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Abstract

Hough voting in a geometric transformation space al-

lows us to realize spatial verification, but remains sensitive

to feature detection errors because of the inflexible quan-

tization of single feature correspondences. To handle this

problem, we propose a new method, called adaptive dither

voting, for robust spatial verification. For each correspon-

dence, instead of hard-mapping it to a single transforma-

tion, the method augments its description by using multi-

ple dithered transformations that are deterministically gen-

erated by the other correspondences. The method reduces

the probability of losing correspondences during transfor-

mation quantization, and provides high robustness as re-

gards mismatches by imposing three geometric constraints

on the dithering process. We also propose exploiting the

non-uniformity of a Hough histogram as the spatial simi-

larity to handle multiple matching surfaces. Extensive ex-

periments conducted on four datasets show the superiority

of our method. The method outperforms its state-of-the-art

counterparts in both accuracy and scalability, especially

when it comes to the retrieval of small, rotated objects.

1. Introduction

Local feature-based image encoding has been shown to

be successful in particular object retrieval. However, local

features do not offer sufficient discriminative power and so

their direct matching leads to massive mismatches. Of the

methods used to handle this problem, Hough voting (HV)

has received considerable attention because of its better bal-

ance between accuracy and scalability [3, 8]. Here, consis-

tent feature correspondences are found in a geometric trans-

formation space via a Hough transform. Despite its success,

HV remains sensitive to feature detection errors generating

noise during transformation estimation. Since a correspon-

dence is hard-mapped to a single transformation, confident

correspondences (Fig. 1a) are never identified if they are af-

fected by noise and fall into disjunct bins (Fig. 1b).

To address noise sensitivity, we first consider an unadapt-

able solution, called dither voting (DV), where an observed

(a) Correspondences (b) Hough voting

(c) Dither voting (d) Adaptive dither voting

Figure 1: Comparison of ADV with HV and DV. The correspon-

dences in (a) are voted as filled circles in a 4D transformation

space. Only one 2D projection is depicted for normalized trans-

lation (x, y). We show a close-up of the 5 × 5 bins where the

correspondences fall. Crosses represent dithered votes that are

randomly sampled according to a Gaussian distribution (c) or de-

terministically obtained for each correspondence concerned (d).

Common dithered votes are represented in black.

transformation is polled to a Hough space as a probability

density distribution rather than a single vote (Fig. 1c). The

distribution can be Gaussian if the noise is assumed to be

normally distributed with a zero mean. Provided that the

Gaussian can be sampled by a number of random transfor-

mations, called dithered votes, HV is converted into polling

the dithered votes to multiple bins in the transformation

space. However, straightforward DV is highly sensitive to

mismatches because a Gaussian distribution is assumed to

have the same dispersion for all tentative correspondences.

In this study, we propose a novel adaptive dither voting

(ADV) method for robust spatial verification. For the dis-

tribution of true transformations, instead of assuming it to

be Gaussian, we sample it by using the other correspon-

dences that satisfy certain geometric constraints responding

to the observed correspondence. Dithered votes can thus be

1877



deterministically obtained and are expected to be located

in closer proximity to the true transformation (Fig. 1d).

The aforementioned constraints provide dithering with a

greater advantage as regards geometrically-correlated cor-

respondences, and suppress the augmentation of their iso-

lated counterparts that tend to be mismatches. In addition,

we propose exploiting the non-uniformity of a Hough his-

togram as the spatial similarity, which favors correspon-

dences converging in the transformation space. The simi-

larity is measured simultaneously, rather than consecutively,

with the voting process, making ADV much faster than the

state of the art. In summary, our contributions include:

• A novel adaptive dither voting method that is the first de-

terministic method handling both quantization error and

mismatch in a simultaneous manner. It significantly out-

performs the bag-of-visual-words (BOVW) model and

current methods with spatial verification.

• A novel entropy-based similarity measure that provides

great flexibility for handling multiple matching surfaces.

It is realized simultaneously with voting and so provides

much higher efficiency than standard solutions.

• Informative and thorough experiments performed on four

datasets. All comparisons that would be expected are

available, and those with related researches show consis-

tent performance benefits using the proposed method.

2. Related Research

In this section, we review the literature on spatial verifi-

cation. Other topics, e.g. soft assignment [15], Hamming

embedding [7, 8], database augmentation [1] and query ex-

pansion [5, 6], concern the field of image retrieval but are

not related to our topic. Hence, they are excluded from the

discussion. Spatial verification can be categorized as prior

spatial context methods or posterior methods: the former

explores the spatial configuration of features before match-

ing; the latter rejects mismatches online.

