
Discovering the Spatial Extent of Relative Attributes

Fanyi Xiao and Yong Jae Lee

University of California, Davis

{fanyix,yjlee}@cs.ucdavis.edu

Abstract

We present a weakly-supervised approach that discovers

the spatial extent of relative attributes, given only pairs of

ordered images. In contrast to traditional approaches that

use global appearance features or rely on keypoint detec-

tors, our goal is to automatically discover the image re-

gions that are relevant to the attribute, even when the at-

tribute’s appearance changes drastically across its attribute

spectrum. To accomplish this, we first develop a novel for-

mulation that combines a detector with local smoothness

to discover a set of coherent visual chains across the im-

age collection. We then introduce an efficient way to gen-

erate additional chains anchored on the initial discovered

ones. Finally, we automatically identify the most relevant

visual chains, and create an ensemble image representation

to model the attribute. Through extensive experiments, we

demonstrate our method’s promise relative to several base-

lines in modeling relative attributes.

1. Introduction

Visual attributes are human-nameable object properties

that serve as an intermediate representation between low-

level image features and high-level objects or scenes [23,

10, 21, 9, 30, 32, 33, 17]. They yield various useful applica-

tions including describing an unfamiliar object, retrieving

images based on mid-level properties, “zero-shot” learn-

ing [29, 23, 30], and human-computer interaction [4, 5].

Researchers have developed systems that model binary at-

tributes [23, 10, 21]—a property’s presence/absence (e.g.,

“is furry/not furry”)—and relative attributes [30, 35, 34]—a

property’s relative strength (e.g., “furrier than”).

While most existing work use global image represen-

tations to model attributes (e.g., [23, 30]), recent work

demonstrates the effectiveness of using localized part-based

representations [3, 34, 43]. They show that attributes—be it

global (“is male”) or local (“smiling”)—can be more accu-

rately learned by first bringing the underlying object-parts

into correspondence, and then modeling the attributes con-

ditioned on those object-parts. For example, the attribute

“wears glasses” can be more easily learned when people’s

faces are in correspondence. To compute such correspon-

strong weak

,

Attribute:  

,,

Figure 1. (top) Given pairs of images, each ordered accord-

ing to relative attribute strength (e.g., “higher/lower-at-the-heel”),

(bottom) our approach automatically discovers the attribute’s spa-

tial extent in each image, and learns a ranking function that orders

the image collection according to predicted attribute strength.

dences, pre-trained part detectors are used (e.g., faces [34]

and people [3, 43]). However, because the part detectors

are trained independently of the attribute, the learned parts

may not necessarily be useful for modeling the desired at-

tribute. Furthermore, some objects do not naturally have

well-defined parts, which means modeling the part-based

detector itself becomes a challenge.

The method in [7] addresses these issues by discovering

useful, localized attributes. A drawback is that the system

requires a human-in-the-loop to verify whether each discov-

ered attribute is meaningful, limiting its scalability. More

importantly, the system is restricted to modeling binary at-

tributes; however, relative attributes often describe object

properties better than binary ones [30], especially if the

property exhibits large appearance variations (see Fig. 1).

So, how can we develop robust visual representations for

relative attributes, without expensive and potentially unin-

formative pre-trained part detectors or humans-in-the-loop?

To do so, we will need to automatically identify the vi-

sual patterns in each image whose appearance correlates

with (i.e., changes as a function of) attribute strength. This

is a challenging problem: as the strength of an attribute

changes, the object’s appearance can change drastically. For

example, if the attribute describes how “high-heeled” a shoe

is, then pumps and flats would be on opposite ends of the

spectrum, and their heels would look completely different

(see Fig. 1). Thus, identifying the visual patterns that char-
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acterize the attribute is very difficult without a priori knowl-

edge of what a heel is. Moreover, it is even more difficult to

do so given only samples of pairwise relative comparisons,

which is the typical mode of relative attribute annotation.

