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Abstract

We propose to use deep convolutional neural networks to

address the problem of cross-view image geolocalization, in

which the geolocation of a ground-level query image is es-

timated by matching to georeferenced aerial images. We

use state-of-the-art feature representations for ground-level

images and introduce a cross-view training approach for

learning a joint semantic feature representation for aerial

images. We also propose a network architecture that fuses

features extracted from aerial images at multiple spatial

scales. To support training these networks, we introduce a

massive database that contains pairs of aerial and ground-

level images from across the United States. Our methods

significantly out-perform the state of the art on two bench-

mark datasets. We also show, qualitatively, that the pro-

posed feature representations are discriminative at both lo-

cal and continental spatial scales.

1. Introduction

We address the problem of cross-view image geolocal-

ization, which aims to localize ground-level query images

by matching against a database of aerial images (Figure 1).

This contrasts with the majority of existing image localiza-

tion methods which infer location using visual similarity be-

tween the query image and a database of other ground-level

images. The inherent limitation with these approaches is

that they fail in locations where ground-level images are not

accessible. Even with hundreds of millions of geo-tagged

ground-level images available via photo-sharing websites

and social networks, there are still very large geographic

regions with few images; most images are captured in cities

and around famous landmarks [6].

Cross-view image geolocalization is motivated by the

observation that the distribution of geo-tagged ground-level

imagery is relatively sparse in comparison to the abun-

dance of high-resolution aerial imagery. The underly-

ing idea is to learn a mapping between ground-level and

aerial image viewpoints, such that a ground-level query im-
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Figure 1: We learn a joint semantic feature representation

for aerial and ground-level imagery and apply this represen-

tation to the problem of cross-view image geolocalization.

age can be directly matched against an aerial image ref-

erence database. In contrast to previous work [25] which

used hand-engineered features, we propose to learn feature

representations using deep convolutional neural networks

(CNNs). Our methods build upon recent success in using

CNNs for ground-level image understanding [20, 44].

We refer to our approach as cross-view training. The idea

is take advantage of existing CNNs for interpreting ground-

level imagery and use a large database of ground-level and

aerial image pairs of the same location to learn to extract

semantic, geo-informative features from aerial images. This

is a general strategy with many potential applications but we

demonstrate it in the context of cross-view geolocalization.

Our work makes the following main contributions: (1)

an extensive evaluation of off-the-shelf CNN network ar-

chitectures and target label spaces for the problem of cross-

view localization; (2) cross-view training for learning a

joint semantic feature space from different image sources;

(3) a massive new dataset with multi-scale aerial imagery;

(4) state-of-the-art performance on two smaller-scale evalu-

ation benchmarks for cross-view geolocalization; and (5)

extensive qualitative evaluation, including visualizations,
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Figure 2: Existing CNNs trained on ground-level imagery provide high-level semantic representations which can be location

dependent. Each point represents a geo-tagged image extracted from a Google Street View panorama, colored according to

the predicted scene category from the Places [44] network.

which highlights the utility of cross-view training.

2. Related Work

Estimating the geographic location at which an image

was captured based on its appearance is a problem of great

interest to the vision community. In recent years, a plethora

of methods for automatic image geolocalization have been

introduced [1, 8, 11, 19, 23, 45]. A wide variety of visual

cues have been investigated, including photometric and ge-

ometric properties such as sun position [5, 21, 41], shad-

ows [17, 32, 42], and weather [13, 14, 36].

Despite this breadth, the dominant paradigm is to for-

mulate the localization problem as image retrieval. The

premise is to take advantage of the ever-increasing number

of publicly available geo-tagged images by building a large

reference dataset of ground-level images with known loca-

tion. Then, given a query image, infer its location by finding

visually similar images in the dataset. These methods gen-

erally fall into one of two categories. The first category of

methods infer location by matching using local image fea-

tures [1, 4, 6, 33, 35, 38, 43]. The second category of meth-

ods match using global image features [11, 15, 45]. Match-

ing with local image descriptors is advantageous in that a

more precise location estimate is possible, but often requires

additional computational resources and fails when no visual

overlap exists with the reference dataset. Conversely, whole

image descriptors provide a weaker prior over location but

require less computation and provide a foundation for many

other image understanding tasks.

