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Abstract

Faces in the wild are usually captured with various

poses, illuminations and occlusions, and thus inherently

multimodally distributed in many tasks. We propose a con-

ditional Convolutional Neural Network, named as c-CNN,

to handle multimodal face recognition. Different from tra-

ditional CNN that adopts fixed convolution kernels, samples

in c-CNN are processed with dynamically activated sets of

kernels. In particular, convolution kernels within each layer

are only sparsely activated when a sample is passed through

the network. For a given sample, the activations of convolu-

tion kernels in a certain layer are conditioned on its present

intermediate representation and the activation status in the

lower layers. The activated kernels across layers define

the sample-specific adaptive routes that reveal the distribu-

tion of underlying modalities. Consequently, the proposed

framework does not rely on any prior knowledge of modal-

ities in contrast with most existing methods. To substanti-

ate the generic framework, we introduce a special case of

c-CNN via incorporating the conditional routing of the de-

cision tree, which is evaluated with two problems of multi-

modality – multi-view face identification and occluded face

verification. Extensive experiments demonstrate consistent

improvements over the counterparts unaware of modalities.

1. Introduction

It can be commonly assumed that data may appear in

different views or styles in computer vision. For example,

objects of the same class may have different types in object

recognition, e.g., cars may be of various types and brands;

or in human pose estimation, people with the same pose

may have different identities. Similarly, many face related

tasks deal with images with variations in terms of pose, oc-

clusion and lighting, and thus are inherently multimodal.

Such multimodality leads to a large intra-class variation,

which poses a great challenge to most existing approaches
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Figure 1. Illustration of c-CNN. Each line type stands for one

modality. Each image is passed along with a modality-specific

route indicated by the corresponding colored arrows. Only the ker-

nels along the route are activated and utilized to extract features.

The passing route defines the splitting w.r.t. inherent modalities in

a coarse-to-fine manner: similar modalities, e.g., modality of red

dashed line and blue solid line, may share certain kernels at the

beginning layers.

for face identification or verification.

A general approach to handle multimodal problems is to

find a shared feature space where data of different modali-

ties are directly comparable. Conventional methods, such

as Canonical Correlation Analysis (CCA) [9] and Partial

Least Squares (PLS) [6], aim at learning modality-specific

projection matrices that lead to maximal covariance among

instances of the same class in the shared latent space. Many

works are specifically designed to deal with two-view data.

In particular, data of one view are carefully projected into

the subspace of the other modality. This idea has seen pop-

ular applications in synthesis based approaches in various

problems, such as sketch-photo verification [27], low reso-

lution vs. high resolution face matching [19], etc. Despite

excellent work has been done on synthesis, this may in prin-

ciple be an ill-posed problem that is more difficult than dis-

criminatively comparing images of two different modalities.
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Most of the aforementioned approaches are built on

hand-crafted features. However, it is difficult to manually

design features insensitive to the variations across modal-

ities, since instances of different modalities usually span

different feature spaces. In addition, the generic features,

such as SIFT [20], HOG [3] and LBP [21], are designed

to solve certain problems, and thus may not be optimal

for the specific variations in the given problems. More-

over, some characteristic visual information may be lost in

extraction (especially the quantization) stage, which usu-

ally cannot be recovered in the later stages. Recent deep

learning methods [25, 7, 18], on the other hand, are able

to learn an effective representation from raw-pixel inputs

by directly optimizing with regard to the given objective.

Deep learning also witnessed several attempts in handling

cross-modality variations [31, 32, 12]. In most aforemen-

tioned approaches, the training or even testing instances

come along with pre-defined modality information. For ex-

ample, many approaches for multi-pose face recognition as-

sume that the head pose is known during training. How-

ever, the ground-truth modality information is not usually

available in practice. Moreover, it is also possible that the

modalities of data are vague and difficult to define explicitly

when, e.g., faces appear with multiple variations in poses,

illumination, expression, occlusion, etc.