Spatial context methods exploit the co-occurrence and

spatial relationship between features inside a given image

and embed them in indexing to avoid online verifications.

Yang and Newsman [24] showed that the second-order co-

occurrence of spatially nearby features offers a better rep-

resentational power than single features, and proposed ab-

stracting each image as a bag of pairs of visual words. To in-

corporate richer spatial information, Liu et al. [9] explored

both the co-occurrence and the relative positions of nearby

features, and embedded this information in an inverted in-

dex for fast spatial verification. Wu and Kashino [23] ex-

tended this method to handle anisotropic transformations.

Tolias et al.’s method [21] serves as an alternative to Liu et

al.’s method [9], in which each feature is described by a spa-

tial histogram of the relative positions of all other features.

Depending on the size of the visual vocabulary in use, all

of these methods require a huge memory needed for storing

redundant indexes online.

Among posterior methods, the most widely used is

RANSAC [13, 14], which repeatedly computes an affine

transformation, called a hypothesis, from each correspon-

dence. All hypotheses are verified by counting the inlier

correspondences that inversely fit the transformation. Jegou

et al. [8] used a weak geometric model realized with a 2D

HV whereby correspondences are determined as confident

correspondences if they agree on a scaling and, indepen-

dently, a rotation factor. Zhang et al. [25] set up a 2D Hough

space spanned by the translations of correspondences, but

it does not support scaling or rotation invariance. Shen et

al. [18] proposed uniformly sampling a fixed number of hy-

potheses from a transformation space. All hypotheses are

verified in another 2D Hough space spanned by the nor-

malized central coordinates of the common object. Chu et

al. [4] and Zhou et al. [26] replaced voting with geomet-

ric verification among all correspondence pairs (quadratic

time) but ignored the consistency of scaling and/or rotation.

One of the most current methods based on HV is Hough

pyramid matching (HPM) [3]. In HPM, an elegant, relaxed

histogram pyramid is developed, and correspondences are

distributed over a hierarchical partition of the transforma-

tion space to handle the noise sensitivity. Although a rea-

sonable balance between flexibility and accuracy can be ex-

pected at the finest level of the hierarchy, it is not guaranteed

at coarse levels where the constraints are much less discrim-

inating in terms of mismatches. HPM is one of the methods

we use for comparison in our experiments.

It has been pointed out that in theory, posterior methods

suffer from a longer search time than prior methods because

of the added online verifications [9,23]. However, no exper-

imental evidence has been shown to bear out this conclu-

sion. We share our knowledge by comparing current prior

and posterior methods and by designing a computationally-

cheap similarity measure for fast spatial verification.

3. Robust Spatial Verification

3.1. Problem Formulation

An image is represented by a set P of local features, and

for each p ∈ P we have its visual word u(p), position t(p),
scale σ(p) and orientation R(p). The geometries of p can be

given by Hessian affine feature detectors [11, 13] and u(p)
by vector quantization [14] in a SIFT [1,10] feature space. p
can be given by a 3×3 transformation matrix F (p) mapping

a unit circle heading a reference orientation to p:

F (p) =

[

M(p) t(p)
0
T 1

]

. (1)

Here, M(p) = σ(p)R(p) and t(p) represent linear transfor-

mation and translation, respectively. If σ(p) is given by a
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scalar, F (p) specifies a similarity transformation. R(p) is

an orthogonal 2× 2 matrix represented by an angle θ(p).
Given two images P and Q, the correspondence c =

(p, q) is a pair of features p ∈ P and q ∈ Q such that

u(p) = u(q). A transformation from q to p is given by:

F (c) = F (p)F (q)−1 =

[

M(c) t(c)
0
T 1

]

(2)

where M(c) = σ(c)R(c) and t(c) = t(p) − M(c)t(q).
Equation 2 can be extended to handle out-of-plane transfor-

mation with an anisotropic M(c) estimated from Hessian.

σ(c) = σ(p)/σ(q) and R(c) = R(p)R(q)−1 denote scaling

and rotation, respectively. Equation 2 can also be rewrit-

ten as a 4D transformation vector, as in Eq. 3, in which

θ(c) = θ(p)− θ(q) and [x(c) y(c)]T = t(c).