Estimating geographic information from a single im-

age match requires learning geographically discriminative,

location-dependent features [8, 9, 12, 29]. The recent surge

of deep learning in computer vision has shown that convo-

lutional neural networks can learn feature hierarchies that

perform well for a wide variety of tasks, including object

recognition [20], object detection [10], and scene classifi-

cation [44]. Razavian et al. [30] further show that these

feature hierarchies are useful as generic descriptors. Lee et

al. [22] estimate geo-informative attributes from an image

using convolutional neural network classifiers.

Only recently has aerial imagery been discovered as

a valuable resource for ground-level image understand-

ing [2, 27]. Shan et al. [34] geo-register ground-level multi-

view stereo models using ground-to-aerial image match-

ing. Viswanathan et al. [39] evaluate a number of hand-

engineered feature descriptors for the task of ground-to-

aerial image matching in robot self-localization. The cross-

view image geolocalization problem was introduced by Lin

et al. [25]. Workman et al. [40] show that features extracted

from convolutional neural networks are useful for problems

in geospatial image analysis. Most akin to our work, Lin

et al. [26] apply a siamese CNN architecture for learning

a joint feature representation between ground-level images

and 45◦ oblique aerial imagery. Our approach is more gen-
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eral; we operate on orthorectified aerial imagery, do not re-

quire scale and depth metadata for each query, and our joint

feature representation is semantic.

3. Cross-View Training for Aerial Image Fea-

ture Extraction

We propose a cross-view training strategy that uses

deep convolutional neural networks to extract features from

aerial imagery. The key idea is to use pre-existing CNNs

for extracting ground-level image features and then learn

to predict these features from aerial images of the same lo-

cation. This is a general approach that could be useful in

a wide variety of domains. It is conceptually similar to do-

main adaptation [7], where the source domain is the ground-

level view and the target domain is aerial imagery. The end

result of cross-view training is a CNN that is able to extract

semantically meaningful features from aerial images with-

out manually specifying semantic labels.

3.1. Cross­View Feature Representations

We assume the existence of two functions: fa(l; Θa),
which extracts features from the aerial imagery centered

at location, l, and fg(I; Θg), which extracts features from

a ground-level image. Here, Θg and Θa are the parame-

ters for feature extraction. We propose to use deep feed-

forward convolutional neural networks as the feature extrac-

tion functions, fa and fg . In this framework, the parameters

of these functions, Θa and Θg , include both the network

architecture and the weights.

Our main insight is that we can take advantage of the

significant progress that has been made applying CNNs

to ground-level image understanding in the past several

years by transferring feature representations to aerial im-

ages. This is possible if the location of the ground-level

imagery is known. For example, in Figure 2, we show the

estimated label from the Places [44] network, trained for

the task of scene classification, on a set of images extracted

from Google Street View panoramas captured across the

United States. The predicted label is clearly location de-

pendent. For the purposes of learning a useful aerial image

feature function, what matters is that the ground-level fea-

tures are geo-informative, not necessarily that the ground-

level detector is perfect.

We compare alternative choices for ground-level feature

extraction in Section 4 for the problem of cross-view image

geolocalization. In the remainder of this section, we de-

scribe our cross-view training approach to adapt a network

trained for ground-level feature extraction to aerial imagery.

3.2. Cross­View Training a Single­Scale Model

Given a semantically meaningful feature representation

for ground imagery, we propose to extract features from

(a) Google Street View (b) Flickr

Figure 3: The distribution of ground-level images in the

CVUSA dataset.

aerial imagery, which we refer to as cross-view training.

