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Abstract

Patch based image modeling has achieved a great suc-

cess in low level vision such as image denoising. In partic-

ular, the use of image nonlocal self-similarity (NSS) prior,

which refers to the fact that a local patch often has many

nonlocal similar patches to it across the image, has signif-

icantly enhanced the denoising performance. However, in

most existing methods only the NSS of input degraded im-

age is exploited, while how to utilize the NSS of clean nat-

ural images is still an open problem. In this paper, we pro-

pose a patch group (PG) based NSS prior learning scheme

to learn explicit NSS models from natural images for high

performance denoising. PGs are extracted from training

images by putting nonlocal similar patches into groups, and

a PG based Gaussian Mixture Model (PG-GMM) learning

algorithm is developed to learn the NSS prior. We demon-

strate that, owe to the learned PG-GMM, a simple weighted

sparse coding model, which has a closed-form solution, can

be used to perform image denoising effectively, resulting in

high PSNR measure, fast speed, and particularly the best

visual quality among all competing methods.

1. Introduction

As a classical problem in low level vision, image denois-

ing has been extensively studied, yet it is still an active topic

for that it provides an ideal test bed for image modeling

techniques. In general, image denoising aims to recover

the clean image x from its noisy observation y = x + v,

where v is assumed to be additive white Gaussian noise.

A variety of image denoising methods have been developed

in past decades, including filtering based methods [1], diffu-

sion based methods [2], total variation based methods [3, 4],

wavelet/curvelet based methods [5, 6, 7], sparse representa-

tion based methods [8, 9, 10], nonlocal self-similarity based

methods [11, 12, 13, 14], etc.

∗This work is supported by the HK RGC GRF grant (PolyU 5313/13E).

Image modeling plays a central role in image denoising.

By modeling the wavelet transform coefficients as Lapla-

cian distributions, many wavelet shrinkage based denois-

ing methods such as the classical soft-thresholding [5] have

been proposed. Chang et al. modeled the wavelet transform

coefficients as generalized Gaussian distribution, and pro-

posed the BayesShrink [6] algorithm. By considering the

correlation of wavelet coefficients across scales, Portilla et

al. [15] proposed to use Gaussian Scale Mixtures for image

modeling and achieved promising denoising performance.

It is widely accepted that natural image gradients exhibit

heavy-tailed distributions [16], and the total variation (TV)

based methods [3, 4] actually assume Laplacian distribu-

tions of image gradients for denoising. The Fields of Ex-

perts (FoE) [17] proposed by Roth and Black models the

filtering responses with Student’s t-distribution to learn fil-

ters through Markov Random Field (MRF) [18]. Recently,

Schmidt and Roth proposed the cascade of shrinkage fields

(CSF) to perform denoising efficiently [19].

Instead of modeling the image statistics in some trans-

formed domain (e.g., gradient domain, wavelet domain or

filtering response domain), another popular approach is to

model the image priors on patches. One representative is the

sparse representation based scheme which encodes an im-

age patch as a linear combination of a few atoms selected

from a dictionary [8, 20, 21]. The dictionary can be cho-

sen from the off-the-shelf dictionaries (e.g., wavelets and

curvelets), or it can be learned from natural image patches.

The seminal work of K-SVD [8, 22] has demonstrated

promising denoising performance by dictionary learning,

which has yet been extended and successfully used in var-

ious image processing and computer vision applications

[23, 24, 25]. By viewing image patches as samples of a mul-

tivariate variable vector and considering that natural images

are non-Gaussian, Zoran and Weiss [26, 27] and Yu et al.

[28] used Gaussian Mixture Model (GMM) to model image

patches, and achieved state-of-the-art denoising and image
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Figure 1. Flowchart of the proposed patch group based prior learning and image denoising framework.

restoration results, respectively.

Natural images often have many repetitive local pat-

terns, and a local patch can have many similar patches

to it across the whole image. The so-called nonlocal self-

similarity (NSS) prior is among the most successful priors

for image restoration. The nonlocal means [11] and non-

local regularization [29] methods improve much the im-

age denoising performance over the conventional local self-

similarity based methods. Dabov et al. [12] constructed 3D

cubes of nonlocal similar patches and conducted collabo-

rative filtering in the sparse 3D transform domain. The so-

called BM3D algorithm has become a benchmark in image

denoising. Mairal et al. [9] proposed the LSSC algorithm to

exploit NSS via group sparse coding. The NSP [30] method

fits the singular values of NSS patch matrix by Laplacian

distribution. Dong et al. [10] unified NSS and local sparse

coding into the so-called NCSR framework, which shows

powerful image restoration capability. By assuming that the

matrix of nonlocal similar patches has a low rank structure,

the low-rank minimization based methods [13, 14] have also

achieved very competitive denoising results.

