Hungarian method.

Update Z1, . . . ,ZN : {Zi}
N
i=1 can be updated by:

Z
t+1
i = Z

t
i + µ2(X

t+1
i − X

t+1
i ) (12)

Update D and G: They are updated by their definitions:

Dt+1 = [vec(Xt+1⊤
1 F1Xt+1

1 ), . . . , vec(Xt+1⊤
N FNXt+1

N )] (13)

Gt+1 = [(Inc ⊗ 1⊤n1
)vec(Xt+1

1 ), . . . , (Inc ⊗ 1⊤nN
)vec(Xt+1

N )] (14)

In line with many graph matching works [10, 49, 56], as

a standard postprocessing, we apply Hungarian method on

{Xi}
N
i=1 to obtain binarized {Pi}

N
i=1 when iteration ends.

Simplification for the case ni = nc When no outlier
exists for a given graph, the partial permutation matrix

{Xi,Xi}
N
i=1 becomes a full squared permutation matrix.

For Eq.10, the following equation always holds:

vec(Xi)
⊤B⊤

i Bivec(Xi) = ‖Bivec(Xi)‖
2
2 = ‖vec(biXi)‖

2
2 = ‖vec(bi)‖

2
2

Thus the quadratic term in Eq.10 can be dropped off. Sim-
ilarly, for Eq.11 we have:

vec(X⊤
i )

⊤
B

⊤
i Bivec(X⊤

i ) = ‖Bivec(X⊤
i )‖

2
2 = ‖vec(bi)‖

2
2.

Thus updating X is reduced as follows, and similar for X:

min
Xi|Mivec(Xi)≤hi

−
(

µ1A
⊤
i Bi + µ2C

⊤
i

)

vec(Xi)

The algorithm is outlined in Alg.1. Note the optimal so-

lution {Pi}
N
i=1 that can derive the same pairwise mappings

{Pij=PiP
⊤

j }
N
i,j=1 is not unique, as the overall formulation

is non-convex. This is analogous to clustering where the

label index value by a clustering algorithm is not critical.

3.3. Extensions and alternative variants

The above algorithm can be extended in several as-

pects benefiting from the established connection from graph

matching to matrix decomposition, given the fact that the

latter has been studied intensively in recent years. As it is

impossible to exhaustively list all variants to Alg.1 in this

paper, here we try to organize these variants into three as-

pects and leave a comprehensive evaluation under different

settings to future work.
Unary features modeling It is easy to combine the first-

order node-wise feature by augmenting D:

D =

[

vec(X⊤
1 F1X1), . . . , vec(X⊤

NFNXN )
vec(f1X1), . . . , vec(fNXN )

]

(15)

where {fi} ∈ R
d×ni is the node feature descriptor of di-

mension d. This augmentation does not increase the order

of the problem w.r.t. X thus can be solved similarly.

Vectorized edge weight modeling In a more general set-

ting, the weight of each edge in graphs is encoded by a vec-

tor instead of scalar. This is useful in computer vision prob-

lems since it allows the length and orientation of an edge to

be both considered. The variant can be illustrated by:

D =

[

vec(X⊤

1 Fl
1X1), . . . , vec(X⊤

NFl
NXN )

vec(X⊤

1 Fo
1X1), . . . , vec(X⊤

NFo
NXN )

]

(16)

Note the weight is distributed to {Fl
i}

N
i=1 and {Fo

i }
N
i=1.

Noise modeling In current model described above, we
use ℓ1 norm to model the noise in Eq.2. This term can
be replaced by other norms e.g. Frobenius norm, which
is regarded effective to Gaussian noises, and ℓ2,1 norm to
sample-specific noises [34], or the re-weighting of these
norms by keeping the constrain D = L + S:

min
L,S

‖L‖∗ + λ21‖S‖2,1 + λF ‖S‖F + λ1‖S‖1

There are relevant solvers e.g. [35] to these problems.