Given a set of ground-level training images, {Ii}, with

known location, {li} and known ground-level feature ex-

tractor parameters, Θg , we seek a set of parameters, Θa,

that minimize the following objective function:

J(Θa) =
∑

i

‖fa(li; Θa)− fg(Ii; Θg)‖2. (1)

Intuitively, the objective is to learn to extract features from

the aerial imagery that match those from a corresponding

ground-level image.

3.3. Cross­View Training a Multi­Scale Model

The view frustum of ground-level imagery can vary dra-

matically from image to image. It is possible that the nearest

object in the scene is hundreds of meters away or that the

furthest object is tens of meters. This introduces ambigu-

ity when matching the location observed by a ground-level

image to the known geolocation of the aerial imagery. To

address this issue, we extend our aerial image feature func-

tion, fa, to support extracting features at multiple spatial

scales. Rather than mapping a single ground-level image to

a single aerial image, the multi-scale approach allows for a

ground-level image to be matched to aerial images at mul-

tiple scales. In support of multi-scale, cross-view training,

we introduce a large dataset of ground-level and aerial im-

age pairs.

3.4. A Large Cross­View Training Dataset

Previous cross-view datasets have been limited in spa-

tial scale and number of training images. The largest

dataset [40] contains 174 217 training image pairs sampled

from a 200km × 200km area around San Francisco. Fea-

tures learned using such a dataset are unlikely to be as ef-

fective when applied to another location. In an effort to

broaden the applicability of the learned feature extractor,

we constructed a massive dataset of pairs of ground-level

and aerial images from across the United States, called the

Cross-View USA (CVUSA) dataset.

Geo-tagged, ground-level images were collected from

both Google Street View and Flickr. For Google Street
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Figure 4: Example matched ground-level and aerial images from the CVUSA dataset.

View, we randomly sampled from locations within the con-

tinental United States. At each location, we obtained the

corresponding panoramic image and extracted two perspec-

tive images from viewpoints separated by 180◦ along the

roadway. For Flickr, we divided the area of the United

States into a 100× 100 grid and downloaded up to 150 im-

ages from each grid cell (from 2012 onwards, sorted by the

Flickr “interesting” score). As Flickr images are overrep-

resented in urban areas, this binning step ensures a more

even sampling distribution. From this set, we automatically

filtered out images of indoor scenes using the Places [44]

scene classification network by retaining images that match

to one of the outdoor scene categories.

This process resulted in 1 036 804 Street View images

and 551 851 Flickr images. Figure 3 visualizes the relative

density of each set of images. For each ground-level im-

age, we downloaded an 800 × 800 aerial image centered

at that location from Bing Maps, at multiple spatial scales

(zoom levels 14, 16 and 18). After accounting for overlap,

this results in 879 318 unique aerial image locations and a

total of 1 588 655 million geo-tagged, image matched pairs.

Figure 4 shows several example matched ground-level and

aerial images from our dataset.

4. Application to Cross-View Localization

We focus on the problem of cross-view image geolocal-

ization [25] in which the goal is to use a database of aerial

images, with known location, to estimate the geographic lo-

cation of a ground-level query image in that region. This is

a challenging problem because of the dramatic appearance

differences between ground-level and aerial viewpoints.

4.1. Evaluation Datasets

We evaluate our proposed cross-view training approach

on two existing benchmark datasets. The first dataset,

Charleston, was introduced by Lin et al. [25] and contains

imagery from a 40km × 40km region around Charleston,

South Carolina. In total, there are 6 756 ground-level im-

ages collected from Panoramio, each with an associated

aerial image and land-cover attribute map centered at its

location. The aerial image reference database contains

182 988 images. The second benchmark dataset, San Fran-

cisco, is introduced by Workman et al. [40] and contains im-

agery from a 200km×200km region around San Francisco,

California. Ground-level imagery consists of 74 217 images

from Flickr and 100 000 Street View cutouts. Similar to

Charleston, each ground-level image is accompanied by a

corresponding aerial image centered at the ground-level im-

age location. The aerial image reference database contains

278 561 images. Each dataset identifies a set of “hard to

localize” ground-level images, with no nearby ground-level

reference imagery, to be used for evaluation.

