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Abstract

In this paper, we propose an activity auto-completion

(AAC) model for human activity prediction by formulating

activity prediction as a query auto-completion (QAC) prob-

lem in information retrieval. First, we extract discrimina-

tive patches in frames of videos. A video is represented

based on these patches and divided into a collection of seg-

ments, each of which is regarded as a character typed in the

search box. Then a partially observed video is considered

as an activity prefix, consisting of one or more characters.

Finally, the missing observation of an activity is predicted

as the activity candidates provided by the auto-completion

model. The candidates are matched against the activity pre-

fix on-the-fly and ranked by a learning-to-rank algorithm.

We validate our method on UT-Interaction Set #1 and Set

#2 [19]. The experimental results show that the proposed

activity auto-completion model achieves promising perfor-

mance.

1. Introduction

The exponential growth of video devices has leaded to

a tremendous demand for intelligent video analysis tech-

niques. In the past decade, various methods have been pro-

posed for recognizing after-the-fact activities [1]. Though

great successes have been achieved, it’s too luxury for an

intelligent system to recognize human activities until the

end of videos (e.g. video surveillance, health care, human-

computer interaction). In recent years, predicting human

activities from partially observed videos has been an active

research topic [18, 8, 17, 13, 14].

Ryoo [18] defines human activity prediction as an infer-

ence of the ongoing activity given only partial observation-

s (see Fig.1). Existing solutions based on multi-class se-

quential matching usually output a clear class label [18, 8].

A. Query auto-completion

B. Activity auto-completion

segment =
activity character

partial video = activity prefix
full video= activity query

Figure 1. An analogy between activity prediction and query auto-

completion. A) Query candidates for a query prefix: activity predi,

according to google.com. B) We focus on activity prediction.

Partially observed videos are considered as activity prefixes, con-

sisting of one or more visual characters.

However, the information contained in a partially observed

video may be ambiguous. We claim that an intelligence sys-

tem should not jump to a conclusion in the early stages of

an activity. For instance, presented with first few frames of

a surveillance video, we cannot judge whether it is shoplift-

ing or just reaching for something. When more frames are

observed, the judgement will be more confident. A good

choice may be ranking all potential activities in real time.

Inspired by query auto-completion (QAC) [20], we pro-

pose a novel activity auto-completion (AAC) model for hu-

man activity prediction. A partially observed video and

a full video, in our paper, are regarded as a prefix and a

query respectively. Fig.1 illustrates the comparison between

QAC and our proposed AAC. Just like QAC providing users

with high quality candidates in modern search engines, our

AAC recommends potential activities. We first explore mid-
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Figure 2. The framework of the proposed AAC model: First, mid-level discriminative patches are mined from training set T0, and each

video is divided into some segments according to their patch-based representations. We then split videos in T0 into all activity prefixes

and for each case obtain its activity candidates. Dataset T1 consists of such prefix-candidate pairs. Finally, we train our AAC ranker on

the new dataset T1. In prediction phase, the ranking list of activity candidates is dynamically updated.

level patches [21] to represent videos by mining discrimina-

tive patches in each activity class. Then, we divide patch-

represented videos into variable-length segments (charac-

ters). A full video (query) is decomposed into all activity

prefixes that lead to it, and for each case other videos in

training set are considered as its activity candidates. Activi-

ty candidates are ranked using learning-to-rank techniques.

An overview of our method is illustrated in Fig.2. Our

method makes several contributions:

• We propose the idea of activity auto-completion for ac-

tivity prediction.

• We show how to capture the essence of partial videos

by mining discriminative patches.

• The proposed AAC model achieves impressive perfor-

mances on UT-Interaction Set #1 and Set #2 [19].

The remainder of the paper is organized as follows. In

Section 2, related work is covered. The details of the AAC

model are introduced in Section 3. Experiments are dis-

cussed in Section 4. And we conclude in Section 5.

2. Related Work

Activity representation: Generally, features for repre-

senting videos include local features [15, 23] and global

features [4, 3]. Global features are powerful since they

encode the global templates of human activities. But they

are more sensitive to viewpoints and deformations. On the

other hand, local features [15, 23] encode only local infor-

mation surrounding the interesting points, which sometimes

are not discriminative enough. Recently, some works focus

on extracting mid-level features [5, 21, 10, 24, 11, 2]. The

work of poselets [5] learns both appearance and configura-

tion space of human body parts, which requires non-trivial

amounts of hand-labeled training data (e.g. key points).