In this paper, we introduce a generic deep learning

framework, termed as conditional Convolution Neural Net-

work (c-CNN), to address multimodal classification prob-

lems with no prior knowledge on data modality. The pro-

posed network automatically learns the inherent modality

distribution and the feature representation with regard to a

unified objective. In traditional CNN, the convolution ker-

nels for each sample are immutable during training, and all

the input samples are processed with the same kernels if

no modality information is provided. In contrast, we in-

clude conditional computation of the “routes” for samples

to propagate through the network. In particular, for each

sample in one training epoch, the convolution kernels are

sparsely activated within each layer, and the activated ker-

nels across layers define a “route” for the given sample as

shown in Figure 1. The activations of kernels in different

layers are dependent and jointly optimized in a learnt man-

ner. To be more specific, the activation probability of a ker-

nel for a certain sample is conditioned on the correspond-

ing intermediate representation and the routing status in the

lower layers.

Conditional routing brings benefits in two folds: 1) The

large intra-class variations across modalities make it very

difficult to model the complex problem with a unified repre-

sentation. The conditional routing gradually projects data of

different modalities into several subspaces where the intra-

class variations are more easier to be learnt; 2) Conditional

routing activates only a limited number of convolution ker-

nels in a learnt and optimized way. As a result, the com-

putation cost is largely reduced, which makes the network

more scalable. Decision tree inherently embeds the concept

of conditional computation via hierarchical partitions, and

thus is incorporated into CNN to substantiate the proposed

framework. In particular, each tree node learns the interme-

diate representation and finds an optimal way to split sam-

ples at the same time. The proposed method is evaluated in

two recognition problems of multi-modal faces, and proved

to be effective with various comparisons.

2. Related Work

Multimodality spans a wide range of research, and has

been explored in a large number of prior works. Due to the

page limit, we only include works related to cross-modal

face analysis in this section.

Common approaches handle the variations across modal-

ities via mapping samples into a shared latent space. Kim

and Josef [14] introduced a set of locally linear transforma-

tions to address multi-view face recognition. The proposed

method maximizes the separability of classes locally while

promoting consistency between the multiple local represen-

tations of single class objects. Abhishek et al. [23] used

Partial Least Squares (PLS) to linearly map images in dif-

ferent modalities to a common linear subspace in which

they are highly correlated. The proposed method is eval-

uated in cross-view, cross-resolution and sketch vs. pho-

tos face matching problems, and demonstrates consider-

able improvements over conventional methods. Abhishek et

al. [22] proposed the Discriminant Multiple Coupled Latent

Subspace framework to handle cross-view face recognition.

It learns a set of pose-specific projection directions such that

the projected images of the same subject are maximally cor-

related in the target latent space. Kan et al. [13] followed a

similar approach to handle multi-view object recognition.

They jointly learn multiple view-specific linear transforma-

tion in a non-pairwise manner. In these papers, the global

non-linear data structures are assumed to be linearly sep-

arable in the transformed local spaces. Motivated by the

recent success of deep features [15, 18], this paper proposes

to learn the required nonlinear mappings within the latent

local spaces with deep neural network.

Synthesizing faces of a certain modality is also explored

in a statistic manner by many previous studies. Liu et

al. [19] synthesized high-resolution face images from low-

resolution images via integrating a global parametric model

and a local non-parametric model. Wang and Tang [27] pro-

posed a face photo retrieval system, which transforms a face

image into a sketch. The proposed system conducts trans-

formation on shape and texture of face images respectively.

Zhang et al. [29] targeted at face recognition with variations

of illumination and pose. They proposed a texture synthesis

method by employing a generic 3D face shape. Similarly,
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Li et al. [17] transformed faces of multiple poses to their

frontal view via 3D face registration. However, the cross-

modality transformation is complex and difficult to learn

since it usually requires the corresponding samples in the

target modalities to be available for each image, which is not

always the case in practice. Therefore, the cross-modality

synthesis could be an harder problem than the direct dis-

criminative matching of multimodal subjects.