F (c) =
〈

θ(c), σ(c), x(c), y(c)
〉

(3)

Given P and Q that are related as regards a common ob-

ject, all parts of the object are expected to obey the same

transformation. Given a correspondence set C = {c} ⊆
P ×Q, there is one or more subset Ĉ ⊆ C of correspon-

dences that dominate in terms of F (c). Spatial verification

involves identifying such a subset and giving more advan-

tage to the similarity measure for Ĉ with a larger cardinality.

3.2. Hough Voting

In HV, a transformation space F = [0, 1]4 is spanned by

the four parameters presented in Eq. 3. A partition B of F
into n4 bins is constructed, where n is the number of bins

per parameter. All c ∈ C are distributed into B according to

F (c). Ĉ can be determined by bins b ∈ B into which more

than one vote falls. More strictly,

Definition 1 Given a correspondence set C = {c} and an

arbitrary quantization function β, a subset Ĉ ⊆ C is a

confident correspondence set if and only if |Ĉ| ≥ 2 and

∀ci, cj ∈ Ĉ, β(F (ci)) = β(F (cj)).

HV guarantees sufficient recall if the feature shapes are ac-

curately given and if F (c) can be flexibly quantized. How-

ever, these requirements are often violated in practice.

3.3. Dither Voting

Each correspondence c can be voted into multiple bins as

a Gaussian N (F (c),Σ), similar to related works [10, 18],

which is sampled by a finite number of dithered votes given

by F́i(c) = F (c) + vi with i = 1, 2, · · · , d. Here, vi is a

random 4D vector drawn from N (0,Σ) and d is the number

of dithered votes. Let BDV(c) denote the set of quantized

dithered votes (Eq. 4). The confident correspondence set

can thus be given by Definition 2.

BDV(c) =
{

β
(

F́i(c)
)
∣

∣i = 1, 2, · · · , d
}

(4)

(a) Hough voting

(b) Dither voting

(c) Adaptive dither voting

Figure 2: True correspondences and Hough histograms obtained

using HV, DV and ADV. True correspondences indicate those cor-

responding to the histogram maximum. True correspondences

found by HV are shown in red, and those newly found via DV

or ADV are shown in green. Two 2D histograms are depicted sep-

arately for linear transformation (θ, log σ) and normalized trans-

lation (x, y). Red corresponds to the histogram maximum.

Straightforward DV is highly sensitive to mismatches

because random sampling gives the same advantage to both

true and false correspondences. In Fig. 2b, DV found more

confident correspondences that were voted to the bin of the

histogram maximum than HV. At the same time, it also aug-

mented the votes for mismatches, as can be seen from the

lower left area of the rightmost histogram.

Definition 2 Given a correspondence set C = {c} and an

arbitrary quantization function β, a subset Ĉ ⊆ C is a

confident correspondence set if and only if |Ĉ| ≥ 2 and

∀ci, cj ∈ Ĉ, B(ci) ∩B(cj) 6= ∅.

3.4. Adaptive Dither Voting

We propose deterministically selecting dithered votes in-

stead of randomly sampling them according to a Gaussian

distribution. On one hand, more dithered votes are expected

to be selected for confident correspondences, while dither-

ing for mismatches has to be minimized. On the other hand,

the dithered votes have to be located in closer proximity to

the true transformation. When confident correspondences

are voted to disjunct bins because of noise (Fig 1b), it can

be inferred that the true transformation lies somewhere be-

tween the votes. Therefore, the method should avoid select-

ing dithered votes that lie lateral to both votes (Fig. 1d).

In brief, we look for a set of transformations, called hy-

potheses, to which the observed correspondence is a geo-

metrical inlier. The hypotheses are selected from the trans-

formations of all tentative correspondences, and are later
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Figure 3: Selection of dithered votes satisfying three geometric constraints in Definition 3. Correspondences are voted as filled circles

in a 4D transformation space. Two 2D projections are depicted, separately for linear transformation (θ, log σ) and normalized translation

(x, y). Crosses represent dithered votes. Common dithered votes and rejected dithered votes are represented in black and gray, respectively.

treated as dithered votes. Let c be the observed correspon-

dence and ć ∈ C a correspondence generating a candidate

hypothesis. Let r : C2 7→ {0, 1} be a function mapping an

ordered pair 〈ć, c〉 to one if c is an inlier of F (ć) and zero

otherwise. The set of quantized dithered votes can thus be:

BADV(c) =
{

β
(

F (ć)
)∣

∣ć ∈ C, r(ć, c) = 1
}

(5)

and the confident correspondence set is given by Defini-

tion 2. The hypothesis-inlier relationship is defined by:

Definition 3 Given two correspondences c = (p, q) and

ć = (ṕ, q́) and two thresholds ǫ and ǫt, F (ć) is defined as a

hypothesis of c, and c an inlier of F (ć), if and only if:

ć ∈ Nk(c) (6)
∥

∥M(c)−M(ć)
∥

∥

2
< ǫ (7)

∥

∥

∥

(

t(p)−M(ć)t(q)
)

− t(ć)
∥

∥

∥

2
< ǫt (8)

In an image space, correspondences with a larger gap are

more likely to be mismatches. This encourages us to em-

ploy the neighborhood constraint (Eq. 6). Nk(c) represents

the spatial k-nearest neighbors (k-NNs) of c. A neighbor of

a correspondence c1 is a correspondence c2, both features

of which are inside the k-NNs of the two features of c1, re-

spectively. Equation 7 ensures that the observed correspon-

dence has a similar linear transformation to the hypothesis.

We decompose Eq. 7 into scaling and rotation constraints:
∣

∣

∣
log

(

σ(c)
)

− log
(

σ(ć)
)

∣

∣

∣
< ǫσ (9)

∣

∣θ(c)− θ(ć)
∣

∣ < ǫθ (10)

Equation 8 corresponds to the hypothesis-inlier relationship

defined in RANSAC [13, 14]. The relationship between re-

lated researches and Definition 3 is provided in more detail

in the supplementary material.

The relation function r in Eq. 5 is thus a conjunction of

the predicates on Equations 6 to 8. The ADV flowchart is

shown in Fig. 3. The red and blue points are two observed

correspondences, projected onto an image, a linear transfor-

mation and a normalized translation space. Note how ADV

rejects poorly-correlated hypotheses (gray crosses) violat-

ing the three constraints in Definition 3.

During the voting process, the quantized dithered votes

BADV(c) for each c ∈ C are polled to the transformation

space, resulting in a 4D histogram. Note that each cor-

respondence itself is also polled to the Hough space like

dithered votes. A bin with a larger value is more likely to

represent the true transformation. In Fig. 2, we plot the cor-

respondences in the bin of the histogram maximum on the

image space. ADV clearly found more confident correspon-

dences than HV (see the supplementary material for more

examples). The histograms obtained with ADV are more

peaky than their counterparts. Note how the histogram peak

resulting from mismatches, i.e. the lower left area of the

rightmost histograms for HV and DV, is suppressed with

our method. ADV diminishes the proportion of votes from

mismatches, in a relative way, in inverse proportion to the

greatly augmented confident correspondences.

3.5. Non­Uniformity of Hough Histogram

In this section, we define a similarity based on the Hough

histogram built with ADV. It is observed that confident cor-

respondences often converge in the transformation space

while the transformations of mismatches are randomly and

uniformly distributed. This motivates us to exploit the non-

uniformity of the Hough histogram, which is usually mea-

sured by the histogram maximum [8]. The histogram max-

imum ignores multiple matching surfaces. Instead, we de-

fine the non-uniformity via Shannon entropy [17].

Given the notations presented in Section 3.2, a discrete

random variable F with |B| possible values {b} and a prob-

ability mass function P (b), we define entropy H as

H = −
∑

b

P (b) logP (b). (11)
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Algorithm 1 Generating lookup table.

1: procedure LUT

2: for all x ∈ N1 do ⊲ N1 , {1, 2, · · · , 255}
3: ∆(x)← x log x− (x− 1) log(x− 1)

4: return ∆ ⊲ lookup table

Assume that we sampled N correspondences and b was seen

h(b) = N ×P (b) times, where h(b) is the histogram value.

The total amount of information that we received is

I = N ×H = −
∑

b

h(b) logP (b). (12)

I should be maximal if all the outcomes are equally likely

such that I = N logN when transformations are randomly

and uniformly sampled. In contrast, I = 0 when transfor-

mations are drawn from a degenerate distribution and rep-

resent a perfect match. We define the divergence of the dis-

tributions of F and random samples as:

D = N logN − I =
∑

b

h(b) log h(b). (13)

D gives more advantage to a histogram estimated from a

larger number of correspondences. It also ensures that iso-

lated transformations, i.e. those in bins with h(b) = 1, do

not contribute to the matching.