3.4. Estimating number of inliers nc

Readers may concern that there is a parameter nc for

forming the decomposition matrix D which is not needed by

other MGM methods [47, 56, 55, 41]. In fact, these MGM

methods have no mechanism to explicitly explore and lever-

age nc but always maximize the affinity and consistency for

all points without distinction. In this spirit, a trivial setting

is letting nc = ni which denotes our model treats all points

equally in line with the above peer methods.

The good news is that this parameter is an interface for

utilizing nc when it is known or can be estimated by a cer-

tain means: On one hand, nc can be easily obtained by man-

ual in some practical situations, e.g. counting the number

of inlier landmarks on a template. In fact, many two-graph

matching methods assume one of the two graphs contains

only inliers and try to find their correspondences from the

other graph with outliers, and this assumption does not hin-

der their success in many applications. On the other hand,

given a batch of graphs with outliers, it is more desirable to

estimate nc automatically. Though nc estimation might be

considered as a chicken-egg problem in two-graph match-

ing, we believe more graphs help reduce the ambiguity. As

an initial endeavor, we present a heuristic approach outlined

in Alg.2 which is problem independent. Moreover, this pa-

per does not claim its effectiveness, but it serves as one re-

placeable component for a practical MGM pipeline.

First, we perform independent pairwise graph matching

via on-the-shelf pairwise GM solvers e.g. RRWM [10] to

obtain a matching configuration X = {Xij}
N
i,j=1 between
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Algorithm 2 Heuristic consistency-driven nc estimation

1: Input Putative X obtained by a pairwise matching solver;

2: Compute ci =
∑N

j,k=1 rsum(
Xik−XijXjk

2
).

3: Reorder ci in descending order cdi ;

4: Compute the overall cd =
∑N

i=1 cdi /n;

5: Set cn = argmini(abs(c
d − 1/n));

each pair of graphs Gi and Gj
1. By assuming a reason-

able overall matching accuracy of X, we expect the inliers

shall have better mapping consistency over different pair-

wise matching paths. We concretize this idea as follows:

For each Gi, its nodes are mapped to the correspon-

dences in Gj by Xij , and further Gk by Xjk. We mea-

sure the node consistency for each node in Gi by ci =
∑N

j,k=1 rsum(
Xik−XijXjk

2 ) where u=rsum(A) denotes the

summation of the absolute values of elements in each row

of A ∈ R
n×n i.e. {ui =

∑n

k=1 |aik|}
n
i=1. Then we order

the element in ci by descending order which is termed as

cdi . Repeating this step for all {Gi}
N
i=1 we obtain a set of

{cdi }
N
i=1 which are further averaged by cd =

∑N

i=1 cdi /n.

cd is used to measure the node-wise consistency. It also

has an intuitive interpretation as the mean probability of ob-

taining consistent mappings by all possible matching paths

{Gi → Gj → Gk}
N
i,j,k=1 for all nodes in each graph.

On the other hand, when the node mapping over all in-

liers is all (or mostly) correct — the assumption of Alg.2,

then the outliers in one graph will only (or mostly) corre-

spond to outliers in others. Let Prob(uk=uk′

) denote the

probability for outlier uk and uk′

are the same, where uk

and uk′

are the nodes in Gk corresponding to the node ui in

Gi. The former is via the mapping by Xik while the latter is

via the chaining XijXjk. Given no prior knowledge about

the distribution of outlier mappings, we assume within out-

liers, it is a uniform prior Prob(uk=uk′

)= 1
n

. Then we find

the element in cd which is closest to Prob(uk=uk′

) i.e.

i∗=argmini(abs(c
d − 1

n
)), and set nc = i∗.