In this work, we propose a method that automatically

discovers the spatial extent of relative attributes in images

across varying attribute strengths. The main idea is to lever-

age the fact that the visual concept underlying the attribute

undergos a gradual change in appearance across the at-

tribute spectrum. In this way, we propose to discover a set of

local, transitive connections (“visual chains”) that establish

correspondences between the same object-part, even when

its appearance changes drastically over long ranges. Given

the candidate set of visual chains, we then automatically se-

lect those that together best model the changing appearance

of the attribute across the attribute spectrum. Importantly,

by combining a subset of the most-informative discovered

visual chains, our approach aims to discover the full spa-

tial extent of the attribute, whether it be concentrated on a

particular object-part or spread across a larger spatial area.

Contributions. To our knowledge, no prior work discov-

ers the spatial extent of attributes, given weakly-supervised

pairwise relative attribute annotations. Towards this goal,

important novel components include: (1) a new formulation

for discovery that uses both a detector term and a smooth-

ness term to discover a set of coherent visual chains, (2) a

simple but effective way of quickly generating new visual

chains anchored on the existing discovered ones, and (3) a

method to rank and combine a subset of the visual chains

that together best capture the attribute. We apply our ap-

proach to three datasets of faces and shoes, and outperform

state-of-the-art methods that use global image features or

require stronger supervision. Furthermore, we demonstrate

an application of our approach, in which we can edit an

object’s appearance conditioned on the discovered spatial

extent of the attribute.

2. Related Work

Visual attributes. Most existing work use global image

representations to model attributes (e.g., [23, 30]). Others

have demonstrated the effectiveness of localized represen-

tations. For example, the attribute “mouth open” can be

more easily learned when people’s mouths are localized.

Early work showed how to localize simple color and shape

attributes like “red” and “round” [12]. Recent approaches

rely on pre-trained face/body landmark or “poselet” detec-

tors [20, 21, 3, 16, 43], crowd-sourcing [7], or assume that

the images are well-aligned and object/scene-centric [2, 41],

which either restricts their usage to specific domains or lim-

its their scalability. Unlike these methods that try to local-

ize binary attributes, we instead aim to discover the spatial

extent of relative attributes, while forgoing any pre-trained

detector, crowd-sourcing, or object-centric assumptions.

While the “relative parts” approach of [34] shares our

goal of localizing relative attributes, it uses strongly-

supervised pre-trained facial landmark detectors, and is thus

limited to modeling only facial attributes. Importantly,

because the detectors are trained independently of the at-

tribute, the detected landmarks may not necessarily be op-

timal for modeling the desired attribute. In contrast, our

approach aims to directly localize the attribute without rely-

ing on pre-trained detectors, and thus can be used to model

attributes for any object.

Visual discovery. Existing approaches discover object

categories [37, 8, 13, 31, 28], low-level foreground fea-

tures [26], or mid-level visual elements [36, 6].

Recent work shows how to discover visual elements

whose appearance is correlated with time or space, given

images that are time-/geo-stamped [25]. Algorithmically,

this is the closest work to ours. However, our work is dif-

ferent in three important ways. First, the goal is differ-

ent: we aim to discover visual chains whose appearance

is correlated with attribute strength. Second, the form of

supervision is different: we are given pairs of images that

are ordered according to their relative attribute strength, so

unlike [25], we must infer a global ordering of the im-

ages. Finally, we introduce a novel formulation and effi-

cient inference procedure that exploits the local smoothness

of the varying appearance of the attribute, which we show

in Sec. 4.3 leads to more coherent discoveries.

3. Approach

Given an image collection S={I1, . . . , IN} with pair-

wise ordered and unordered image-level relative compar-

isons of an attribute (i.e., in the form of Ω(Ii)>Ω(Ij) and

Ω(Ii)≈Ω(Ij), where i, j∈{1, . . . , N} and Ω(Ii) is Ii’s at-

tribute strength), our goal is to discover the spatial extent of

the attribute in each image and learn a ranking function that

predicts the attribute strength for any new image.