Spatio-temporal patches [24, 11] have achieved exciting

performance in human action recognition, but they may

not be suitable in activity prediction task with only par-

tial observations available. Researches on mid-level patches

[21, 10, 2] mine representative patches from a large number

of randomly sampled patches. In our paper, we apply the

method described in [21] to discover mid-level patches in

each activity class.

Activity prediction: Ryoo [18] designs an integral bag-

of-words (IBoW) and a dynamic bag-of-words (DBoW)

to represent human activities. The activity model of each

progress level is obtained by averaging features of a partic-

ular progress level in the same class, which may suffer from

outliers. Cao et al. [8] apply sparse coding (SC) to derive

activity bases at different observation ratios, then partial

videos in testing are reconstructed by theses bases. More-

over, they extend SC to handle intra-class activity variation-

s by including bases from different time periods. Raptis

and Sigal [17] develop a model to recognize activity from

streaming video based on poselets [5]. Their model local-

izes activity keyframes temporally and spatially in both par-

tial and full videos. Kong et al. [13] propose a multiple

temporal scale support vector machine (MTSSVM) to han-

dle action prediction problem and their model takes advan-

tage of a prior that the more frames are observed, the more

information will be obtained. A temporal action evolution

constraint and a label consistency constraint are considered

in their structured SVM model. Lan et al. [14] introduce a

novel three-layer hierarchical movemes representation for

predicting actions from short video clips or still images.

Each layer captures human actions at different semantic and

temporal granularity. However, their model is builded on an

assumption that human bounding boxes and human motion
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Figure 3. Examples of discriminative patches discovered by refined SVM detectors. Patches in a frame with top four detection scores are

displayed individually.

tracks are available during training. In addition, Li and Fu

[16] focus on solving long-duration complex activity pre-

diction problem through sequential pattern mining, which

is different from our goal.

In this paper, we propose a novel activity auto-

completion (AAC) model for human activity prediction,

avoiding jumping to a conclusion in the early stages of an

activity.

3. Our Approach

Given a fully observed activity video x[1 : T ] of length

T , a partial observation of it is x[1 : t], where t = 1, . . . , T .

Note, the lengths T of different videos may vary. We adapt

query auto-completion [20] here to recognize activity class

label y from the partial video x[1 : t]. In the paper, a partial

video and a full video are considered as a prefix and a query,

respectively.

We first introduce how to represent videos by mining dis-

criminative mid-level patches in Section 3.1. Video seg-

mentation based on clustering are discussed in Section 3.2.

Then, the details of the proposed AAC model are given in

Section 3.3, 3.4 and 3.5.

3.1. Activity Representation

We build a compact video representation based on dis-

criminative patches [21]. These patches have two charac-

teristics: 1) purity: they should fire frequently enough in

one activity class; 2) discriminativeness: they should oc-

cur rarely in other activity classes. Note, here “rarely” does-

n’t mean “never”. We adopt a one-against-rest strategy to

discover discriminative patches for each activity class. For

example, there are M activity classes in training set. We

select all video frames from the m-th type of activity as

positive samples, and frames from the remaining M − 1 ac-

tivity classes as negative samples, where m = 1, . . . ,M .

Following the procedure described in [21], we discover the

discriminative patches for this type of activity class by al-

ternating the steps of detecting similar patches and training

new support vector machine (SVM) detectors. Patches with

similar feature descriptors are equipped with a same linear

SVM detector.

Let Sm = {smj }nm

j=1
be the SVM detectors mined for m-

th activity class and nm is the number of SVM detectors

mined in m-th activity class. However, the numbers nm

are unbalanced. For example, in our experiments on UT-

Interaction Set #1 [19], there are over 300 detectors mined

in “push” class and only about 150 detectors discovered in
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Figure 4. Patch distributions of six activities on UT-Interaction Set

#1. The lengths of videos are regularized to 100. The numbers

of patches in a video are frame-by-frame counted and 0-1 normal-

ized. Data points from all videos belonging to a same activity class

are plotted in a single figure and fitted with a Gaussian function.