4.2. Localization Method and Performance Metric

The process for localizing a ground-level query image,

Î , is straightforward. We directly compare the ground-

level feature, fg(Î; Θg), for the query image against a ref-

erence aerial image feature, fa(l; Θa), at location l, using

Euclidean distance ‖fa(l; Θa) − fg(Î; Θg)‖2. If a single

pinpoint match is needed, we return the geolocation of the

image that is the nearest neighbor of the ground-level im-

age in feature space; otherwise we return a list of candidate

regions sorted by distance in feature space. As described

by Lin et al. [25], the performance metric for this problem

is the rank of the ground truth location in the sorted list of

localization scores, for a set of aerial image reference loca-

tions. We represent the localization results using a cumu-

lative graph of the percentage of correctly localized images

as a function of the percentage of candidates searched.

4.3. Localization using Off­The­Shelf CNN Fea­
tures

As a baseline to our cross-view training approach, we

evaluated the localization performance of “off-the-shelf”

CNN features on Charleston. We extracted features from

both the aerial and ground-level query image using a va-

riety of network architectures trained for different target

label spaces. The network architectures used included

GoogleNet [37], AlexNet [20], NIN [24], and VGG 19 [3].

Training databases included Places [44], ImageNet [31],

Hybrid [44], Oxford Flowers [28], and Flickr Style [18]. We

evaluated multiple such configurations, all publicly avail-

able as Caffe [16] model files.

Our findings from this experiment are visualized in Fig-

ure 5. The top two performing configurations in terms of

top 5% accuracy are trained for the task of scene classi-

fication on the Places [44] database, which contains over

two million images labeled from 205 different categories.

These two networks vastly outperform the next best net-
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Figure 5: Comparison of several off-the-shelf CNN features

in terms of localization accuracy on the Charleston dataset.

work, which was trained on ImageNet for the task of object

recognition. These results are interesting, but unsurprising,

as scenes are more likely to be visible from aerial imagery.

For the rest of the experiments, we apply cross-view train-

ing to learn an aerial image feature extractor for Places fea-

tures using the AlexNet architecture [44], which we refer to

as Places.

4.4. Localization using Cross­View Features

The AlexNet architecture [20] consists of five convolu-

tional layers (interspersed with dropout, pooling, and local

response normalization layers) and three fully-connected

layers (called ‘fc6’, ‘fc7’, and, the output layer, ‘fc8’). The

only difference with Places is the dimensionality of the out-

put layer (205 versus 1000 possible categorical labels).

Given the architecture and weights, Θg , of Places, we

apply the cross-view training approach described in Sec-

tion 3 to train a model to predict the ‘fc8’ features. In

practice, we fix the network architecture and optimize the

weights. For training, we use pairs of ground-level images

and the highest-resolution aerial images in our CVUSA

dataset (zoom level 18). We refer to this model as CV-

Places. Figure 6 shows the improvement in localization of

our single-scale model, with and without cross-view train-

ing, on Charleston and San Francisco.

Initial experiments showed that initializing the solver

with Θ0

a = Θg worked well, therefore we use that strategy

throughout. We reserve 1000 matched pairs of images from

each benchmarks training set as a validation set for model

selection. Our models are implemented using the Caffe

toolbox [16] and trained using stochastic gradient descent

with a Euclidean loss for parameter fitting to reflect (1).