Recent research on deep learning [25, 7, 18] stimulates

many applications of deep models in recognition problems

with multimodality. Zhu et al. [31] transformed faces under

any pose and illumination to their canonical view. The pro-

posed network learns the feature extraction layers and the

reconstruction layer jointly. Kan et al. [12] also addressed

the cross-pose problem with a reconstruction-based deep

model. The model transforms faces of large view gradually

to its frontal view layer by layer. Zhu et al. [32] proposed

a multi-task learning method to optimize the pose estima-

tion and recognition objective in a joint manner. The results

indicate that the pose information provides important clues

in matching faces across views. In most aforementioned

works (with either manual features or deep learning), the

feature extraction or subspace transformation are defined or

learnt specifically for each modality. Under such a frame-

work, the modalities of data have to be pre-defined explic-

itly, or in other words, the modality which the data instance

belongs to has to be known. In contrast, our framework

defines a generic method in handling multimodality prob-

lems without any prior knowledge on modality. Instead, the

modality is learnt together with the feature representation in

a deep model with conditional computation.

The cascade of sample splitting in decision tree embeds

the idea of conditional computation, and is well explored by

many tree-structured classifiers [26, 28, 30, 11]. The fusion

of decision tree (forest) and feature learning is also men-

tioned in a few recent works. Bulo and Kontschieder [1]

aimed at finding the optimal split function at each node of

the tree with MLP. However, the optimal splitting of sam-

ples is learnt in the traditional layer-by-layer manner. In

other words, the optimization of the split network in a node

is isolated from the learning of both its parent node and

the existing nodes in other branches. Fanello et al. [5] at-

tempted to learn the optimal filtering kernels and apply them

to each data point. However, the filters are adopted as the

PCA components learnt from noisy patches of multi-scale.

The optimal filters are actually “chosen” from a random

pool to minimize the energy functions of the nodes. Sim-

ilar to [1], the split function is learnt separately for each

node. Moreover, there is no joint learning of features and

splitting nodes in either approach. In contrast, we jointly

optimize the splitting nodes of the tree and the convolution

kernels of the neural network with regard to a unified ob-

jective function. To the best of our knowledge, this kind of

approach has not been tackled in prior works.

3. Conditional Convolutional Neural Network

In this paper, we assume that the given problem is po-

tentially multimodal, and the modality information is not

known for either training or testing. This is a more general

assumption in practice.

The inherent modality is explored via finding the optimal

set of convolution kernels to be activated. For a given sam-

ple, only the corresponding activated convolution kernels

are utilized to extract features. The activated kernels within

each layer define a passing route for a given sample. Intu-

itively, training samples of the same modality should follow

the same route through the network. Traditional CNN acti-

vates all the kernels for all the training samples. For c-CNN,

the activation of kernels in the layer i is jointly determined

by the present input representation X
(i)
n to the layer i and

the passing route in the lower layers {θ
(i)
n , j = 0, ..., i−1}.

We donote n as the index of input samples, and the cor-

responding forward function can be formulated as follows

X
(i+1)
n,k = g

(i)
n,k · σ(W̃

(i)
k ∗X(i)

n + b(i)), (1)

where X
(i+1)
n,k is the k-th kernel map of the n-th sample

in layer i + 1, and g
(i)
n,k denotes the activation indicator of

the k-th convolution kernel W̃
(i)
k . g

(i)
n,k follows a Bernoulli

distribution, i.e., g
(i)
n,k ∼ B{1, p

(i)
n,k}, where

p
(i)
n,k = Pr(θ

(i)
n,k|X

(i)
n ,θ(i−1)

n , ...,θ(0)
n ), (2)

and θ
(i)
n,k is the k-th element in θ

(i)
n . It should be noted that

c-CNN aims at exploring the underlying modality distribu-

tion of data and the corresponding feature representation for

each modality in a unified framework. In particular, the fea-

ture extraction parameters W̃
(i)
k and b(i) and the kernel ac-

tivation parameter θ
(i)
n are learnt with regard to a unified

objective function in a joint manner.

The conditional activation of convolution kernels can be

defined in various ways. Decision tree embeds the concept

of conditional computation in the hierarchy of simple de-

cisions and has seen plentiful applications in various fields.