3.5. Retrospection on peer methods

First, our batch-wise formulation allows for integrat-

ing all graph information simultaneously during optimiza-

tion. In contrast, the state-of-the-art methods [56, 57]

use a base graph Gb which only encodes a linear por-

tion of the total
N(N−1)

2 number of pairwise affinities:

{Kuf}
N
f=1, 6=b,u per iteration: maxXub

vec(Xub)Kubvec(Xub)+
∑N

f=1, 6=b,u vec(Xuf )Kufvec(Xuf ). A similar mechanism is

adopted in [47] where a virtual reference graph is created

to proceed the optimization. Although all pairwise match-

ing results obtained from independent pairwise match-

1For discussion convenience, we assume the number of outliers are

equal which can usually be easily realized in real applications. If this does

not hold, we add additional random outliers to satisfy this condition. Thus

each Pij is a square permutation matrix without discrimination for outliers.

ing solvers are considered simultaneously in [41, 7, 55],

while [41, 7] are designed to capture the matching cycle-

consistency but ignore the graph attribute or pairwise affin-

ity information in their model and [55] approximately

boosts the pairwise matching accuracy via a local interme-

diate graph by maxu vec(XiuXuj)
⊤Kijvec(XiuXuj).

Second, our method is built on Robust PCA [6] which is

supposed to offer some robustness by decoupling the noise

from the weighted adjacency stacking matrix D. In contrast,

existing MGM methods [47, 56, 55] directly perform opti-

mization on the corrupted objective function without sep-

arating the noises, which bear some limitation especially

when the graph attributes are largely corrupted. This is be-

cause the objective function may deviate from the seman-

tic matching accuracy and an effective algorithm aiming at

achieving a higher objective score may adversely generate

less accurate solutions. Moreover, our formulation can ac-

commodate unequal size of graphs as long as they contain

the same number of common inliers. Comparatively, the

peer multi-graph methods [47, 56, 55, 41] and most exist-

ing two-graph methods [49, 65, 10, 29] use dummy nodes

to make the considered graphs of equal size, and augment

X to a square permutation matrix. The dummy nodes may

bring about stability issues dependent on the problem and

further increase the size of the graphs. Our model also can

automatically and explicitly identify outliers and this advan-

tage comes from an explicit usage of knowing the exact or

estimated number of common inliers.

4. Experiments and Discussion

The experiments are performed on both synthetic and

real-image data. The synthetic test is controlled by quanti-

tatively varying the disturbance of deformation, outlier and

edge density. The real-image datasets are tested with vary-

ing viewing angles, scales, shapes, and spurious outliers.

The matching accuracy over all graphs, is calculated by av-

eraging all pairwise matching accuracy
∑N−1

i=1

∑N
j=i+1 Accij

N(N−1)/2
.

Each Accij computes the matches between the correspon-

dence matrix X
alg
ij given by the ground truth Xtru

ij : Accij =
tr(X

alg

ij
Xtru

ij )

tr(1n2×n1Xtru
ij

)
. Note we only calculate the accuracy for com-

mon inliers and ignore the meaningless matchings over out-

liers. The above methodologies follow a standard protocol

widely adopted by many related works such as [10, 49, 65].

4.1. Dataset description and settings

Several unified protocols are adopted in all tests: i)

RRWM [10] is adopted as the standard pairwise solver to

generate initial pairwise matchings which is a must for the

comparing MGM methods [56, 41, 55, 7]. Its input is the

pairwise affinity matrix {Kij}
N
i,j=1; ii) all edge attributes

in the graph are fully sampled for building the stacking

adjacency matrix D and pairwise affinity K; iii) in order
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Figure 1: Left to right: car, duck, motorbike of Willow-ObjectClass; volvoC70 of Pose sequence; hotel of CMU sequence.

to differentiate graph matching from feature point match-

ing, following a common setting [10, 49, 56, 55], only the

second-order edge attributes are used thus the diagonal of

K are all set zero; iv) given the edge attributes dij in G1

and dab in G2, the corresponding elements in K12 is set by

K12(ij, ab)=exp(
(dij−dab)

2

−σ2 ) (σ2=0.15 throughout this pa-

per), refer to [10, 49, 65] for more details on building K.