Though NSS has demonstrated its great success in im-

age denoising, in most existing methods only the NSS of

noisy input image is used for denoising. For example, in

BM3D [12] the nonlocal similar patches of a noisy image

are collected as a cube for collaborative filtering. In NCSR

[10], the nonlocal means are subtracted in the sparse do-

main to regularize the sparse coding of noisy patches. In

WNNM [14], the low-rank regularization is enforced to re-

cover the latent structure of the matrix of noisy patches. We

argue that, however, such utilizations of NSS are not effec-

tive enough because they neglect the NSS of clean natural

images, which can be pre-learned for use in the denoising

stage. To the best of our knowledge, unfortunately, so far

there is not an explicit NSS prior model learned from natu-

ral images for image restoration.

With the above considerations, in this work we propose

to learn explicit NSS models from natural images, and ap-

ply the learned prior models to noisy images for high per-

formance denoising. The flowchart of the proposed method

is illustrated in Fig. 1. In the learning stage, we extract mil-

lions of patch groups (PG) from a set of clean natural im-

ages. A PG is formed by grouping the similar patches to

a local patch in a large enough neighborhood. A PG based

GMM (PG-GMM) learning algorithm is developed to learn

the NSS prior for the PGs. In the denoising stage, the

learned PG-GMM will provide dictionaries as well as reg-

ularization parameters, and a simple weighted sparse cod-

ing model is developed for image denoising. Our exten-

sive experiments validated that the proposed PG prior based

denoising method outperforms many state-of-the-art algo-

rithms quantitatively (in PSNR) while being much more ef-

ficient. More importantly, it delivers the best qualitative de-

noising results with finer details and less artifacts, owe to

the NSS prior learned from clean natural images.

2. Patch Group Based Prior Modeling of Non-

local Self-Similarity

Image nonlocal self-similarity (NSS) has been widely

adopted in patch based image denoising and other image
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restoration tasks [9, 10, 11, 12, 14]. Despite the great suc-

cess of NSS in image restoration, most of the existing works

exploit the NSS only from the degraded image. Usually,

for a given patch in the degraded image, its nonlocal sim-

ilar patches are collected, and then the nonlocal means

[11], or 3D transforms [12], or some regularization terms

[9, 10, 14, 23] can be introduced for image restoration.

However, how to learn the NSS prior from clean natural

images and apply it to image restoration is still an open

problem. In this work, we make the first attempt on this

problem, and develop a patch group (PG) based NSS prior

learning scheme.

2.1. Patch Group and Group Mean Subtraction

For each local patch (size: p×p) of a given clean image,

we can find the first M most similar nonlocal patches to it

across the whole image. In practice, this can be done by

Euclidean distance based block matching in a large enough

local window of size W ×W . A PG is formed by grouping

the M similar patches, denoted by {xm}Mm=1, where xm ∈
R

p2×1 is a patch vector. The mean vector of this PG is

µ = 1
M

∑M
m=1 xm, and xm = xm − µ is the group mean

subtracted patch vector. We call

X , {xm},m = 1, ...,M (1)

the group mean subtracted PG, and it will be used to learn

the NSS prior in our work.

In Fig. 2, we show two different PGs, their group means,

and the PGs after mean subtraction. One can see that be-

fore mean subtraction, the two PGs have very different lo-

cal structures. After mean subtraction, the two PGs will

have very similar variations. This greatly facilitates the prior

learning because the possible number of patterns is reduced,

while the training samples of each pattern are increased. We

will discuss further the benefits of mean subtraction and the

associated prior model learning in Section 2.4.

2.2. PG­GMM Learning

From a given set of natural images, we can extract N
PGs, and we denote one PG as

Xn , {xn,m}Mm=1, n = 1, ..., N. (2)

The PGs {Xn} contain a rich amount of NSS information

of natural images, and the problem turns to how to learn

explicit prior models from {Xn}. Considering that Gaus-

sian Mixture Model (GMM) has been successfully used to

model the image patch priors in EPLL [26] and PLE [28],

we propose to extend patch based GMM to patch group

based GMM (PG-GMM) for NSS prior learning.

With PG-GMM, we aim to learn a set of K Gaussians

{N (µk,Σk)} from N training PGs {Xn}, while requiring

that all the M patches {xn,m} in PG Xn belong to the same

Gaussian component and assume that the patches in the PG

are independently sampled. Note that such an assumption

Figure 2. Different patch groups (PG) share similar PG variations.

is commonly used in patch based image modeling [8, 9].

