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Abstract

In this paper, we present a joint iterative anaglyph stereo

matching and colorization framework for obtaining a set of

disparity maps and colorized images. Conventional stereo

matching algorithms fail when addressing anaglyph images

that do not have similar intensities on their two respective

view images. To resolve this problem, we propose two novel

data costs using local color prior and reverse intensity dis-

tribution factor for obtaining accurate depth maps. To col-

orize an anaglyph image, each pixel in one view is warped

to another view using the obtained disparity values of non-

occluded regions. A colorization algorithm using optimiza-

tion is then employed with additional constraint to colorize

the remaining occluded regions. Experimental results con-

firm that the proposed unified framework is robust and pro-

duces accurate depth maps and colorized stereo images.

1. Introduction

During the last couple of decades, 3D technology has be-

come popular in both research activities and consumer ap-

plications. In consumer electronics, polarized filter glass

and shutter glass have been widely used to deliver the

stereoscopic experience to 3D TV users. A more primitive

method involves anaglyph imagery, which has been used

to implement stereoscopic visualization in a cost effective

way using color filtered glasses. Anaglyph is often used to

distribute 3D videos or images in the online video/image

database. Besides for image size compression, it is a use-

ful method for general consumers who want to enjoy 3D

experience without expensive devices.

An anaglyph image packs partial information of stereo

images in a single color image, which typically consists of

red (only the red channel) from the left image and cyan

(blue and green channels) from the right image. Conse-

quently, it suffers from missing color information and it is

difficult to process the anaglyph image using conventional

computer vision algorithms. In early research, several stud-

Figure 1: Pipeline of the proposed algorithm

ies have aimed to colorize the pixels in the missing chan-

nels [10, 13]. However, the state-of-the-art technique in

anaglyph colorization [10] is still inaccurate due to the high

dependency on the initial correspondence map. Note that

the dense matching algorithm [14] is erroneous because of

the nature of anaglyph image. Thus, it is necessary to de-

velop a reliable anaglyph matching method to restore the

original color of stereo images accurately.

Typical stereo matching approaches have been built on

the photometric consistency assumption that requires the

corresponding points of a stereo pair to have similar inten-

sity values [18]. For that reason, anaglyph stereo matching

becomes a difficult problem because half of the color chan-

nels are completely missing. To our best knowledge, there

has been no previous anaglyph stereo matching algorithm

that can obtain accurate disparity map.

In this paper, we propose an iterative joint method to not

only compute the disparity map but also simultaneously col-

orize the missing color information of the anaglyph image.

The overview of the proposed framework is shown in Fig-

ure 1. An accurate disparity map is estimated by employ-

ing two novel anaglyph data costs which are based on local

color prior (LC) and reverse intensity distribution (RID).

To restore the missing color, we first transfer the known

color information from one image to another using the ob-

tained disparity. We then colorize the remaining pixels in

occluded regions using the diffusion-based colorization. A

novel weight kernel function based on the color similarity

is introduced to achieve accurate colorization. In summary,

this paper makes the following contributions.
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- Provide an iterative framework for obtaining an accu-

rate disparity map and colorized stereo images from a

single anaglyph image.

- Develop the new idea of (i) local color prior for pseudo

color reconstruction of missing channels and (ii) re-

verse intensity distribution for cross color channel cor-

relation.

- Provide a pair of robust anaglyph data costs to compute

the dense stereo correspondence and their integration.

2. Related Works

This paper relates to previous studies in stereo matching

with radiometric differences and colorization. Hirschmüller

and Scharstein [8] evaluated a few stereo matching costs

under radiometric differences. It is concluded that the cen-

sus filter [21] and mutual information (MI) [11] are the

most robust techniques that outperform the others. Heo et

al. [6, 7] proposed the adaptive normalized cross correla-

tion (ANCC) and modified mutual information to solve the

stereo matching problem with illumination changes. Al-

though their method obtains an accurate disparity with the

existence of significant photometric differences, it cannot

be directly applied to anaglyph stereo matching because

their method utilizes all information of three color chan-

nels which are assumed to be correlated with each other.