Synthetic data The synthetic test follows the widely

used protocol [56, 21, 10, 49, 65, 48]. For each trial, a

reference graph of nin nodes is created by assigning a ran-

dom weight to its edge, uniformly sampled from the interval

[0, 1]. Then the ‘perturbed’ graphs are created by adding a

Gaussian deformation to the edge weight drij , as sampled

from N(0, ε): dpij = drij+N(0, ε) where the superscript ‘p’

and ‘r’ denotes for ‘perturb’ and ‘reference’ respectively.

CMU-POSE Sequence This data contains three se-

quences. The first two are from the CMU house (30

landmarks, 101 frames), hotel (30 landmarks, 111 frames)

sequences (http://vasc.ri.cmu.edu//idb/html/motion/) which

are commonly used in [56, 10, 49, 5, 65, 9]. The third se-

quence is sampled from the sedan (VolvoC70) sequence (19

landmarks, 225 frames) which is viewed from various an-

gles covering a range of 70 degrees from the POSE dataset

[51]. For each test, an image sequence is sampled as spaced

evenly by three frames. Specifically, we select nin=10 land-

marks out of all nant annotated points (nant=30 for the

two CMU sequences, nant=19 for Pose sedan sequence),

and randomly choose nout=4 nodes from the rest nant−nin

nodes as outliers. In line with [56, 55, 57], edge attributes

are set by the Euclidian distance between two key points

in the images, which are further normalized by the longest

distance between two points in the considered image.

WILLOW-ObjectClass This dataset [9] is constructed

by images from Caltech-256 and PASCAL VOC2007. We

use three categories Duck (50 images), Motorbike and Car

(both 40 images) where 10 features are manually labeled on

the object for each image. No outlier is added for testing.

Since this dataset is more ambiguous due to large deforma-

tion, we add edge orientation information in addition with

the length used in the CMU-POSE data. The edge orien-

tation is computed by the angle between the edge and the

horizontal line in line with [65]. Thus the affinity matrix

is K = 1
2Ko + 1

2Kl. For our method, this is done by us-

ing Eq.16 and cos value of the orientation as adopted in

[27, 14] to deal with the discontinuity brought by the radian

measurement. One may further improve it by adding sin
while we find cos is almost enough in our tests.

4.2. Results and discussion

The result on the above datasets are depicted in Fig.2.

We evaluate Alg.1 and its variant as discussed in Sec.3.3 by

replacing the ℓ1 norm with ℓF in Eq.2, which is termed as

Alg.12 by a superscript ‘2’ in the legends for ℓF norm. Here

we assume the number of common inliers nc is known.

In case the input parameter nc is unknown, we derive

two variants by i) setting nc = ni for all graphs thus all

graphs are of equal size. The equal size setting is the same

with other MGM methods [47, 56, 57, 55, 41] and can

be achieved by adding dummy nodes or random outliers.

The methods are termed as Alg.1-all and Alg.12-all for two

norms where the post-fix ‘all’ denotes all points are consid-

ered in matrix D; ii) setting nc = nest where nest is the

estimation by Alg.2. The methods are termed by Alg.1-est

and Alg.12-est, where ‘est’ stands for ‘estimated’. We set

λ = 1, ρ = 1.1, µ0
1 = µ0

2 = ρ/‖F1‖2, T = 5 in all tests.

Our methods are initialized trivially by performing two-

graph matching using RRWM [10] between G1 (contains

most points n1 ≥ {ni}
N
i=2) and the rest graphs {P0

i =
Pi1}

N
i=1. In case nc is given either by ground truth or by

estimation and therefore nc < ni, we simply keep the first

nc rows of each {Pi1}
N
i=1 as the initial {P0

i }
N
i=1, which con-

tains one and only one nonzero element in each of its rows.

Very recent MGM methods [55, 7, 56, 41] are evaluated

whose parameters are mostly set as in the original papers.