Then, the likelihood of {Xn} can be calculated as

P (Xn) =
∑K

k=1
πk

∏M

m=1
N (xn,m|µk,Σk). (3)

By assuming that all the PGs are independently sam-

pled, the overall objective likelihood function is L =
∏N

n=1 P (Xn). Taking the log of it, we maximize the fol-

lowing objective function for PG-GMM learning

lnL =

N
∑

n=1

ln(

K
∑

k=1

πk

M
∏

m=1

N (xn,m|µk,Σk)). (4)

As in GMM learning [18], we introduce hidden variables

{∆nk|n = 1, ..., N ; k = 1, ...,K} to optimize (4). If PG

Xn belongs to the kth component, ∆nk = 1; and ∆nk =
0 otherwise. Then the EM algorithm [31] can be used to

optimize (4) via two alternative steps. In the E-Step, by the

Bayes’ formula, the expected value of ∆nk is

γnk =
πk

∏M
m=1 N (xn,m|µk,Σk)

∑K
l=1 πl

∏M
m=1 N (xn,m|µl,Σl)

. (5)

In the M-step, since for each PG Xn,
∑M

m=1 xn,m = 0, we

have

µk =

∑N
n=1 γnk

∑M
m=1 xn,m

∑N
n=1 γnk

= 0, (6)

Σk =

∑N
n=1 γnk

∑M
m=1 xn,mxT

n,m
∑N

n=1 γnk
. (7)

The calculations of πk = 1
N

∑N
n=1 γnk are similar to [18].

By alternating between the E-step and the M-step, the

model parameters will be updated iteratively, and the up-

date in each iteration can guarantee to increase the value of

the log-likelihood function (5), and the EM algorithm will

converge [18, 32]. Fig. 3 shows the convergence curve of

the proposed PG-GMM algorithm by using the Kodak Pho-

toCD Dataset (http://r0k.us/graphics/kodak/)

for training.

2.3. Complexity Analysis

In the training stage, there are N PGs, each of which

has M patches, and hence we have N ×M patches. In the

M-step, we only need to calculate the covariance matrices

since the mean of each Gaussian component is zero. The
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Figure 3. The convergence curve of log-likelihood in PG-GMM

training on the Kodak PhotoCD Dataset.

cost of this step is O(p4MN). In the E-step, the cost is

O(p6MN). Suppose that the number of iterations is T , the

overall complexity of PG-GMM training is O(p6MNT ).

2.4. Discussions

GMM has been used for patch based image prior learn-

ing and achieved promising results, e.g., EPLL [26] and

PLE [28]. In this paper, we extend the patch based image

prior learning to PG based prior learning to model the NSS

information. The developed PG-GMM method has some

important advantages over the patch based GMM method.

First, in patch based GMM, the mean value of each

patch is subtracted before learning the Gaussian compo-

nents. This is to remove the DC (direct current) of each

patch but will not change the essential structure of a patch.

However, in PG-GMM the mean vector of all patches in

a group is calculated and subtracted from each patch, and

hence the structure of each patch is changed. As a result,

many patches which originally have different local patterns

may become similar after group mean subtraction (please

refer to Fig. 2 for an example). This makes the PG-GMM

learning process easier and more stable.

Second, as can be seen in Eq. (9), the mean vector of

each Gaussian component in PG-GMM is naturally a zero

vector. This implies that we only need to learn the co-

variance matrix of each component without considering its

mean. However, in patch based GMM [26], the mean vec-

tors of Gaussians can only be forced to zero and there is no

theoretical guarantee for this.

Third, due to reduction of possible patterns in PG-GMM

and the reduced number of variables to learn, we do not

need to set a large number of Gaussian components in PG-

GMM learning. For example, in EPLL [26], 200 Gaussian

components are learned to achieve competing denoising

performance with BM3D [12], while in PG-GMM learn-

ing only 32 Gaussian components are enough to outperform

BM3D (please refer to the experimental section for details).

3. Image Denoising by Patch Group Priors

3.1. Denoising Model

Given a noisy image y, like in the PG-GMM learning

stage, for each local patch we search for its similar patches

in a window centered on it to form a PG, denoted by Y =
{y1, ...,yM}. Then the group mean of Y, denoted by µy ,

is calculated and subtracted from each patch, leading to the

mean subtracted PG Y. We can write Y as Y = X + V,

where X is the corresponding clean PG and V contains the

corrupted noise. The problem then turns to how to recover

X from Y by using the learned PG-GMM priors. Note that

the mean µy of Y is very close to the mean of X since the

mean vector of noise V is nearly zero. µy will be added

back to the denoised PG to obtain the denoised image.