The full model file, solver definition, and learned network
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Figure 6: Accuracy of localization as a function of retrieved

candidate locations on two benchmark datasets.

weights are available online.1

4.5. Evaluating Multi­Scale Cross­View Training

Our multi-scale model architecture consists of three

single-scale CVPlaces networks with untied weights, each

taking as input a different spatial resolution of aerial im-

agery. The top feature layer from each individual network

is concatenated and used as input to a final fully-connected

layer with a 205 dimensional output. The resulting model

has approximately 180 million parameters. For training, we

initialize each of the sub-networks with the weights for our

best single-scale network and randomly initialize the output

layer. We refer to our multi-scale model as MCVPlaces.

To evaluate MCVPlaces, we augmented San Francisco

with additional multi-scale aerial imagery (zoom levels 16

and 14). Figure 6 shows a comparison of our multi-scale

approach versus our single-scale approach and a recent

1http://cs.uky.edu/˜scott/
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method on San Francisco. The features learned via multi-

scale cross-view training significantly out-perform all oth-

ers. In terms of top 1% accuracy, we improve the state-of-

the art by 6.4%, a percentage change of 32.32%.

5. Discussion

The evaluation suggests that the cross-view training pro-

cedure learns features that are effective for localization. In

the remainder of this section, we explore this representation

in more depth.

5.1. Understanding Network Activations

To understand what the network is learning, we analyze

the node-level activations for a large set of images on the

Places network and our CVPlaces network. We randomly

sampled 20 000 pairs of ground-level/aerial images from

CVUSA and recorded the activations for each. Figure 7

shows a set of images that resulted in the maximum acti-

vation for particular ‘fc8’ nodes of each network. We se-

lected the ‘fc8’ nodes because they are the last layer before

the softmax output and are therefore semantically meaning-

ful. The ground-level images that result in high activations

on the Places network are good exemplars of their corre-

sponding category. However, using the same network, high-

activation aerial images are often semantically incorrect.

For example the “wheat field” image is actually a forest

and the “airport” image is a highway. When passed through

our CVPlaces network, the high-activation images are much

more semantically plausible. These results highlight that

the cross-view training process is learning to recognize lo-

cations in aerial images where particular scene categories

are likely to be observed from a ground-level viewpoint.

5.2. Geospatial Visualization of Aerial Image Fea­
tures

We visualize the geospatial distribution of high-level fea-

tures extracted from the high-resolution aerial reference im-

agery from the Charleston dataset [25]. The result is a

coarse-resolution false-color image that summarizes the se-

mantic information extracted by a particular CNN from the

aerial images. To support this, we computed the ‘fc8’ fea-

tures from two networks, Places and our CVPlaces. For vi-

sualization purposes, we choose three high-level categories

(urban, rural, and water-related) and assign a set of repre-

sentative scene categories to each. The false-color image is

generated as follows: for the red channel, we compute the

average activation for the set of categories defined as urban

on the aerial imagery under each pixel. The same proce-

dure is applied for rural (green) and water-related (blue).

We then linearly scale the averaged activations to the range

[0, 1]. The result is a false-color aerial image (Figure 8) with

semantically meaningful colors. For example, a bright red

pixel identifies an urban area and a purple pixel is an urban

Figure 8: (left) A false-color image generated by apply-

ing the Places network to aerial imagery. In both im-

ages the colors are semantically meaningful (red=urban,

green=rural, blue=water-related). (right) The same as (left)

but with our CVPlaces network (trained on the entire USA

dataset, with no Charleston-specific fine tuning).

area near the water, etc. Our CVPlaces network results in a

clearer distinction between regions, highlighting the urban

core of Charleston and distinguishing water regions from

rural. This demonstrates that the cross-view training proce-

dure enables the CVPlaces network to extract semantically

meaningful features from aerial imagery. This is especially

interesting because the network was trained using the entire

CVUSA dataset and was not fine-tuned specifically for the

Charleston area.

5.3. Localization at Dramatically Different Spatial
Scales

The quantitative evaluation shows that by using our CV-

Places network, we obtain state-of-the-art localization per-

formance at the scale of a major metropolitan area (approx.