4. Implementation and Algorithm

In this section, we present our implementation and out-

line ADC in three algorithms. Given two images, local fea-

tures are given by Hessian affine feature detectors [11, 13]

and described via SIFT [1, 10]. The set of correspondences

C is obtained via a visual vocabulary with approximate k-

means [14]. Given C as an input, ADV outputs a similarity

D, which is then combined with a non-spatial similarity:

S(P,Q) =

{

D + 1 if D 6= 0

S′(P,Q) else
(14)

where S(P,Q) is the overall similarity and S′(P,Q) ∈
[0, 1] is the non-spatial similarity. We adopt S′(P,Q) as the

cosine similarity between TF-IDF histograms [14, 19], but

any local feature-based similarity [2, 20] can be used here.

In Section 3.5, the computation of Eq. 13 occurs after

the construction of the histogram {h(b)|b ∈ B}. Hence,

voting is in linear time in |BADV(c)| but computing Eq. 13

is in linear time in |B| (larger than 30K for a 4D transfor-

mation). To reduce the complexity, we propose an accel-

eration algorithm, which is in linear time in the number of

votes (much less than 1K). Let the quotient of the function

f(h) = h log h be ∆(x) = x log x − (x − 1) log(x − 1).
We reformulate Eq. 13 as

D =
∑

b

f
(

h(b)
)

=
∑

b

h(b)
∑

x=1

∆(x). (15)

Algorithm 2 Adaptive dither voting.

1: procedure ADV(C,B)

2: D ← 0 ⊲ similarity

3: ∆← LUT ⊲ Alg. 1

4: for all b ∈ B do

5: h(b)← 0 ⊲ histogram

6: X(b)← ∅ ⊲ common words

7: for all c ∈ C do

8: Nk(c)← k-NN of c ⊲ KD-tree [12]

9: for all c ∈ C do ⊲ observed correspondence

10: VOTING(c, β(F (c)), X, h,D,∆) ⊲ Alg. 3

11: for all ć ∈ Nk(c) do ⊲ dithering with Eq. 6

12: if [Eq. 7] = false then continue

13: if [Eq. 8] = false then continue

14: VOTING(c, β(F (ć)), X, h,D,∆) ⊲ Alg. 3

15: return D

Algorithm 3 Voting with one-to-one constraint.

1: procedure VOTING(c, b,X, h,D,∆)

2: if u(c) ∈ X(b) then return ⊲ one-to-one constraint

3: h(b)← h(b) + 1 ⊲ update Hough histogram

4: D ← D +∆(h(b)) ⊲ update similarity

5: X(b)← X(b) ∪ u(c) ⊲ update common words

6: return X , h, D

In our implementation, all histogram values h(b) are initial-

ized by zero (Alg. 2 line 5) and later updated each time a

transformation F is voted (Alg. 3 line 3). Let h′(b) be the

temporarily updated histogram value of b. We have:

D =
∑

F

∆
(

h′
(

β(F )
)

)

. (16)

The complexity of Eq. 16 only depends on the number of

F , i.e.
∑

c |BADV(c)|. The computation of ∆(x) can be

skipped with a lookup table (Alg. 1) and replacing runtime

computation with a much faster indexing operation.

In summary, our method is outlined in three algorithms:

Alg. 1 builds the lookup table of ∆(x); Alg. 2 realizes ADV

given a correspondence set C; Alg. 3 summarizes the steps

for updating the histogram and the similarity D. Note that a

widely-used one-to-one constraint [3] is imposed on voting

(Alg. 3 lines 2 and 5) to penalize the visual words appearing

in repeating structures, e.g. building facades and foliage.

5. Experiments

5.1. Dataset

We tested our method against the latest spatial verifica-

tion methods in a particular object retrieval scenario. We

used four datasets: Oxford Buildings (OB) [14], Paris [15],

Flickr Logos 32 (FL32) [16] and Flickr 100K (F100K) [14],

which are compared in Table 1. The median scale of the ob-

ject is around 30% of the image for OB and Paris, and 5%
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Table 1: Dataset comparison.

Dataset Category #Queries #Images #Features

OB [14] Buildings 55 5.1K 13M

Paris [15] Buildings 55 6.4K 15M

FL32 [16] Logo 960 4.3K 13M

F100K [14] Distractor n/a 100K 217M

Table 2: MAPs obtained with various transformation quantization

configurations. SADB represents the range of transformation pa-

rameters with σm = A and δ = B. k = 15 for k-NN.