3.1.1 Gaussian Component Selection

For each Y, we select the most suitable Gaussian compo-

nent to it from the trained PG-GMM. As in [26], suppose

that the variance of Gaussian white noise corrupted in the

image is σ2, the covariance matrix of the kth component

will become Σk + σ2I, where I is the identity matrix. The

selection can be done by checking the posterior probability

that Y belongs to the kth Gaussian component:

P (k|Y) =

∏M
m=1 N (ym|0,Σk + σ2I)

∑K
l=1

∏M
m=1 N (ym|0,Σl + σ2I)

. (8)

Taking log-likelihood of (8), we have

lnP (k|Y) =
∑M

m=1
lnN (ym|0,Σk + σ2)− lnC (9)

where C is the denominator in Eq. (9) and it is the same

for all components. Finally, the component with the highest

probability lnP (k|Y) is selected to process Y.

3.1.2 Weighted Sparse Coding with Closed-Form So-

lution

Suppose that the kth Gaussian component is selected for

PG Y. For notation simplicity, we remove the subscript k
and denote by Σ the covariance matrix of this component.

In PG-GMM, the PGs actually represent the variations of

the similar patches in a group, and these variations are as-

signed to the same Gaussian distribution. By singular value

decomposition (SVD), Σ can be factorized as

Σ = DΛDT , (10)

where D is an orthonormal matrix composed by the eigen-

vectors of Σ and Λ is the diagonal matrix of eigenvalues.

With PG-GMM, the eigenvectors in D capture the statis-

tical structures of NSS variations in natural images, while

the eigenvalues in Λ represent the significance of these

eigenvectors. Fig. 4 shows the eigenvectors for 3 Gaus-

sian components. It can be seen that these eigenvectors

encode the possible variations of the PGs. For one Gaus-

sian component, the first eigenvector represents its largest

variation, while the last eigenvector represents its smallest

variation. For different Gaussian components, we can see

that their eigenvectors (with the same index) are very dif-

ferent. Hence, D can be used to represent the structural

variations of the PGs in that component.
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Figure 4. Eigenvectors of 3 Gaussian components from the learned

PG-GMM, sorted by the values of corresponding eigenvalues.

For each patch ym in the PG Y, we propose to use D

as the dictionary to sparsely encode ym as ym = Dα+ v,

where α is the vector of sparse coding coefficients and v is

the corrupted noise. Meanwhile, we propose to introduce a

weighting vector w to weight the coding vector α (we will

see in (16) that w is related to the eigenvalues in Λ), result-

ing in the following simple but highly effective weighted

sparse coding model:

min
α

‖ym −Dα‖22 + ‖wT
α‖1. (11)

From the viewpoint of Maximum A-Posterior (MAP)

estimation, the optimal solution of (11) is α̂ =
argmaxα lnP (α|ym). By Bayes’ formula, it is equivalent

to

α̂ = argmaxα{lnP (ym|α) + lnP (α)}. (12)

The log-likelihood term lnP (ym|α) is characterized by the

statistics of noise v, which is assumed to be white Gaussian

with standard deviation σ. Hence, we have

P (ym|α) = 1√
2πσ

exp(− 1

2σ2
‖ym −Dα‖22). (13)

We assume that the sparse coding coefficients in α follow

i.i.d. Laplacian distribution. More specifically, for entry αi,

which is the coding coefficient of patch ym over the ith
eigenvector in D, we assume that it follows distribution

c√
2λi

exp(−c
√
2|αi|/λi), where λi = Λ

1/2
i and c is a con-

stant. Note that we adjust the scale factor of the distribution

by (square root of) the ith eigenvalue Λi. This is because

the larger the eigenvalue Λi is, the more important the ith
eigenvector in D is, and hence the distribution of the coding

coefficients over this eigenvector should have a longer tail

(i.e., less sparse). Finally, we have

P (α) =
∏p2

i=1

c√
2λi

exp(−c
√
2|αi|
λi

). (14)

Putting (13) and (14) into (12), we have

α̂ = argminα ‖ym −Dα‖22 +
p2

∑

i=1

c ∗ 2
√
2σ2

λi
|αi|. (15)

By comparing (15) with (11), we can see that the ith entry

of the weighting vector w should be

wi = c ∗ 2
√
2σ2/(λi + ε), (16)

where ε is a small positive number to avoid dividing by zero.

With w determined by (16), let’s see what the solution

Alg. 1: Patch Group Prior based Denoising (PGPD)

Input: Noisy image y, PG-GMM model

1. Initialization: x̂(0) = y,y(0) = y;

for t = 1 : IteNum do

2. Iterative Regularization:

y(t) = x̂(t−1) + δ(y − y(t−1));
3. Estimate the standard deviation of noise;

for each PG Y do

4. Calculate group mean µy and form PG Y;

5. Gaussian component selection via (9);

6. Denoising by Weighted Sparse Coding (15);

7. Recover each patch in this PG via x̂m = Dα̂+ µy;

end for

8. Aggregate the recovered PGs to form the recovered

image x̂(t);

end for

Output: The recovered image x̂(IteNum).

of (11) should be. Since the dictionary D is orthonormal, it

is not difficult to find out that (11) has a closed-form solu-

tion (detailed derivation can be found in the supplementary

material):

α̂ = sgn(DTym)⊙ max(|DTym| −w/2, 0), (17)

where sgn(•) is the sign function, ⊙ means element-wise

multiplication, and |DTym| is the absolute value of each

entry of vector |DTym|. The closed-form solution makes

our weighted sparse coding process very efficient.