The leaf nodes in one layer are mutually exclusive, and each

sample can be passed only to one leaf node. The choice

of leaf nodes for certain input is conditioned on the split

function of its parent nodes and the existing route in the

above layers. The aforementioned characteristics make the

decision tree a good option to realize c-CNN. In this paper,

the conditional computation of decision tree is incorporated

into CNN as a specific instance of c-CNN. In particular, the

tree nodes split the convolution kernels in each layer into

several mutually exclusive kernel sets. However, there is
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Figure 2. A specific example of c-CNN with Modality-aware Projection Tree (MPT). Each tree node computes the intermediate repre-

sentation with CNN and the partition of samples in the projected latent space. With the help of MPT, samples of different modalities are

gradually separated layer by layer and finally passed into the different leaf nodes. Both the features and the split functions are jointly

optimized w.r.t. one unified loss function L.

no such a hard segmentation constraint for generic c-CNN.

The assignments of convolution kernels are more flexible

for a given input sample in generic c-CNN. Therefore, this

decision tree based approach can be regarded as a simpli-

fied case. The proposed network includes two components

– Modality-aware Projection Tree and Convolutional Neu-

ral Network Branch. Detailed explanations are included for

both components in the following subsections.

3.1. Modalityaware Projection Tree

Modality-aware Projection Tree (MPT) aims at defining

a hard partition in the sample space such that samples of the

same modality fall into the same leaf node. The modality is

explored via learning of the split function for each node of

the tree. To be more specific, we intend to learn the splitting

of samples in an unsupervised manner such that the sample

space is segmented with regard to the inherent modalities as

illustrated in Figure 2.

Let’s denote X and Y as the input and output space for

a given classification problem. To begin with, we define a

fully-grown decision tree of depth D. The node of the tree

is denoted as V (i,j), where i is the index of the layer in the

tree and j is the index of the leaf node in the i-th layer.

Correspondingly, X
(i,j)
n is the intermediate representation

of the sample xn ∈ X .

Within the node V (i,j), the passing route of a sample

is determined by a split function ϕ : S → {SL,SR}, if

we denote the whole input set for this node as S , and the

subsets of two child nodes as SL and SR respectively. The

split function can be formulated as

x =

{
SL, ϕ(x) ≥ 0

SR, ϕ(x) < 0
(3)

In this paper, the MPT is constructed in a similar way as

Random Projection Tree [4]. The split function is defined

with a projection vector P (i,j) and a bias τ (i,j) as follows,

ϕ(x) = x
T · P (i,j) + τ (i,j). (4)

An unsupervised constraint is imposed for each node such

that the distance between the centroids of two sub-clusters

is maximized. The corresponding node-wise loss is formu-

lated as

L =

1
N

∑
x∈S

ϕ(x)2

( 1
NL

∑
x∈SL

ϕ(x)− 1
NR

∑
x∈SR

ϕ(x))2
, (5)

where NL and NR are the numbers of samples falling into

the left and the right child node respectively, and N = NL+
NR.

3.2. Convolutional Neural Branch

Apart from the splitting of the input samples, each tree

node also learns an intermediate representation with regard

to the given objective directly. In particular, a tree node

V (i,j) contains a standard convolutional layer C(i,j) with

max-pooling.

When a sample is given at the root node of the tree, it

is passed forward along a specific path. Along that path,
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the given sample is processed through a complete Convo-

lutional Neural Network, named as Convolutional Neural

Branch (CNB), at the same time. MPT is prone to constrain

samples with the same inherent modality to follow the same

path such that each CNB learns a modality-specific map-

ping to the shared latent feature space. Different from con-

ventional approaches for learning modality-specific map-

ping, CNBs of different modalities can share certain inter-

mediate nodes as in Figure 2. Our motivation is that samples

of similar modalities should be processed more similarly

than those of distant modalities.

We denote W
(i,j) and b(i,j) to be the weight and bias of

the convolutional layer for the node V (i,j). The correspond-

ing forward function is defined as

˜
X

(i,j)
n = σ(W (i,j) ∗X(i,j)

n + b(i,j)), (6)

where ∗ represents the convolution operator.

The hierarchical splitting of decision tree inherently

takes into account the routing status in the previous layers.

Accordingly, the conditional forward function in Eqn.(1) is

transformed as follows,

{
X

(i+1,2j)
n = ✶(ϕ(X̃(i,j)

n ) ≥ 0) · X̃(i,j)
n

X
(i+1,2j+1)
n = ✶(ϕ(X̃(i,j)

n ) < 0) · X̃(i,j)
n

, (7)

where X
(i+1,2j)
n and X

(i+1,2j+1)
n are the input representa-

tions for the two child nodes of V (i,j) respectively, and ✶

represents an indicator function.