Bando et al. [2] proposed an algorithm to extract a depth

map from the coded aperture image. However, this method

is not accurate, especially when the scene is complex and

the anaglyph pair has large intensity variance.

During the last decade, several algorithms have been in-

troduced to colorize grayscale images or to edit the color

layout of images. Levin et al. [13] model the coloriza-

tion problem as an energy minimization function so that

sparse user scribbles are propagated to the whole image.

The energy function is based on the sparse affinity matrix

which encodes the color similarity of each pixel and its

neighbors. Yatziv and Sapiro [19] proposed a colorization

method based on the geodesic distance between neighbor-

ing pixels. The user input is iteratively propagated to the

neighboring pixel with the minimum distance. Gastal and

Oliveira [5] considered Levin’s colorization method [12] as

the application of edge-aware filtering, in which grayscale

images are colorized using a domain transform to achieve

fast performance. Levin’s colorization algorithm was addi-

tionally extended by Chen et al. [4]. Instead of using neigh-

borhood pixels in geometry space, they utilize the neigh-

borhood pixels in the feature domain. They compute the

k-nearest neighbors in the feature space and employ lo-

cally linear embedding (LLE) to compute the weight of each

neighbor.

Only two previous works exist in the field of anaglyph

colorization. Lin et al. [13] extended Bando’s algorithm by

applying a color prior to colorize an anaglyph image. How-

ever, this method is likely to fail when dealing with com-

plex scenes. In the notable work of Joulin and Kang [10],

an iterative framework was proposed using modified scale-

invariant feature transform (SIFT) flow [14], which is called

anaglyph SIFT (ASIFT) flow, and diffusion-based coloriza-

tion. They employ a colorization method similar to that of

Levin’s [12] but use a different and larger kernel size. How-

ever, their method fails when the computed correspondence

map is inaccurate. Note that both algorithms [10, 13] highly

rely on the performance of correspondence estimation. Fur-

thermore, both works only focus on anaglyph colorization

without reconstructing the accurate disparity map.

3. Anaglyph Stereo Matching

In this paper, the proposed stereo matching algorithm is

defined as an energy minimization problem in the MAP-

MRF framework [3] as follows:

E(f) =
∑

p

Dp(fp) +
∑

p

∑

q∈Np

Vpq(fp, fq) (1)

where fp and Np are the label and neighborhood pixels

of pixel p, respectively. Dp(fp) is the data cost which

measures how appropriate label fp is for a given pixel p.

Vpq(fp, fq) is the smoothness cost, which measures how

consistent a label fp is for a given pixel p with its neigh-

bor pixel q having a label fq . The optimal disparity result

can be obtained by minimizing the energy E(f) in Eq. (1)

using graph cuts [3].

As referred by Meltzer et al. [15], the energy function

is more important than the optimization algorithm for ob-

taining the optimal disparity result. Therefore, the proposed

framework designs accurate data costs that are robust for the

anaglyph image. Two novel data costs for anaglyph stereo

matching are proposed: adaptive data cost using local color

prior (DLC
p ) and modified census data cost based on reverse

intensity distribution (DRID
p ). To improve the accuracy, a

segmentation-based plane fitting data cost (DSeg
p ) [9] is em-

ployed additionally. The smoothness cost is modeled using

the truncated linear cost. The final data and smoothness

costs are defined as follows:

Dp(fp) = DLC
p (fp) +DRID

p (fp) +DSeg
p (fp) (2)

Vpq(fp, fq) = αmin(|fp − fq|, Vmax) (3)

where α is the smoothness weight and Vmax is the max-

imum disparity difference. The detail of each cost is de-

scribed in the following subsections.