“punch” class. Several factors may contribute to this unbal-

ance. First, activities from different classes have their own

characteristics. Secondly, patches mined in a class don’t

necessarily satisfy the aforementioned two characteristics,

for some SVM detectors only focus on the backgrounds.

Refining Detectors: To maintain the balance of detec-

tors, we refine J representative SVM detectors from Sm for

each class based on patch temporal distribution. Given Vm

training videos belonging to the m-th activity class, we run

detectors in Sm on these training videos at multiple resolu-

tions (4) in a sliding window fashion. If the output score of

a SVM detector is greater than a threshold γ (−1), a patch

is discovered. We count the number of discovered patches

in each video frame. The frame-by-frame counts in a video

are normalized to the range of [0, 1]. We also regularize

the lengths of videos to a canonical length (100) by upsam-

pling or downsampling. Note, sampling is not applied in

other sections of this paper. Fig.4 gives some examples on

the numbers of patches on UT-Interaction Set #1 [19]. Da-

ta points are fitted with Gaussian functions. Clearly, there

0-1 Normalization

,1p

pH

ˆ
pH

average 

pooling

1, , J 1, , 2J J 1, ,D J D

1, , J 1, , 2J J 1, ,D J D

histogram

weights

,2p ,p M

,p M,2p,1p

Figure 5. The weighting procedure of the patch-based histogram

are more patches around the center of each Gaussian dis-

tribution. This suggests that there are little discriminative

information in the early stages of an activity.

To select really representative patch detectors for m-th

activity class, we sum up the SVM detection scores around

the center of each Gaussian distribution as

Θ(smj ) =
1

Vm

Vm
∑

v=1

t2
∑

l=t1

ϕv
l (s

m
j ), (1)

where ϕv
l (s

m
j ) is the maximum detection score of detector

smj in the l-th frame of video v, t1 is the 25-th frame on the

left of the center and t2 is the 25-th frame on the right of the

center.

All detectors in Sm are ranked according to their cumu-

lations Θ(·). We select the top-ranked J (50) SVM detec-

tors as representatives for this activity class. Fig.3 shows

some examples of the detected patches. It can be seen from

Fig.3 that patches for every activity are distinct and repre-

sentative.

Patch-based Histogram: Let S
′

m = {smj }Jj=1 denote

the survived SVM detectors. Following the classical bag-

of-words (BoW) scheme, we consider all detectors together

as the codebook of the BoW. The size of codebook is D =
M×J . Given a prefix p = x[1 : t], let Hp denote the patch-

based histogram of p, so that Hp(d) is the average number

of firings in this prefix with respect to a detector,

Hp(d) =
1

t

t
∑

l=1

✶
(

ϕ
p
l (s

m
j ) > γ

)

, (2)

where d = (m − 1) × J + j is the bin index of Hp, and ✶

is indicator function.

Weighted Histogram: Each bin in histogram Hp cor-

responds to a SVM detector from a specific activity class.

Ideally, class-specific detectors only fire in their own class,

but they maybe ambiguous and activate aimlessly. We com-

pute a weighted version Ĥp, aiming to give more weights to

detectors from the dominant activity class. In other words,
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if an activity class holds the largest number of discrimina-

tive patches in this prefix p, it is dominant and we boost the

weights of the corresponding detectors. As shown in Fig.5,

Ĥp is obtained in three steps:

1. Average pooling computes the average number αp,m

of SVM detections per activity class.

2. 0-1 normalization is used to obtain a weight value βp,m

between 0 and 1.

3. SVM detectors from the m-th activity class share a

same weight: Ĥp(d) = βp,mHp(d).

3.2. Video Segmentation

Many works [27, 6] have shown evidence that human

motion is locally linear (see Fig.1), so rather than setting the

video granularity to frames, we divide a full video x[1 : T ]
into a collection of segments, which we call activity char-

acters. This operation also reduces the number of prefixes.

Given a video with T frames p = x[1 : T ], each frame

f = x[t : t] in p is firstly represented by patch-based his-

togram Hf . Then affinity propagation (AP) [7] is used to

assign each frame f to a cluster with histogram intersection

similarity. And we get a cluster label vector g of length

T . However, the initial AP assignment of cluster labels is

rough and labels are not consistent along the timeline, so

we further apply a simple voting scheme to reassign labels.