3.2. Denoising Algorithm

With the solution α̂ in (17), the clean patch in a PG can

be estimated as x̂m = Dα̂ + µy . Then the clean image x̂

can be reconstructed by aggregating all the estimated PGs.

In practice, we could perform the above denoising proce-

dures for several iterations for better denoising outputs. In

iteration t, we use the iterative regularization strategy [4]

to add back to the recovered image x̂(t−1) some estimation

residual in iteration t−1. The standard deviation of noise in

iteration t is adjusted as σ(t) = η ∗
√

σ2 − ‖y − y(t−1)‖22,

where η is a constant. The proposed denoising algorithm is

summarized in Algorithm 1 (Alg. 1).

In the proposed algorithm, there are N PGs in an im-

age and M patches in each PG. Then the computational

cost for Gaussian component selection is O(p6NMK). The

cost for iterative regularization and noise estimation is neg-

ligible. The cost for closed-form weighted sparse coding is

O(p4NM). Suppose that there are T iterations, the overall

complexity of our denoising algorithm is O(p6NMKT ).

4. Experiments

In this section, we perform image denoising experi-

ments on 20 widely used natural images (shown in Fig.

5). More experiments on the Berkeley Segmentation

Data Set [33] can be found in the supplementary file.
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Figure 5. The 20 widely used test images.

As a common experimental setting in literature, additive

white Gaussian noise with zero mean and standard devi-

ation σ is added to the image to test the performance of

competing denoising methods. We call our method PG

Prior based Denoising (PGPD) in the following experi-

ments. The Matlab source code of our PGPD algorithm can

be downloaded at http://www4.comp.polyu.edu.

hk/˜cslzhang/code/PGPD.zip.

4.1. Implementation Details

Our proposed PGPD method contains two stages, the

prior learning stage and the denoising stage. In the PG-

GMM learning stage, there are 4 parameters: p, M , W and

K. The patch size (p × p) is set as p = 6 for 0 < σ ≤ 20,

p = 7 for 20 < σ ≤ 30, p = 8 for 30 < σ ≤ 50, and p = 9
for 50 < σ ≤ 100. The window size (W ) for PG searching

is set to W = 31. The number (M ) of patches in a PG is

set to M = 10. The number (K) of Gaussian components

is set to K = 64 for p = 6 and K = 32 otherwise. We

extracted about one million PGs from the Kodak PhotoCD

Dataset to train the PG-GMM.

In the denoising stage, there are 3 parameters: c,
δ, and η. In our implementation, (c, δ, η) are set

to (0.33, 0.10, 0.79), (0.29, 0.09, 0.73), (0.19, 0.08, 0.89),
(0.15, 0.07, 0.98), (0.12, 0.06, 1.05), (0.09, 0.05, 1.15),
(0.06, 0.05, 1.30) when σ = 10, 20, 30, 40, 50, 75, 100, re-

spectively. In addition, on all noise levels we stop Algo-

rithm 1 in 4 iterations.

4.2. Comparison Methods

We compare the proposed PGPD algorithm with BM3D

[12], EPLL [26], LSSC [9], NCSR [10], and WNNM [14],

which represent the state-of-the-arts of modern image de-

noising techniques and all of them exploit image NSS. The

source codes of all competing algorithms are downloaded

from the authors’ websites and we use the default parame-

ter settings.

To more clearly demonstrate the effectiveness of PG

based NSS prior learning, we also compare with an extreme

case of PGPD, i.e., letting M = 1 in the PG-GMM learning

stage1. Clearly, this reduces to a patch based prior learn-

ing scheme and no NSS prior will be learned. We call this

extreme case as Patch Prior based Denoising (PPD). The

number of Gaussian components in PPD is set to 64, and

the weighted sparse coding framework in it is the same as

that in PGPD. All the other parameters in PPD are tuned to

achieve its best performance.

1Since there is only 1 patch in the PG, the group mean vector cannot be

subtracted and we subtract the mean value of the patch from it.

4.3. Results and Discussions

We evaluate the competing methods from three aspects:

PSNR, Speed, and Visual Quality.