Network Configuration. Throughout the whole paper,

we adopt the same network structure as shown in Figure 2.

The depth of the decision tree is set as 3. Correspondingly,

each CNB is a three-layered neural network – 20 convolu-

tion kernels in the first layer, 20 in the second and 40 in

the third. The kernel size is set as 5×5 for the 1st and 2nd

layer, and 3×3 for the last layer, respectively. The non-

linearity function σ(·) in Eqn.(6) is defined as ReLu for

all the convolution layers. Each convolutional layer is fol-

lowed by a max-pooling operator with pooling size 2×2 and

pooling stride 2×2. To regulate over-fitting, we adopt mo-

mentum, ℓ-2 norm regularization and dropout in the learn-

ing process. The momentum is set as 0.5, and linearly in-

creased to 0.9 within 50 iterations. Dropout is adopted at

each layer, and the dropout rate is 0.5 for multi-PIE and 0.2

for Occluded LFW respectively. We adopt a smaller drop

rate for Occluded LFW since the number of training sam-

ples is much larger than that of multi-PIE, and the network

suffers less from over-fitting. All the parameters (includ-

ing those for the tree partitioning) are initialized by uniform

sampling within the range [-0.1, 0.1]. The output feature

maps of each neural branch are forwarded to a shared fully-

connected layer L with 50 hidden units. The output of this

layer is the final representation of input faces. An n-class

softmax layer is then appended on the top for the given clas-

sification problem.

Computation Analysis. As the depth of our decision tree

is fixed as 3, we have 4 leaf nodes in the final layer. Com-

pared with the conventional CNN of the same structure as

one CNB in Figure 2, the proposed network appears to con-

tain more parameters. However, each input sample is only

passed through one possible CNB. Namely, the computa-

tion complexity for each input sample is the same as the

conventional single-model CNN. For fair comparisons, we

increase the width of the single-model CNN so that it can

have the same number of parameters as ours C the baseline

CNN has 20 filters in the 1st layer, 40 in the 2nd and 160 in

the 3rd. The runtime complexity of the i-th layer in c-CNN

is N(i−1)

2i−2 · N(i)

2i−1 · O(conv.), and the complexty of the CNN

baseline is N (i−1) ·N (i) ·O(conv.), where O(conv.) is the

complexity of the convolution operation of one kernel over

one feature map, and N (i) is the number of kernels in layer

i.

3.3. Joint Learning of MPT and CNN Branch

Different from prior works that learn features node-

bynode in a decision tree [5, 1], the feature representation

and the split function of all nodes are jointly learnt with re-

gard to a unified objective as

L =
∑

n

J (xn, yn) + β
∑

i

∑

j

L(i,j), (8)

where the first term represents the softmax loss for the

nclass classification problem, and the second term is the

node-wise loss defined in Eqn.(5), and β is a scaling fac-

tor.

The network is optimized via back propagation with

Stochastic Gradient Descent method. For a node V (i,j),

the network needs to update 4 parameters – P
(i,j), τ (i,j),

W
(i,j) and b(i,j). The gradient w.r.t. each parameter is

given in details in the following. It is noted that the opti-

mization is conducted in a batch-wise manner. To be more

specific, we use the partition parameters P (i,j) and tau(i,j)

learnt with the previous data batch to split samples in the

present batch. In this way, the dynamic routing of samples

is determined before updating the parameters in the present

batch iteration. To compute the gradient w.r.t. W
(i,j) and

b(i,j), we need to derive the gradient w.r.t. X̃
(i,j)
n first,

∂L

∂X̃
(i,j)
n

=
∂L

∂X̃
(i+1,2j)
n

· ✶(ϕ(X̃(i,j)
n ) ≥ 0)+

∂L

∂X̃
(i+1,2j+1)
n

· ✶(ϕ(X̃(i,j)
n ) < 0) + β

∂L(i,j)

∂X̃
(i,j)
n

.

(9)
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Based on Eqn.(9), ∂L

∂X
(i,j)
n

, ∂L

∂W
(i,j)
n

and ∂L

∂b
(i,j)
n

can be easily

derived similarly as standard CNN with the chain rule.