This relabeling procedure is like median filter, but each en-

try is replaced with the dominant cluster label of neighbor-

ing entries in a one-dimensional window of size W (9). This

procedure is repeated until the labels of all frames don’t

change. After relabeling, adjacent frames with same clus-

ter label in vector g are considered as an activity character

in this video (see Fig.1). The algorithm for video temporal

segmentation is summarized in Algorithm 1.

Algorithm 1 Video Temporal Segmentation

Input:

A fully observed video: p = x[1 : T ];
Feature vector of each frame f : Hf ;

Window size of voting: W .

Output:

A cluster label vector of length T : g

1: Initialize g by APCLUSTER(p,Hf )

2: repeat

3: g ← VOTING(g,W )

4: until g doesn’t change

5: return g

3.3. Prefix-Candidate Pairs

In our work, we formulate activity prediction problem as

an auto-completion problem rather than traditional multi-

class matching problem. Query auto-completion (QAC) is

one of the requisite features in modern search engines, such

as Google, Bing, et al. Its goal is to predict users intent and

suggest possible other queries matching the first few words

typed. Usually, learning to auto-completion [20] is a kind of

supervised learning, and the learning is a two-step process.

Step one is to obtain and filter query suggestions based on

the matching against the prefix on-the-fly. Step two is to

learn to rank the filtered candidates based on the likelihood

of those suggestions being the correct one.

Following these steps in QAC, we create a new training

set T1 for activity auto-completion task from the original

training set T0, which consists of 1:

• prefixes {pi}
N
i=1, where pi = x[1 : t].

• candidates {ci,k}
N,K
i=1,k=1

, where ci,k = x[1 : T ].

• relevance vectors {ri}
N
i=1,where ri ∈ R

K .

where N is number of all activity prefixes, K is the number

of activity candidates associated with a prefix.

First we decompose each full video (query) in original

training set T0 into all prefixes that lead to it. Each prefix is

composed of one or more activity characters. Secondly, for

each prefix we obtain its activity candidates by using pre-

fix matching. Typical exact prefix matching techniques in

information retrieval are on the basis of special data struc-

tures, such as hash tables, prefix-trees (tries), etc. These

data structures are efficient in candidates lookup and filter-

ing. However, in our prediction task, activity characters are

not exactly quantified, therefore we resort to a fuzzy prefix

matching technique to select and filter activity candidates

from T0. Our fuzzy matching method calculates the sim-

ilarities between a prefix and its candidates based on his-

togram intersection similarity, and ranks the candidates in

descending order. Then we restrict candidates of an activity

prefix to top K videos. Thirdly, there are only two rele-

vance levels in our activity auto-completion problem. For

each prefix-candidate pair, we assign a positive label to the

candidate if the prefix and candidate have a common class

label in T0, otherwise a zero label.

3.4. Learning to Rank

Once the new training set T1 is created, many exist-

ing learning-to-rank algorithms can fit into our activity

auto-completion framework, such as Lambda-MART [25],

RankSVM [12], etc. In our work, we choose RankSVM as

our learning model. Particularly, only one ranking model is

created for all activity classes.

Joachims [12] has showed that the final goal of learning-

to-rank is to learn a linear ranking function (3), such that

1To avoid ambiguity, we use T0 and T1 to denote the training set for

mining discriminative patches and the training set for learning the auto-

completion ranker, respectively.
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the maximum number of the inequalities (4) between rel-

evant prefix-candidate pairs (pi, c
+

i,k) and irrelevant pairs

(pi, c
−

i,k′) are satisfied. Here c+i,k and c−i,k′ represent rele-

vant and irrelevant candidates of a prefix pi respectively,

and their numbers are K+

i and K−

i (K+

i +K−

i = K).

L
(

w, (pi, ci,k)
)

= wTΦ(pi, ci,k) (3)

wTΦ(pi, c
+

i,k) > wTΦ(pi, c
−

i,k′) (4)

where i = 1, . . . , N , k = 1, . . . ,K+

i , k′ = 1, . . . ,K−

i and

Φ(pi, ci,k) is a joint feature mapping that reflects the com-

patibility between an activity prefix and its activity candi-

dates. Details of the joint feature mapping will be discussed

in Section 3.5. We solve the ranking function with the pub-

licly available PRSVM software [9] which integrates primal

Newton method to speed up RankSVM training and shows

excellent performance.