PSNR. In Table 1, we present the PSNR results on four

noise levels σ = 30, 40, 50, 75. The results on noise levels

σ = 10, 20, 100 can be found in the supplementary mate-

rial. From Table 1, we have several observations. Firstly,

PGPD achieves much better PSNR results than PPD. The

improvements are 0.24∼0.52dB on average. This clearly

demonstrates the effectiveness of PG-GMM in NSS prior

learning. Secondly, PGPD has higher PSNR values than

BM3D, LSSC, EPLL and NCSR, and is only slightly in-

ferior to WNNM. However, PGPD is much more efficient

than WNNM (see next paragraph). This validates the strong

ability of PG based NSS prior in image denoising.

Speed. Efficiency is another important factor to evaluate

an algorithm. We then compare the speed of all competing

methods. All experiments are run under the Matlab2014b

environment on a machine with Intel(R) Core(TM) i7-

4770K CPU of 3.50GHz and 12.0 GB RAM. The run time

(s) of competing methods on the test images is shown in Ta-

ble 2. One can easily see that BM3D is the fastest method.

The proposed PGPD is the second fastest, and it is much

faster than the other methods. For a 256 × 256 image,

BM3D costs about 0.8s while PGPD costs about 10s. How-

ever, please note that BM3D is implemented with compiled

C++ mex-function and with parallelization, while PGPD

is implemented purely in Matlab. EPLL is about 4 times

slower than PGPD. Both LSSC and NCSR are very slow

since they need to train online dictionary. Though WNNM

has the highest PSNR, it suffers from huge computational

cost due to the many online SVD operations. It is 10∼16

times slower than PGPD.

Visual Quality. Considering that human subjects are the

ultimate judge of the image quality, the visual quality of

denoised images is also critical to evaluate a denoising al-

gorithm. Fig. 6 and Fig. 7 show the denoised images of

Airplane and Cameraman by the competing methods, re-

spectively. Due to the page limit, the results of PPD are

not shown here, and more visual comparisons can be found

in the supplementary file. We can see that BM3D tends

to over-smooth the image, while EPLL, LSSC, NCSR and

WNNM are likely to generate artifacts when noise is high.

Owe to the learned NSS prior, the proposed PGPD method

is more robust against artifacts, and it preserves edge and

texture areas much better than the other methods. For ex-

ample, in image Airplane, PGPD reconstructs the numbers

“01568” more clearly than all the other methods includ-

ing WNNM. In image Cameraman, PGPD recoveries more

faithfully the fine structures of the camera area.

In summary, the proposed PGPD method demonstrates

powerful denoising ability quantitatively and qualitatively,

and it is highly efficient.
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Table 1. PSNR(dB) results of different denoising algorithms on 20 natural images.
σ = 30 σ = 40

Images BM3D LSSC EPLL NCSR WNNM PPD PGPD BM3D LSSC EPLL NCSR WNNM PPD PGPD

Airfield 26.41 26.68 26.52 26.36 26.67 26.33 26.46 25.10 25.51 25.36 25.07 25.48 25.20 25.30

Airplane 30.71 30.62 30.68 30.70 30.97 30.62 30.80 29.20 29.21 29.28 29.28 29.58 29.21 29.44

Baboon 24.57 24.78 24.70 24.63 24.85 24.54 24.63 23.11 23.51 23.35 23.28 23.58 23.23 23.39

Barbara 29.81 29.60 27.64 29.62 30.31 27.97 29.38 27.99 28.17 26.06 28.20 28.76 26.29 27.97

Boat 29.12 29.06 28.97 28.94 29.24 28.80 29.05 27.74 27.77 27.72 27.65 27.96 27.51 27.82

C. Man 28.64 28.63 28.40 28.58 28.80 28.25 28.53 27.18 27.34 27.10 27.12 27.47 27.05 27.33

Carhouse 28.78 28.79 28.70 28.72 28.94 28.62 28.80 27.38 27.49 27.38 27.40 27.58 27.29 27.51

Couple 28.87 28.76 28.69 28.57 28.98 28.54 28.84 27.48 27.41 27.34 27.24 27.62 27.16 27.53

Elaine 30.45 30.54 30.26 30.26 30.46 30.24 30.37 29.52 29.55 29.46 29.59 29.60 29.42 29.62

Hat 29.37 29.22 29.22 29.16 29.44 29.05 29.31 27.74 27.60 27.73 27.66 27.85 27.43 27.90

Hill 29.16 29.09 28.94 28.97 29.25 28.85 29.09 27.99 28.00 27.86 27.83 28.12 27.76 28.06

House 32.09 32.40 31.48 32.07 32.52 31.62 32.24 30.65 31.10 30.20 30.80 31.31 30.32 31.02

Lake 28.34 28.36 28.41 28.31 28.59 28.30 28.38 26.98 27.13 27.19 26.99 27.34 27.03 27.15

Leaves 27.81 27.65 27.36 28.14 28.60 27.51 27.99 25.69 26.04 25.80 26.24 26.95 25.88 26.29