The splitting parameters can be updated as follows,

∂L

∂P (i,j)
=

∂L

∂X
(i+1,·)
n

·
∂X

(i+1,·)
n

∂P (i,j)
+ β

∂L(i,j)

∂P (i,j)
, (10)

∂L

∂τ (i,j)
=

∂L

∂X
(i+1,·)
n

·
∂X

(i+1,·)
n

∂τ (i,j)
+ β

∂L(i,j)

∂τ (i,j)
. (11)

Since
∂X(i+1,·)

n

∂P (i,j) and frac∂X
(i+1,·)
n ∂τ (i,j) are all zeros, the

gradients are actually determined by the tree node loss

L(i,j), i.e.,

∂L

∂P (i,j)
= β

∂L(i,j)

∂P (i,j)
, (12)

∂L

∂τ (i,j)
= β

∂L(i,j)

∂τ (i,j)
. (13)

To simplify the problem, τ can be set as the mean value of

samples after projections, i.e., ϕ(x) = x
T ·P (i,j), such that

there are only three parameters to optimize.

4. Experiments

Our method is evaluated with two problems: 1) mul-

tiview face identification on Multi-PIE dataset [8] and 2)

occluded face verification on Labeled face in the Wild

(LFW) [10] with synthetic occlusions. The proposed c-

CNN is built on a basic assumption that the modality infor-

mation is unknown for both training and testing. Therefore,

we do not include the comparison with some existing meth-

ods using the specific modality information of each sample.

Experimental results are analyzed in details in the following

subsections.

4.1. Experiment Settings

On both datasets, we use the same network configura-

tion as shown in Sec.3.2. The implementation of c-CNN is

based on Theano1 and Pylearn22. The supervised cost J (·)
in both experiments is the negative likelihood of an n class

softmax function, and thus n is set as 150 and 2 for multi-

PIE and occluded LFW respectively. With more classes,

the initial cost is much larger in scale. To balance the rel-

ative effect of the supervised cost and tree node cost, β is

set to 5 and 1 accordingly. As most CNNs are optimized

with batch-based SGD, the tree node loss in Eqn.(5) is only

defined in batches. Thus, larger batch size can lead to bet-

ter results. In this paper, all the experiments are conducted

with GTX TiTan GPU with 3GB memory. Due to the mem-

ory limit, we set the batch size as 1,000 in the following

experiments.

1http://deeplearning.net/software/theano/
2http://deeplearning.net/software/pylearn2/

4.2. MultiView Face Identification

We evaluate the performance of c-CNN in multi-view

face identification on Multi-PIE. It contains images of 337

identities with 20 illumination levels and 15 poses rang-

ing from −90◦ to +90◦. The database is arranged in four

sessions, and we evaluate our method on Session 1 only,

which includes faces of 250 subjects. Previous experiments

reported on MultiPIE are usually conducted on faces with

small poses (−45◦ to +45◦). However, our method is tes-

tified on faces under all poses. We follow a similar eval-

uation protocol as in [31]. For training, we utilize all the

images (15 poses, 20 illumination levels) of the first 150

identities. For testing, one frontal image with neutral illu-

mination marked as ID 07 is chosen as the gallery image for

each of the remaining 100 subjects. The remaining images

are used as probes. The average precision is reported with

regard to pose in Table 1 for comparison.

Four methods are included for comparison in this sub-

section. Fisher Vector [24] is built on hand-crafted features,

i.e., SIFT and LBP in this experiment. Both FIP [31] and

CNN 40 are deep learning based methods. We include the

results of FIP with two network configurations. FIP 20 has

exactly the same number of convolution kernels as one CNB

in c-CNN. FIP 40 is included to show the improvements of

c-CNN over the network with the same total number of pa-

rameters. In particular, FIP 40 has 20 kernels in layer 1, 40

in layer 2 and 160 in layer 3. FIP is a reconstruction based

approach, and thus requires the frontal view and neural illu-

mination for each image during training. In this experiment,

we apply PCA on features of the last convolution layer such

that the final dimension is the same as c-CNN. CNN 40 is a

single CNN network with the same configuration of con-

volutional layers as FIP 40. Note that although our net-

work has approximately the same number of parameters,

the computation cost is much lower as analyzed in Sec. 3.2.