100km across). In this section, we explore whether CV-

Places might work at larger and smaller spatial scales. We

begin at the continental scale: given a ground-level query

image from CVUSA, we compute the feature distance be-

tween the Places ‘fc8’ feature vector of the query image

and CVPlaces ‘fc8’ feature vector of all aerial images in

the dataset. Figure 9 shows qualitative results as a heatmap

that represents the distance between the query and corre-

sponding aerial image. The black dot represents the ground

truth location of the query images. In the first example, our

method clearly identifies the image as having been captured

in the desert southwest. The second example, of a suburban

neighborhood, results in a heatmap that highlights urban ar-

eas. The third example identifies the query image as having

been captured on a coast.

We also explore whether the proposed method can be

used for localization at a much smaller scale. Figure 10

shows examples where the method is able to distinguish

between locations a few decameters apart. To accomplish

this, we implemented a system that takes as input a query

image and an initial location estimate. It samples a grid of

nearby geographic locations and computes the distance be-
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wheat field arch airport apt. building cemetery lighthouse badlands
ground-level images on the Places network [44]

aerial images on the Places network [44]

aerial images on our CVPlaces network

Figure 7: Images that result in high activations for particular scene categories. (top) The high-activation ground-level images

are exemplars for the corresponding semantic class. (middle) The high-activation aerial images for the network trained on

ground-level images are, not surprisingly, less semantically correct. For example, in the “arch” category the image may look

like an arch, but is not a location you are likely to see an arch from the ground. (bottom) After fine-tuning for the aerial

domain, the high-activation images are a better match to the respective categories.

Figure 9: Localization examples at a continental scale.

(left) A ground-level query image. (right) A heatmap of

the distance between the Places ‘fc8’ feature of the query

image and the corresponding CVPlaces feature of an aerial

image at that location (red: more likely location, blue: less

likely location). The black circle marks the true location of

the camera.

tween the Places ‘fc8’ feature vector of the query image

and the corresponding CVPlaces feature of the sub-window

of the aerial imagery. Note that sampling on the grid could

be accelerated by computing it convolutionally on the GPU.

These results show that in some cases, such as the American

football example, it can identify a football stadium given an

image of players. In the other examples, the heatmaps re-

flect the inherent uncertainty of localization. The lake-shore

example is particularly interesting because even though the

shore is not visible, the heatmap correctly reflects that the

photographer is less likely to be standing in the middle of

the lake than on its shore.

6. Conclusion

We proposed a cross-view training approach, in which

we learn to predict features extracted from ground-level im-

agery from aerial imagery of the same location. We intro-

duced a massive dataset of such pairs and proposed single

and multi-scale networks for extracting aerial image fea-

tures, obtaining state-of-the-art results for cross-view local-

ization on two benchmark datasets.

Our focus was learning the optimal parameters, Θa, for

extracting features from aerial imagery. We tried fixing the

aerial parameters, Θa, using pre-existing networks, and op-

timizing over Θg , but the performance was poor. We also
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Figure 10: Examples of localization at finer spatial scales. (top) The ground-level query image. (middle) An aerial image

centered at the ground location. (bottom) An overlay showing the distance between the ground-level image feature and the

aerial image features at each location, computed using a sliding window approach (red: more likely, blue: less likely).

attempted jointly optimizing over Θa and Θg but the results

did not improve over exclusively optimizing for Θa. We

suspect both of these results are because existing ground-

level image feature extractors are better suited for cross-

view localization than aerial image feature extractors. How-

ever, finding better initial values for Θa is an interesting area

for future work.

When the ground-level query image was captured in a

location that is distinctive from above, such as an outdoor

football stadium or an intersection with a unique pattern of

intersecting roads, it is possible to obtain a precise estimate

of the geographic location using the cross-view localization

approach. However, many locations are not so distinctive.

Therefore, it is useful to consider the proposed approach as

a pre-processing step to a more expensive matching process.

Such a matching process might be purely computational,

as with sparse keypoint matching, or may involve manual

human search.
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