Lena 31.26 31.18 30.98 31.06 31.43 30.98 31.27 29.86 29.91 29.69 29.92 30.11 29.67 30.10

Man 28.86 28.87 28.87 28.78 29.00 28.72 28.86 27.65 27.64 27.68 27.54 27.80 27.53 27.73

Monarch 28.36 28.20 28.50 28.46 28.91 28.27 28.49 26.72 26.87 27.05 26.85 27.47 26.81 27.02

Paint 28.29 28.29 28.45 28.10 28.58 28.39 28.42 26.69 26.77 27.00 26.50 27.10 26.88 26.94

Peppers 31.26 31.17 31.10 31.11 31.38 31.13 31.25 29.97 30.00 29.93 30.07 30.18 29.95 30.18

Zelda 30.45 30.27 30.44 30.16 30.48 30.35 30.43 29.10 28.91 29.18 28.94 29.12 29.07 29.23

Average 29.13 29.11 28.92 29.03 29.37 28.85 29.13 27.69 27.80 27.62 27.71 28.05 27.53 27.88

σ = 50 σ = 75

Images BM3D LSSC EPLL NCSR WNNM PPD PGPD BM3D LSSC EPLL NCSR WNNM PPD PGPD

Airfield 24.20 24.58 24.46 24.18 24.51 24.33 24.44 22.71 22.85 22.85 22.57 22.94 22.69 22.90

Airplane 28.24 28.15 28.19 28.18 28.55 28.10 28.38 26.40 26.16 26.14 26.10 26.68 25.90 26.39

Baboon 22.35 22.60 22.35 22.43 22.73 22.30 22.47 21.11 21.18 20.85 21.03 21.36 20.71 21.09

Barbara 27.23 27.03 24.83 26.99 27.79 24.94 26.81 25.12 25.01 22.94 24.72 25.81 22.84 24.84

Boat 26.78 26.77 26.74 26.67 26.97 26.52 26.85 25.12 25.03 25.01 24.87 25.29 24.72 25.19

C. Man 26.12 26.35 26.10 26.15 26.42 26.13 26.46 24.33 24.41 24.29 24.22 24.55 24.36 24.64

Carhouse 26.53 26.48 26.39 26.41 26.67 26.27 26.53 24.89 24.85 24.65 24.53 25.04 24.44 24.85

Couple 26.46 26.35 26.30 26.19 26.65 26.07 26.50 24.70 24.51 24.51 24.33 24.85 24.22 24.70

Elaine 28.94 28.75 28.77 28.85 28.97 28.69 28.90 27.41 27.27 27.38 27.16 27.53 27.26 27.47

Hat 26.77 26.41 26.62 26.51 26.78 26.28 26.76 24.77 24.31 24.65 24.48 24.77 24.19 24.79

Hill 27.19 27.14 27.04 26.99 27.34 26.91 27.22 25.68 25.57 25.60 25.40 25.88 25.34 25.73

House 29.69 29.99 29.12 29.62 30.32 29.17 29.93 27.51 27.75 27.09 27.22 28.25 26.81 27.81

Lake 26.13 26.15 26.24 26.02 26.41 26.05 26.20 24.49 24.25 24.50 24.26 24.66 24.19 24.49

Leaves 24.68 24.78 24.55 24.96 25.47 24.56 25.03 22.49 22.17 22.12 22.60 23.06 21.94 22.61

Lena 29.05 28.95 28.68 28.90 29.25 28.61 29.11 27.26 27.22 26.88 27.00 27.54 26.68 27.40

Man 26.81 26.72 26.79 26.67 26.94 26.63 26.86 25.32 25.10 25.26 25.10 25.42 25.01 25.36

Monarch 25.82 25.88 25.94 25.76 26.31 25.66 26.00 23.91 23.66 23.88 23.67 24.31 23.51 24.00

Paint 25.67 25.59 25.87 25.36 25.98 25.70 25.82 23.80 23.52 23.88 23.44 24.07 23.50 23.89

Peppers 29.12 29.06 28.98 29.07 29.34 28.99 29.22 27.28 27.14 27.15 26.96 27.55 27.04 27.42

Zelda 28.25 27.90 28.22 27.97 28.21 28.06 28.24 26.60 26.09 26.55 26.21 26.44 26.37 26.56

Average 26.80 26.78 26.61 26.69 27.08 26.50 26.89 25.04 24.90 24.81 24.79 25.30 24.59 25.11

Table 2. Average run time (seconds) with standard deviation of different methods on images of size 256× 256 and 512× 512. BM3D uses

parallelization and is implemented with compiled C++ mex-function while the other methods are implemented in Matlab.
256 × 256