Method OB [14] Paris [15] FL32 [16]

ADV-WORST .805 .740 .656

ADV-BEST .815 .745 .662

ADV (S10D2.0) .815 .743 .658

ADV (S12D2.2) .809 .742 .659

ADV (S14D1.6) .811 .742 .662

for FL32. We used Hessian affine region detectors [11, 13]

and Root SIFT [1] for feature detection and description, re-

spectively. For OB and Paris, we conformed to the widely-

used configuration [3, 18] that assumes the datasets include

no rotated images. For such datasets, we used a modified

Hessian affine region detector [13] and switched off rotation

for spatial verification. A visual vocabulary with 1M visual

words was constructed for each dataset via k-means [14].

We measured the accuracy using mean average precision

(MAP) [22]. We measured the memory use in terms of peak

resident set size (PRSS) in increments of bytes per 1K im-

ages. The times for feature detection and visual word as-

signment were excluded from the evaluation since they are

independent of the database size. All the times are in in-

crements of msec per query and per 1K images. All the

methods were tested in single threads on a 2.93GHz CPU.

5.2. Transformation Quantization

For quantization, we deal with the transformation param-

eters in Eq. 3 separately. Let ρ be the maximum dimen-

sion of the query in pixels. We only keep correspondences

with translations x(c), y(c) ∈ [−δρ, δρ] [3]. We also fil-

ter out correspondences such that σ ∈ [1/σm, σm] [3, 18].

The rotation θ is discretized into eight bins and the oth-

ers into 16 bins. We varied σm ∈ {10, · · · , 15} and

δ ∈ {1.5, 1.6, · · · , 2.5}, in accordance with 66 configura-

tions, each of which is denoted as SADB for σm = A and

δ = B. The results for all datasets are shown in Table 2.

We can see that the accuracy is somewhat insensitive to the

choices of δ and σm. Among the MAPs obtained using all

the configurations, the difference between the highest and

the lowest MAPs was less than 1% for all datasets. Hence,

we chose {σm, δ} = {15, 1.6} for all datasets.

5.3. Transformation Dithering

In this study, we assume ǫσ = ǫθ = ǫt = ε/n where n
is the number of bins per parameter and ε is a scale factor.

As described in Section 5.2, n = 8 for θ and n = 16 for the

other parameters. The relationship between the MAP and

ε ∈ [0, 1] is shown in Fig. 4. We can see that the ε leading

to the highest MAP for FL32 was much smaller than its

counterparts for OB and Paris. That is, the transformation

dithering for FL32 required stronger geometric constraints

than for the other datasets. This is because the query is in

the form of an ROI for OB and Paris. In contrast, there are

more mismatches when no ROIs are specified as in FL32.

We chose ε = .55 for OB and Paris and ε = .25 for FL32.

In addition to ε, we also tested the performance with

various k ∈ {5, 10, · · · , 100}. Figure 5 shows the rela-

tionship between the MAP and k. k = 0 equals HV and

k = ∞ equals removing Eq. 6 from Definition 3. We can

see that the MAP is increasing monotonically for OB and

Paris, which demonstrates the effectiveness of ADV, before

becoming fairly constant over k. It may be argued that the

neighborhood constraint did not help here. This is true for

OB and Paris again because of the ROI: mismatches only

come from the inside of the ROI, which do not violate Eq. 6.

When no ROIs are specified as in FL32, the neighborhood

constraint comes in useful, and so k first increases and then

decreases the MAP (Fig. 5c).

The relationship between the search time and k is shown

in Fig. 6. Given a large k, searching FL32 was much faster

than searching OB and Paris because of the small scale of

the object in this dataset. In other words, the adaptively-

determined number of dithered votes for FL32 was much

smaller than its counterparts for the other datasets. Since

the best MAP was achieved when k ≈ 15 for all datasets

(Fig. 5), we chose k = 15 for all subsequent tests.

5.4. Evaluation and Comparison

We compared our method with BOVW, three prior spa-

tial context methods [9, 23, 24] and the posterior method

HPM [3]. Other posterior methods such as RANSAC [14]

and Jegou et al.’s method [8] were not tested because they

were reported to underperform HPM [3]. Table 3 compares

the performance obtained with various methods. The high-

est MAPs were obtained with k = 100 for the k-NN used

in all prior methods. For HPM, the best performance sta-

bilized at five levels. The results of the methods compared

in Table 3 are even higher than those, e.g. .789 MAP and

210 msec for HPM (OB), reported in the literature [3, 23].

This demonstrates the propriety of our implementation. The

similarity for DV is the same as that for ADV (Section 3.5).

All methods were applied on all images.
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