This is a challenging problem for two main reasons: (1)

we are not provided with any localized examples of the at-

tribute so we must automatically discover the relevant re-

gions in each image that correspond to it, and (2) the ap-

pearance of the attribute can change drastically over the at-

tribute spectrum. To address these challenges, we exploit

the fact that for many attributes, the appearance will change

gradually across the attribute spectrum. To this end, we first

discover a diverse set of candidate visual chains, each link-

ing the patches (one from each image) whose appearance

changes smoothly across the attribute spectrum. We then

select among them the most relevant ones that agree with

the provided relative attribute annotations.

There are three main steps to our approach: (1) initial-

izing a candidate set of visual chains; (2) iteratively grow-

ing each visual chain along the attribute spectrum; and (3)

ranking the chains according to their relevance to the target
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attribute to create an ensemble image representation. In the

following, we describe each of these steps in turn.

3.1. Initializing candidate visual chains

A visual attribute can potentially exhibit large appear-

ance variations across the attribute spectrum. Take the high-

at-the-heel attribute as an example: high-heeled shoes have

strong vertical gradients while flat-heeled shoes have strong

horizontal gradients. However, the attribute’s appearance

will be quite similar in any local region of the attribute spec-

trum. Therefore, to capture the attribute across its entire

spectrum, we sort the image collection based on (predicted)

attribute strength and generate candidate visual chains via

iterative refinement; i.e., we start with short but visually ho-

mogeneous chains of image regions in a local region of the

attribute spectrum, and smoothly grow them out to cover the

entire spectrum. We generate multiple chains because (1)

appearance similarity does not guarantee relevance to the

attribute (e.g., a chain of blank white patches satisfies this

property perfectly but provides no information about the at-

tribute), and (2) some attributes are better described with

multiple image regions (e.g., the attribute “eyes open” may

better be described with two patches, one on each eye). We

will describe how to select the relevant chains in Sec. 3.3.

We start by first sorting the images in S in descend-

ing order of predicted attribute strength—with Ĩ1 as the

strongest image and ĨN as the weakest—using a linear

SVM-ranker [15] trained with global image features, as

in [30]. To initialize a single chain, we take the top Ninit

images and select a set of patches (one from each image)

whose appearance varies smoothly with its neighbors in the

chain, by minimizing the following objective function:

min
P

C(P ) =

Ninit∑

i=2

||φ(Pi)− φ(Pi−1)||2, (1)

where φ(Pi) is the appearance feature of patch Pi in Ĩi,
and P = {P1, . . . , PNinit

} is the set of patches in a chain.

Candidate patches for each image are densely sampled at

multiple scales. This objective enforces local smoothness:

the appearances of the patches in the images with neighbor-

ing indices should vary smoothly within a chain. Given the

objective’s chain structure, we can efficiently find its global

optimum using Dynamic Programming (DP).

In the backtracking stage of DP, we obtain a large num-

ber of K-best solutions. We then perform a chain-level non-

maximum-suppression (NMS) to remove redundant chains

to retain a set of Kinit diverse candidate chains. For NMS,

we measure the distance between two chains as the sum

of intersection-over-union scores for every pair of patches

from the same image. This ensures that different initial

chains not only contain different patches from any particu-

lar image, but also together spatially cover as much of each

image as possible (see Fig. 2).

Init Kinit

...

Init 1

Figure 2. Our initialization consists of a set of diverse visual

chains, each varying smoothly in appearance.

3.2. Iteratively growing each visual chain

The initial set of Kinit chains are visually homogeneous

but cover only a tiny fraction of the attribute spectrum. We

next iteratively grow each chain to cover the entire attribute

spectrum by training a model that adapts to the attribute’s

smoothly changing appearance. This idea is related to self-

paced learning in the machine learning literature [22, 1],

which has been applied to various computer vision tasks

such as object discovery and tracking [25, 27, 38].