Clearly, c-CNN achieves the best performance, especially

for large poses, such as ±90◦ and ±90◦. The improve-

ments can be up to nearly 10%. Different from FIP which

requires frontal images for each subject, we do not utilize

any pose information and our method still reaches higher

accuracy. Moreover, c-CNN outperforms both CNN 40 and

FIP 40 while maintaining a much lower computation cost.

Moreover, we include two extra baselines – Cluster CNN

and Tree CNN. Cluster CNN firstly clusters the samples

based on LBP features and trains a separate CNN for each

cluster. Tree CNN follows the c-CNN structure, but opti-

mizes the branching parameters w.r.t. the node-wise loss

first, and then learns the parameters of CNN while fixing

the branching parameters. The improvement brought by c-

CNN demonstrates the effectiveness of joint optimization

over filters and tree branching. In this subsection, we also

explore the possibility of extending tree to forest as shown

by c-CNN Forest. For this approach, we include 3 trees with
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Figure 3. Partitioned samples of multi-PIE in leaf nodes. The blue boxes represent the tree nodes in the second layer, and the red ones stand

for those in the third layer. The node notations are given inside the corresponding boxes. Clearly, samples of similar modalities (poses) are

prone to be passed into the same nodes.

Avg. ±90
◦ ±75

◦ ±60
◦ ±45

◦ ±30
◦ ±15

◦ pose

Fisher Vector [24] 66.60 24.53 45.51 68.71 80.33 87.21 93.30 ×
FIP 20 [31] 67.87 34.13 47.32 61.64 78.89 89.23 95.88

√

FIP 40 [31] 70.90 31.37 49.10 69.75 85.54 92.98 96.30
√

CNN 40 70.81 32.08 47.79 69.48 85.99 93.04 96.60 ×
Cluster CNN 69.87 36.80 47.36 68.20 82.43 90.67 93.75 ×

Tree CNN 71.16 39.90 50.29 67.21 83.63 91.31 94.66 ×
c-CNN 73.54 41.71 55.64 70.49 85.09 92.66 95.64 ×

c-CNN Forest 76.89 47.26 60.66 74.38 89.02 94.05 96.97 ×
Table 1. Comparisons of precision (%) with some prior methods on multi-PIE for different poses. The last column indicates the dependency

on head pose information.

Figure 5. Examples in Occluded LFW. Six categories of occlu-

sions are synthesized for each image, including hair, hand, mask,

mustache, painting and glass.

β = 5, 7 and 10 respectively. In c-CNN Forest, we take the

average of the cosine distance matrices of the derived cor-

responding feature vectors. As can be observed in the table,

the performance is further improved by more than 3%. Fur-

ther randomization on parameters and bagging in the forest

are expected to produce better results.

In addition, we illustrate some of the samples in each leaf

node in Figure 3. Without any human intervention, the pro-

posed method automatically discovers the inherent modal-

ity of the data (pose in this experiment) and clusters sam-

ples with similar poses into corresponding leaf nodes. Since

the intermediate representation and splitting projections are

jointly optimized w.r.t. Eqn.(5), the acquired clusters rarely

contain noisy samples.

4.3. Face Verification with Various Occlusions

We evaluate c-CNN with occluded face verification

on a synthesized dataset from Labeled Face in the Wild

(LFW) [10] occluded LFW. LFW is a standard database

collected to evaluate benchmark algorithms for face ver-

ification. It contains 13,000 images of 5,749 individu-

als downloaded from the Internet. We follow the image-

restricted protocol of LFW. All the algorithms are evaluated

with 6,000 pre-defined image pairs. The data are divided

into 10 mutually excluded folds. In each experiment, data

of only one fold are used for testing, and the remaining 9

folds are used for training.

In occluded LFW, each face image of LFW is synthe-

sized with 6 kinds of occlusions, including hair, hand, mask,

mustache, painting and glass. Each category includes 16

images occluded by the corresponding object. We crop the

occlusion objects from a large collection of images from the

Internet. Afterward the occlusions of objects are appended

on the face images with reference to the detected landmarks.