Prediction Phase: When ranking function (3) is learned,

our AAC model can automatically complete any new activ-

ity prefix (see the rightmost flow chart in Fig.2): 1) Given

a new prefix, we obtain its activity candidates from train-

ing set T0. 2) We calculate the joint feature mapping of

the prefix-candidate pairs. 3) The pairs are feeded into the

learned AAC ranker, and we will get a ranking of these ac-

tivity candidates according to their relevance outputs. 4)

Further, we can consider the first-ranked candidate’s class

label as the final predicted label.

3.5. Joint Feature Mapping

To operationalize our AAC ranker, we need to design a

suitable joint feature mapping Φ(pi, ci,k) which can depict

the common ground between an activity prefix pi and its

candidates ci,k. In the paper, a prefix and its candidates are

represented by patch-based histogram Hpi
and Hci,k . The

joint feature mappings are then designed as follow.

1) histogram intersection similarity:

Φ1(pi, ci,k) =

∑D

d=1
min

(

Hpi
(d), Hci,k(d)

)

∑D

d=1
Hpi

(d)
(5)

Φ1 calculates the similarity between histograms H(pi) and

H(ci,k) and reflects the overall quality of matching between

a prefix and its candidates. (dimension is 1)

2) histogram intersection:

Φ2(pi, ci,k)(d) = min
(

Hpi
(d), Hci,k(d)

)

, (6)

where d = 1, . . . , D. Φ2 is calculated by just intersecting

two histograms. Each element of it reflects how many com-

mon discriminative patches are discovered in a prefix and

its candidates by a same SVM detector. (dimension is D)

In our final model, we concatenate Φ1 and Φ2 together,

so the dimension of the joint feature mapping Φ(pi, ci,k) is

D + 1.

Figure 6. Example snapshots of six different activities (shake-

hands, point, kick, hug, push and punch) from UT Set #1 (top)

and UT Set #2 (bottom). Set #2 is more complicated than UT Set

#1, since there are more tree moves, camera jitters, etc.

4. Experiments

We test the activity auto-completion (AAC) model on

UT-Interaction Set #1 and UT-Interaction Set #2 [19].

These two datasets are created for high-level activity analy-

sis, and both of them consist of six different types of human-

human interaction activities: shake-hands, hug, kick, point,

punch and push, with 10 videos per activity class. Fig.6

shows example snapshots of six different activities from t-

wo datasets. Backgrounds in Set #2 are more complex than

backgrounds in Set #1 (e.g. tree moves, camera jitters).

4.1. Details

Following the experiment settings in [18], 10-fold leave-

one-sequence-out cross validation setting is used to measure

model performances on both Set #1 and Set #2. For each

round, six segmented videos from a same unsegmented long

video are used for testing, and other 54 videos are used for

training. Since there are only 60 videos on UT-Interaction

Set #1 or Set #2, so in experiments, we don’t filter candi-

dates. That is to say, in training, the parameter K for fuzzy

matching is set to 53, because one out of 54 videos is used

to generate activity prefixes. In testing, the parameter K

is set to the number of all training videos (K = 54). The

trade-off parameter C of PRSVM, in all experiments, is set

to 100.

4.2. Results

Our ACC model is compared with DBoW and IBoW in

[18], SC and MSSC in [8], MTSSVM in [13], and some

other baseline methods. To compare with them, we uni-

formly divide a full testing video into 10 segments and test

our model at 10 different observation ratios from 0.1 to 1.

Note, all the experimental results are achieved by taking the

first-ranked activity candidate’s class label as the final pre-

dicted label y.