Specifically, for each chain, we iteratively train a detec-

tor and in each iteration use it to grow the chain while simul-

taneously refining it. To grow the chain, we again minimize

Eqn. 1 but now with an additional term:

min
P

C(P ) =

t∗Niter∑

i=2

||φ(Pi)− φ(Pi−1)||2−λ

t∗Niter∑

i=1

w
T
t φ(Pi),

(2)
where wt is a linear SVM detector learned from the

patches in the chain from the (t−1)-th iteration1, P =
{P1, . . . , Pt∗Niter

} is the set of patches in a chain, and Niter

is the number of images considered in each iteration (ex-

plained in detail below). As before, the first term enforces

local smoothness. The second term is the detection term:

since the ordering of the images in the chain is only a rough

estimate and thus possibly noisy (recall we computed the or-

dering using an SVM-ranker trained with global image fea-

tures), wt prevents the inference from drifting in the cases

where local smoothness does not strictly hold. λ is a con-

stant that trades-off the two terms. We use the same DP

inference procedure used to optimize Eqn. 1.

Once P is found, we train a new detector with all of its

patches as positive instances. The negative instances con-

sist of randomly sampled patches whose intersection-over-

union scores are lower than 0.3 with any of the patches in P .

We use this new detector wt in the next growing iteration.

We repeat the above procedure T times to cover the entire

attribute spectrum. Fig. 3 (a) illustrates the process of iter-

ative chain growing for the “high-at-the-heel” and “smile”

attributes. By iteratively growing the chain, we are able

to coherently connect the attribute despite large appearance

variations across its spectrum. There are two important con-

siderations to make when growing the chain:
1For t = 1, we use the initial patches found in Sec. 3.1.
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weak

Predicted attribute strength

strong

(a) Discovered 

visual chain ... ... ... ... ... ... ... ...

t=3t=2t=1

(b) Re-ranked 

visual chain
... ... ... ... ... ... ... ...

(a) Discovered 

visual chain ... ... ... ... ... ... ... ...

t=3t=2t=1

(b) Re-ranked 

visual chain
... ... ... ... ... ... ... ...

Figure 3. Top: “high-at-the-heel”; bottom: “smile”. (a) We iteratively grow candidate visual chains along the direction of decreasing

attribute strength, as predicted by the ranker trained with global image features [30]. (b) Once we obtain an accurate alignment of the

attribute across the images, we can train a new ranker conditioned on the discovered patches to obtain a more accurate image ordering.

Multimodality of the image dataset. Not all images will

exhibit the attribute due to pose/viewpoint changes or occlu-

sion. We therefore need a mechanism to rule out such irrel-

evant images. For this, we use the detector wt. Specifically,

we divide the image set S—now ordered in decreasing at-

tribute strength as {Ĩ1, . . . , ĨN}—into T process sets, each

with size N/T . In the t-th iteration, we fire the detector wt

trained from the (t−1)-th iteration across each image in the

t-th process set in a sliding window fashion. We then add

the Niter images with the highest maximum patch detection

scores for chain growing in the next iteration.

Overfitting of the detector. The detector can overfit to

the existing chain during iterative growing, which means

that mistakes in the chain may not be fixed. To combat this,

we adopt the cross-validation scheme introduced in [36].

Specifically, we split our image collection S into S1 and S2,

and in each iteration, we run the above procedure first on S1,

and then take the resulting detector and use it to mine the

chain in S2. This produces more coherent chains, and also

cleans up any errors introduced in either previous iterations

or during chain initialization.

3.3. Ranking and creating a chain ensemble

We now have a set of Kinit chains, each pertaining to

a unique visual concept and each covering the entire range

of the attribute spectrum. However, some image regions

that capture the attribute could have still been missed be-

cause they are not easily detectable on their own (e.g., fore-

head region for “visible forehead”). Thus, we next describe

a simple and efficient way to further diversify the pool of

chains to increase the chance that such regions are selected.

We then describe how to select the most relevant chains to

create an ensemble that together best models the attribute.

Generating new chains anchored on existing ones.