Some examples of the occluded faces are illustrated in Fig-

ure 5. Due to the large size of the dataset, we use a subset

to evaluate the proposed network. In particular, for each

image within a pair in standard protocol, we randomly sam-

ple 8 occluded images. The resulting two groups of images
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Figure 4. Partitioned samples of occluded LFW in leaf nodes. The blue boxes represent the tree nodes in the second layer, and the red ones

stand for those in the third layer. Clearly, samples of similar modalities (occlusion categories and positions) are prone to be passed into the

same nodes.

1 2 3 4 5 6 7 8 9 10 Avg.

HDLBP [2] 69.77 68.79 66.39 69.09 67.45 66.89 67.70 67.26 66.71 69.85 67.99

Fisher Vector [24] 70.83 72.90 73.21 72.83 71.80 73.44 73.33 72.29 72.96 73.29 72.68

PEM [16] 62.87 65.08 65.44 63.17 62.70 65.50 63.08 61.58 64.46 63.81 63.76

CNN 20 74.40 73.12 71.69 72.94 71.38 74.65 72.63 74.63 71.27 72.40 72.91

CNN 40 75.40 73.83 74.12 73.30 72.74 76.20 72.36 76.20 71.43 73.50 73.90

c-CNN 77.63 75.09 75.00 75.03 73.69 76.55 76.16 76.85 74.80 74.43 75.52

c-CNN Forest 77.65 75.16 75.00 76.17 73.71 77.67 77.27 77.81 76.10 75.83 76.24

Table 2. Comparisons of precision (%) with some prior methods on occluded LFW for ten folds.

are then randomly combined to form 8 occluded pairs. This

procedure is conducted for each fold.

Five baselines are included for comparison in this set

of experiments. The results are reported on each fold in

terms of the average precision in Table 2. HDLBP [2],

Fisher Vector [24] and PEM [16] are implemented with

hand-crafted features. The aforementioned methods follow

the same training protocols (with no outside data) for fair

comparison. We also include the single CNN based meth-

ods with the same network structure as one neural branch,

i.e., CNN 20. As shown in the table, c-CNN demonstrates

consistent improvements over CNN 20 and CNN 40, up

to 3.5%. The significant improvements over CNN 20 can

better demonstrate the superiority of the proposed method,

since the two methods are of comparable computation cost.

The improvements brought by c-CNN are further analyzed

by showing some of the examples of corrected image pairs

in Figure 6. Compared with modality-unaware CNN, c-

CNN is more capable of modeling the intra-class similar-

ities across different modalities. The synthesized data are

very challenging due to the large occlusion area on the

faces, thus most manually designed features result in low

precision. By including deep feature learning, c-CNN out-

performs HDLBP, Fisher Vector and PEM on all the folds.

As for the extension to the forest structure, we include 3

trees with β = 0.7, 1.0 and 1.2 respectively. The final score

for each sample is computed as the maximum among the

scores of each tree. The resulting performance is further

improved by around 0.7%.

Some of the examples in each leaf node are illustrated

in Figure 4. With the exactly same setting as in multi-view

face identification experiment, c-CNN discovers the inher-

Figure 6. Exemplars of the corrected image pairs by c-CNN.

ent modality of input samples accordingly. It shows that

the modality information is learnt as the occlusion type and

position in this experiment.

5. Conclusions and Future Work

We proposed a conditional Convolutional Neural Net-

work to address cross-modality face recognition. By in-

troducing conditional routing, c-CNN explores the hidden

modalities of samples and learns the modality-specific fea-

tures while maintaining a low computation cost. Both the

conditional routing and the feature extraction are learnt op-

timally with the direct guidance of a unified loss. We eval-

uate c-CNN with decision tree on two cross-modality clas-

sification problems. In both experiments, c-CNN demon-

strates consistent improvements. As a generic framework in

handling cross-modalities, c-CNN can be easily applied in

various research fields and we are expecting similar results

as those in this paper. Moreover, the decision tree based

approach is a simplified case of c-CNN, which divides the

convolutional kernels into mutually exclusive sets. In fu-

ture, we shall pursue a more generic c-CNN that enables

flexible (soft) assignments of convolution kernels in each

layer.
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