First we use Fig.2(a) to evaluate the efficacy of Alg.2 for in-

lier number estimation where the error denotes the averaged

|nc − n∗
c | over the outlier test in Fig.2(c). We summarize

several behaviors of Alg.1 and its variants:

i) Robustness to deformation but not outliers Our

methods are more robust in the presence of large deforma-

tion without outliers as evidenced by Fig.2(b). And the ℓF
norm version (in blue) seems even better which can be ex-

plained by the fact that the widely adopted (also this pa-

per) deformation noises is Gaussian. We assume the robust-

ness comes from the built-in matrix decomposition model

dismissing large noises. However, when more outliers are

added, the performance gain almost fades away as evi-

denced in Fig.2(c). We conjecture this is because the built-

in RPCA model may treat the outliers as inliers corrupted

by large deformation noises, as its tolerance to arbitrary de-

formation may adversely have the side-effect of losing dis-

crimination to outliers and activate them in Xi.

ii) Scalablity to N but sacrificing the accuracy The

overhead of our method is linear to N as shown in Fig.2(h)

and Fig.2(l). The main cost is solving Eq.8 and Eq.11, at the

expense of O(n6) for the worst case when the interior point
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(a) outlier test error by Alg.2 (b) synthetic test by deform ε (c) synthetic test by outlier # (d) synthetic test by graph #

(e) CMU Hotel sequence (f) CMU House sequence (g) Pose VolvoC70 sequence (h) CMU Hotel sequence

(i) Willow-ObjectClass car (j) Willow-ObjectClass duck (k) Willow-ObjectClass bike (l) Willow-ObjectClass bike

Figure 2: Results on benchmarks. We set σ2 as .15, 0.1 and .05 for synthetic, Willow-ObjectClass and CMU-POSE test. In

Fig.2(b), N = 20, nin = 10, nout = 0; In Fig.2(c), N = 20, nin = 10, ǫ = .06; In Fig.2(d), nin = 10, nout = 0, ǫ = 0.2.

method is performed. The overhead is O(Nn6) since each

Xi is computed separately – see complexity in Table 1 for

comparison. Though showing superior performance when

N < 20 perhaps due to the use of matrix D other than dis-

tributed pairwise term Kij , yet the accuracy decreases as N
grows especially evidenced by Fig.2(g) and Fig.2(i) when

N > 20. We conjecture this is due to more variables are in-

volved bringing optimization challenges. Similar problem

happens on the solver [56] which adopts a coordinate as-

cent optimization based on a set of base variables. The peer

solvers [55, 56] in theory is not linearly scalable to N as

their complexity is O(N3) or O(N2) as shown in Table 1.

iii) Knowing nc improves the performance As evi-

denced in Fig.2(e), 2(f), 2(g), Alg.1, Alg.12 exactly know-

ing nc (in solid curve) perform best. The two approximate

methods (Alg.1-est, Alg.12-est in dashed curve) are in the

between. Note even trivially letting nc = ni as the setting

all graphs are of equal size in which most extant approaches

are based on, Alg.1-all, Alg.12-all (dotted curve) still per-

form competitively, as shown in the the second row of Fig.2.

Table 1: Complexity comparison: τraw is the overhead for

initial pairwise matching, and n is the number of nodes.
method time complexity iteration round

ECCV14 [55] O(N3n2) +N2τraw few

ICML14 [7] O(n3N3) moderate

ICCV13 [56, 57] O(N2n4 +N2τraw) few

NIPS13 [41] O(N2n3 +N2τraw) one-shot

Our method O(Nn6) moderate

5. Conclusion and Future Work

This paper is an endeavor of taking a matrix decom-

position perspective to the multi-graph matching problem,

which allows for reusing algorithms originally tailored to

matrix decomposition. Our model differs from peer meth-

ods by discarding the pairwise affinity terms and pairwise

matchings representation. Observed interesting behaviors

show the potential of this framework.
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