Since the patches in a chain capture the same visual con-

cept across the attribute spectrum, we can use them as an-

chors to generate new chains by perturbing the patches

locally in each image with the same perturbation pa-

rameters (∆x,∆y,∆s). More specifically, perturbing a

patch centered at (x, y) with size (w, h) using parameter

(∆x,∆y,∆s) leads to a new patch at location (x+∆xw, y+
∆yh), with size (w × ∆s, h × ∆s) (see Fig. 4). Note that

we get the alignment for the patches in the newly generated

chains for free, as they are anchored on an existing chain.

We generate Kpert chains for each of the Kinit chains with

∆x and ∆y each sampled from [−δxy, δxy] and ∆s sampled

from a discrete set χ, which results in Kpert×Kinit chains

in total. To detect the visual concept corresponding to a

perturbed chain on any new unseen image, we take the de-

tector of the anchoring chain and perturb its detection using

the corresponding perturbation parameters.

Creating a chain ensemble. Different chains character-

ize different visual concepts. Not all of them are relevant

to the attribute of interest and some are noisy. To select the

relevant chains, we rank all the chains according to their

relatedness with the target attribute using the image-level

relative attribute annotations. For this, we split the origi-

nal training data into two subsets: one for training and the

other for validation. For each of the Kpert×Kinit candi-

date chains, we train a linear SVM detector and linear SVM

ranker [15, 30]. We then fire the detector on each validation

image in a sliding window fashion and apply the ranker on
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Figure 4. We generate new chains (blue dashed patches) anchored

on existing ones (red solid patches). Each new chain is sampled at

some location and scale relative to the chain anchoring it. This not

only allows us to efficiently generate more chains, but also allows

us to capture visual concepts that are hard to detect in isolation

yet still important to model the attribute (e.g., 1st image: the patch

at the top of the head is barely detectable due to its low gradient

energy, even though it is very informative for “Bald head”).

the patch with the maximum detection score to get an es-

timated attribute strength Ω̂(Ii) for each image Ii. Finally,

we count how many of the pairwise ground-truth attribute

orderings agree with our predicted attribute orderings:

acc(R, Ω̂) =
1

|R|

∑

(i,j)∈R

✶[Ω̂(Ii)− Ω̂(Ij) ≥ 0], (3)

where |R| is the cardinality of the relative attribute anno-

tation set on the validation data, and ✶[·] is the indicator

function. We rank each chain according to this validation

set accuracy, and select the top Kens chains. To form the

final image-level representation for an image, we simply

concatenate the feature vectors extracted from the detected

patches, each weighted by its chain’s validation accuracy.

We then train a final linear SVM ranker using this ensemble

image-level representation to model the attribute.

4. Results

We analyze our method’s discovered spatial extent of rel-

ative attributes, pairwise ranking accuracy, and contribution

of local smoothness and perturbed visual chains.

Implementation details. The feature φ we use for detec-

tion and local smoothness is HOG [11], with size 8×8 and

4 scales (patches ranging from 40×40 to 100×100 of the

original image). For ranker learning, we use both the LLC

encoding of dense-SIFT [40] stacked with a two-layer Spa-

tial Pyramid (SP) grid [24], and pool-5 activation features

from the ImageNet pre-trained CNN (Alexnet architecture)

implemented using Caffe [19, 14].2 We set λ = 0.05,

Ninit = 5, Niter = 80, Kinit = 20, Kpert = 20,

Kens = 60, δxy = 0.6, and χ = {1/4, 1}. We find T = 3
iterations to be a good balance between chain quality and

computation.

Baselines. Our main baseline is the method of [30]

(Global), which learns a relative attribute ranker using

global features computed over the whole image. We also

compare to the approach of [34] (Keypoints), which learns

2We find the pool-5 activations, which preserve more spatial informa-

tion, to be more useful in our tasks than the fully-connected layers.

a ranker with dense-SIFT features computed on facial key-

points detected using the supervised detector of [44], and

to the local learning method of [42], which learns a ranker

using only the training samples that are close to a given test-

ing sample. For Global [30], we use the authors’ code with

the same features as our approach (dense-SIFT+LLC+SP

and pool-5 CNN features). For Keypoints [34] and [42], we

compare to their reported numbers computed using dense-

SIFT and GIST+color-histogram features, respectively.