UT-Interaction Set #1: Fig.7(a) illustrates the perfor-

mances on the UT Set #1. The horizontal axis of the figure

corresponds to the observed ratio, while the vertical axis

represents the average prediction accuracy. The dimension

of histograms ranges from 1416 to 1644 (10-fold) without

3196



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Video observation ratio

A
v
e
ra

g
e
 a

c
c
u
ra

c
y

UT−Interaction Set #1

Raptis & Sigal*

MTSSVM

DBoW

IBoW

SVM

Bayesian

SC

MSSC

AAC w/o refine & weight

AAC+refine

AAC+refine+weight

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Video observation ratio
A

v
e
ra

g
e
 a

c
c
u
ra

c
y

UT−Interaction Set #2

MTSSVM

DBoW

IBoW

SVM

Bayesian

SC

MSSC

AAC w/o refine & weight

AAC+refine

AAC+refine+weight
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Observation Ratio: 10%, Average Accuracy: 43.33%

Predicted activity

A
c
tu

a
l 

a
c
ti

v
it

y

40.0% 20.0% 10.0% 20.0% 10.0% 0.0%

10.0% 10.0% 10.0% 10.0% 30.0% 30.0%

20.0% 20.0% 30.0% 20.0% 10.0% 0.0%

0.0% 0.0% 0.0% 100.0% 0.0% 0.0%

20.0% 20.0% 0.0% 10.0% 40.0% 10.0%

10.0% 10.0% 10.0% 20.0% 10.0% 40.0%

handshake hug kick point punch push

hand.

hug

kick

point

punch

push

(a) Observation ratio: 10%

Observation Ratio: 30%, Average Accuracy: 60.00%

Predicted activity

A
c
tu

a
l 

a
c
ti

v
it

y

90.0% 0.0% 0.0% 0.0% 0.0% 10.0%

0.0% 50.0% 40.0% 0.0% 10.0% 0.0%

20.0% 30.0% 30.0% 10.0% 10.0% 0.0%

0.0% 0.0% 0.0% 100.0% 0.0% 0.0%

10.0% 20.0% 10.0% 10.0% 40.0% 10.0%

0.0% 20.0% 10.0% 10.0% 10.0% 50.0%

handshake hug kick point punch push

hand.

hug

kick

point

punch

push

(b) Observation ratio: 30%

Observation Ratio: 50%, Average Accuracy: 91.67%
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(c) Observation ratio: 50%

Observation Ratio: 100%, Average Accuracy: 96.67%

Predicted activity
A

c
tu

a
l 

a
c
ti

v
it

y

90.0% 0.0% 0.0% 0.0% 0.0% 10.0%

0.0% 100.0% 0.0% 0.0% 0.0% 0.0%

0.0% 0.0% 100.0% 0.0% 0.0% 0.0%

0.0% 0.0% 0.0% 100.0% 0.0% 0.0%

0.0% 10.0% 0.0% 0.0% 90.0% 0.0%

0.0% 0.0% 0.0% 0.0% 0.0% 100.0%

handshake hug kick point punch push

hand.

hug

kick

point

punch

push

(d) Observation ratio: 100%

Figure 8. Confusion matrices for UT-Interaction Set #1 at 0.1, 0.3, 0.5 and 1.0 observation ratios.

refining. After refining, the dimension is reduced to 300

at cost of some accuracy. When we combine refining with

reweighting strategy, weighted histogram gives us a signif-

icant boost in prediction performance. Remarkably, com-

pared to the existing activity prediction methods, our pro-

posed AAC model with weighted histogram exhibits great

improvement. When half video is observed, our AAC mod-

el with weighted histogram performs superior to all pre-

vious methods and achieve 91.67% accuracy. At 0.6 ob-

servation ratio, average prediction accuracy of 95.00% is

achieved, which is as good as the current best result [13]

with full observation.

Table 1 compares the results of our method with other

leading approaches on Set #1 in a more direct way. With

half observation, the accuracy obtained by our weighted

model is 13% higher than MTSSVM [13] and is 8% high-

er than Lan et al. [14] which is the current state-of-art at

0.5 observation ratio. With full observation, our weighted

model achieves state-of-the-art accuracy of 96.67%.