σ BM3D LSSC EPLL NCSR WNNM PPD PGPD

10 0.67 ± 0.09 186.90 ± 4.02 38.47 ± 0.10 126.43 ± 3.84 84.34 ± 1.42 10.15 ± 0.07 8.00 ± 0.05
20 0.70 ± 0.09 184.21 ± 5.82 38.47 ± 0.13 156.14 ± 5.26 84.70 ± 1.71 10.18 ± 0.15 8.09 ± 0.09
30 0.70 ± 0.09 212.07 ± 8.72 38.55 ± 0.09 149.31 ± 4.19 155.75 ± 0.94 10.34 ± 0.25 8.47 ± 0.07
40 0.67 ± 0.11 209.13 ± 6.99 38.51 ± 0.08 346.91 ± 18.65 157.35 ± 1.48 10.47 ± 0.21 9.80 ± 0.08
50 0.87 ± 0.04 221.36 ± 6.27 40.21 ± 1.82 326.93 ± 9.64 119.47 ± 4.65 10.88 ± 0.05 9.91 ± 0.13
75 0.89 ± 0.03 240.75 ± 6.08 40.91 ± 1.33 258.04 ± 11.80 179.30 ± 5.08 10.87 ± 0.27 11.73 ± 0.08
100 0.90 ± 0.03 257.25 ± 6.01 42.80 ± 1.93 252.74 ± 8.50 191.32 ± 1.47 10.90 ± 0.19 11.78 ± 0.08

512 × 512

σ BM3D LSSC EPLL NCSR WNNM PPD PGPD

10 3.16 ± 0.12 746.53 ± 24.96 160.93 ± 2.81 624.83 ± 40.24 352.34 ± 3.87 41.79 ± 0.32 33.03 ± 0.25
20 3.32 ± 0.11 762.62 ± 31.25 159.80 ± 0.37 751.09 ± 42.89 351.09 ± 3.14 42.09 ± 0.41 33.26 ± 0.29
30 3.32 ± 0.09 856.82 ± 40.32 160.21 ± 0.18 709.90 ± 31.62 650.54 ± 7.23 42.36 ± 0.99 35.45 ± 0.24
40 3.18 ± 0.18 865.83 ± 40.96 160.23 ± 0.17 1620.74 ± 104.59 652.49 ± 10.49 41.70 ± 0.47 40.13 ± 0.23
50 3.85 ± 0.09 891.53 ± 48.60 161.36 ± 3.08 1492.78 ± 65.87 476.50 ± 12.34 41.75 ± 0.64 40.40 ± 0.28
75 3.91 ± 0.05 983.05 ± 69.96 165.66 ± 2.62 1156.82 ± 66.37 784.92 ± 18.32 41.88 ± 0.78 50.00 ± 0.25
100 3.94 ± 0.04 1087.57 ± 68.76 177.51 ± 7.16 1100.00 ± 26.64 824.56 ± 34.41 42.80 ± 1.09 50.32 ± 0.31

5. Conclusion

How to learn explicit models of nonlocal self-similarity

(NSS) prior for image restoration is an open problem, and

we made a good attempt on this by lifting the patch based

image modeling to patch group (PG) based image model-

ing. A PG is a group of similar patches in an image re-
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(a) Ground Truth (b) Noisy Image (PSNR: 14.16dB) (c) BM3D (PSNR: 28.24dB) (d) LSSC (PSNR: 28.15dB)

(e) EPLL (PSNR: 28.19dB) (f) NCSR (PSNR: 28.18dB) (g) WNNM (PSNR: 28.55dB) (h) PGPD (PSNR: 28.38dB)

Figure 6. Denoised images of Airplane by different methods (the standard deviation of noise is σ = 50).

(a) Ground Truth (b) Noisy Image (PSNR: 10.60dB) (c) BM3D (PSNR: 24.33dB) (d) LSSC (PSNR: 24.41dB)

(e) EPLL (PSNR: 24.29dB) (f) NCSR (PSNR: 24.22dB) (g) WNNM (PSNR: 24.55dB) (h) PGPD (PSNR: 24.64dB)

Figure 7. Denoised images of Cameraman by different methods (the standard deviation of noise is σ = 75).

gion. After group mean subtraction, a PG can naturally

represent the NSS variations of natural images. A PG

based Gaussian Mixture Model (PG-GMM) learning algo-

rithm was developed to learned the NSS prior from natu-

ral images, and an associated weighted sparse coding algo-

rithm was developed for high performance image denois-

ing. The so-called PG Prior based Denoising (PGPD) al-

gorithm not only achieves highly competitive PSNR results

with state-of-the-art denoising methods, but also is highly

efficient and preserves better the image edges and tex-

tures. The proposed method can be extended to other image

processing tasks such as deblurring and super-resolution.
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