Datasets. LFW-10 [34] is a subset of the Labeled faces in

the wild (LFW) dataset. It consists of 2000 images: 1000

for training and 1000 for testing. Annotations are available

for 10 attributes, with 500 training and testing pairs per at-

tribute. The attributes are listed in Table 1.

UT-Zap50K [42] is a large collection of 50025 shoe im-

ages. We use the UT-Zap50K-1 annotation set, which pro-

vides on average 1388 training and 300 testing pairs of rel-

ative attribute annotations for each of 4 attributes: “Open”,

“Sporty”, “Pointy”, and “Comfort”. (See supp. for UT-

Zap50K-2 results.)

Shoes-with-Attributes [18] contains 14658 shoe images

from like.com and 10 attributes, of which 3 are overlap-

ping with UT-Zap50K: “Open”, “Sporty”, and “Pointy”.

Because each attribute has only about 140 pairs of relative

attribute annotations, we use this dataset only to evaluate

cross-dataset generalization performance in Sec. 4.2.

4.1. Visualization of discovered spatial extent

In this section, we show qualitative results of our ap-

proach’s discovered spatial extent for each attribute in

LFW-10 and UT-Zap50K. For each image, we use a

heatmap to display the final discovered spatial extent, where

red/blue indicates strong/weak attribute relevance. To cre-

ate the heatmap, the spatial region for each visual chain is

overlaid by its predicted attribute relevance (as described in

Sec. 3.3), and then summed up. Fig. 5 shows the resulting

heatmaps on a uniformly sampled set of unseen test images

per attribute, sorted according to predicted attribute strength

using our final ensemble representation model.

Clearly, our approach has understood where in the im-

age to look to find the attribute. For almost all attributes,

our approach correctly discovers the relevant spatial extent

(e.g., for localizable attributes like “Mouth open”, “Eyes

open”, “Dark hair”, and “Open”, it discovers the corre-

sponding object-part). Since our approach is data-driven,

it can sometimes go beyond common human perception to

discover non-trivial relationships: for “Pointy”, it discovers

not only the toe of the shoe, but also the heel, because pointy

shoes are often high-heeled (i.e., the signals are highly cor-

related). For “Comfort”, it has discovered that the lack or

presence of heels can be an indication of how comfortable

a shoe is. Each attribute’s precisely discovered spatial ex-

tent also leads to an accurate image ordering by our en-
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Young
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Comfort
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Predicted attribute strength using our ensemble representation ranker
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Figure 5. Qualitative results showing our discovered spatial extent and ranking of relative attributes on LFW-10 (top) and UT-Zap50K (bot-

tom). We visualize our discoveries as heatmaps, where red/blue indicates strong/weak predicted attribute relevance. For most attributes, our

method correctly discovers the relevant spatial extent (e.g., for “Mouth open”, “Dark hair”, and “Eyes open”, it discovers the corresponding

object-part), which leads to accurate attribute orderings. Our approach is sometimes able to discover what may not be immediately obvious

to humans: for “Pointy”, it discovers not only the toe of the shoe, but also the heel, because pointy shoes are often high-heeled (i.e., the

signals are highly correlated). There are limitations as well, especially for atypical images: e.g., “Visible teeth” (12th image) and “Visible

forehead” (13th image) are incorrect due to mis-detections resulting from extreme pose or clutter. Best viewed on pdf.

semble representation ranker (Fig. 5 rows are sorted by pre-

dicted attribute strength). There are limitations as well, es-

pecially for atypical images: e.g., “Visible teeth” (12th im-

age) and “Visible forehead” (13th image) are incorrect due

to mis-detections resulting from extreme pose/clutter. Fi-

nally, while the qualitative results are harder to interpret for
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