The confusion matrices obtained by weighted model at

different observation ratios on UT Set #1 are illustrated in

Fig.8. It is obvious that “point” activities are easy to be

Table 1. Activity prediction performances on UT Set #1

Methods
Accuracy

(half video)

Accuracy

(full video)

AAC+refine+weight 91.67% 96.67%

AAC+refine 88.33% 95.00%

MTSSVM [13] 78.33% 95.00%

Lan et al. [14] 83.1% 88.4%

DBoW [18] 70.0% 85.0%

IBoW [18] 65.0% 81.7%

SVM [18] 25.3% 78.0%

Bayesian [18] 20.9% 69.2%

SC [8] 70.0% 76.67%

MSSC [8] 70.0% 83.33%

Raptis and Sigal [17] 73.3% 93.3%

Zhang et al. [26] - 95%

Vahdat et al. [22] - 93%

recognized at any observation ratio. Whereas “punch” ac-

tivities are more difficult to be identified in early stages (e.g.

observation ratio is less than 0.3). Such results are consis-

tent with the cues in Fig.4. The numbers of detected patch-
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Figure 9. We visualize the rankings of a “shake-hands” activity at

different observation ratios. In each column, the top row shows

the current activity prefix. The middle rows show 54 activity can-

didates of this prefix. The last row shows that activity candidates

from different activity classes are represented by distinct colors.

es of “point” class (see Fig.4(b)) distribute more uniform-

ly along time axis, which means that some discriminative

patches are discovered at the early stages, leading to good

recognition performance. On the other hand, The numbers

of detected patches of “punch” (see Fig.4(f)) surge at lat-

er stages (e.g. observation ratio is 0.7), which indicate that

few discriminative patches can be founded at early stages,

resulting in poor identification.

UT-Interaction Set #2: The experimental results on Set

#2 are shown in Fig.7(b). Without refining, the dimension

of histograms ranges from 1193 to 1262 (10-fold). After

refining, the dimension is reduced to 300. With half obser-

vation, our weighted model achieves 83.33% accuracy, and

our unweighted model achieves 73.33% accuracy. With full

observation, the results are 90.00% and 78.33% respective-

ly. In general, when compared with previous methods, the

weighted AAC model consistently outperforms them.

Table 2. Mean Reciprocal Rank on UT Set #1
Obser. ratio 0.1 0.2 0.3 0.4 0.5

MRR 0.5542 0.5629 0.6434 0.7638 0.9285

Obser. ratio 0.6 0.7 0.8 0.9 1

MRR 0.9616 0.9867 0.9742 0.9718 0.9713

Table 3. Mean Reciprocal Rank on UT Set #2
Obser. ratio 0.1 0.2 0.3 0.4 0.5

MRR 0.5992 0.6166 0.6773 0.7861 0.8704

Obser. ratio 0.6 0.7 0.8 0.9 1

MRR 0.8937 0.9183 0.9191 0.9179 0.9226

Ranking Quality: Since we formulate activity predic-

tion as a retrieval problem, we also use a retrieval metric

to measure the performance of our model. Examples of the

ranked candidates with “shake-hands” prefixes are depicted

in Fig.9. In the cases of only 10% observations, the “shake-

hands” prefix is predicted mistakenly as “kick” by the top

one candidate, following by “hug”, the top two and the top

three candidates. With more observations are available, the

true activities “shake-hands” pop up. That is to say, the

ranking performance becomes better.

Mean reciprocal rank (MRR) is adopted here to measure

ranking performance. MRR at a given observation ratio is

calculated as the average of the reciprocal rank (RR):

MRR =
1

n

n
∑

i=1

1

ranki
, (7)

where n is the number of the total prefixes at a given ob-

servation ratio. ranki is the rank of the first correct activity

candidate of a prefix.

Table 2 presents the results of our weighted model in

terms of MRR on Set #1. When at least half frames are

observed, MRR value is 0.9285 and gradually close to 1.

Similar results of Set #2 are presented in Table 3. These

quantitative results conclusively demonstrate that our AAC

model can provide valuable activity recommendations.

5. Conclusions

We present a novel activity auto-completion (AAC)

model for activity prediction in this paper. We explore dis-

criminative patches for video representation and construc-

t prefix-candidate pairs for auto-completion based on such

representation. Then the missing observation of an activi-

ty is automatically completed by the auto-completion mod-

el. Encouraging experimental results have been obtained on

the UT-Interaction dataset. We would like to do further re-

searches about the temporal evolution of mid-level features,

expecting better performance in the early stages of ongoing

activities.
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