3.1. Adaptive Data Cost using Local Color Prior

Conventional adaptive stereo matching [20] forces simi-

lar intensity assumption to obtain an accurate disparity map.
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Figure 2: Pseudo color reconstruction of a patch in Tsukuba data (p = (304,97)). (a) Left red patch; (b) Right cyan patches;

(c) Left pseudo color patches; (d) Right pseudo color patches.

However, the nature of anaglyph image does not satisfy the

assumption. Thus, we introduce a novel local color prior

to estimate the missing color channel (i.e. to reconstruct

pseudo color) so that it can make good use of the assump-

tion. We exploit color transfer method [16] to model the

prior. The pseudo color of a patch is reconstructed by lo-

cally transferring the known color channel from the corre-

sponding patch. For that reason, each patch has different

pseudo color depending on the disparity candidate. The lo-

cal color prior is the adaptive form of color transfer with

weight w(p, q) is defined as follows:

w(p, q) = exp(−
∆cpq

λc

−
∆spq

λs

) (4)

where ∆cpq and ∆spq are the color and spatial differences

between pixel p and q, respectively. λc and λs are the pa-

rameters that control how much each difference influences

the weight w(p, q). Then, adaptive mean µ̂ and standard

deviation σ̂ are computed as:

µ̂(p) =

∑

q∈Np

w(p, q)I(q)
∑

q∈Np

w(p, q)
(5)

σ̂(p) =

√

√

√

√

∑

q∈Np

w(p, q)∥I(q)− µ̂(p)∥
2

∑

q∈Np

w(p, q)
(6)

where I is the original intensity and Np is the local patch

centered at p. Finally, the pseudo intensity Ĩ is obtained by

computing:

Ĩt(q)|q∈Np
= (Is(q)− µ̂s(p))

σ̂t(p
′)

σ̂s(p)
+ µ̂t(p

′) (7)

where s and t denote the source and target color channels.
Given pixel p and label fp, the corresponding pixel in an-
other view is denoted by p′. For example, if we want to

compute the pseudo intensity of left green channel ĨLg , we

utilize the left red channel ILr as the source and right green
channel IRg as the target patch (s = red, t = green). The
pseudo colors are utilized together with the original colors

to measure the adaptive data cost. Adaptive data cost using
local color prior (DLC

p (fp)) is defined as follows:

e(q, q′) = min{|ILr (q)− Ĩ
R
r (q′)|+

|ĨLg (q)− I
R
g (q′)|+ |ĨLb (q)− I

R
b (q′)|, T}

(8)

D
LC
p (fp) =

∑
q∈Np,q

′∈N
p′
w(p, q)w(p′, q′)e(q, q′)

∑
q∈Np,q

′∈N
p′
w(p, q)w(p′, q′)

(9)

where {L,R} and {r, g, b} are the set of image positions

(left and right) and color channels, consecutively. e(q, q′)
is the pixel-based matching cost while T is the trunca-

tion value of the cost. Figure 2 shows an example of

pseudo color reconstruction (local color prior generation) of

a patch. It is revealed that the pseudo color of both left and

right patches are different depending on the disparity can-

didate (e.g. 16 disparity candidates for Tsukuba data). In

summary, we estimate the missing color of a patch with the

color information of corresponding patch. Thus, the color

similarity is preserved for each channel. Since we apply

adaptive color transfer, minimum cost is obtained when the

local structure is similar between corresponding patches.

Figure 3 (a) shows the data cost curve comparison of

the corresponding patches in Figure 2. It is shown that the

proposed adaptive data cost obtains the correct disparity as

its ground truth. Figure 4 (c) and (d) display the dispar-

ity map comparison with the conventional adaptive stereo

matching [20]. The proposed data cost achieves more pleas-

ing result because the local color prior satisfies the intensity

similarity assumption.

3.2. Reverse Intensity Distribution and Modified
Census Data Cost

An anaglyph image is comprised of color channels from

different views. Therefore, it is worth searching for a useful

factor for computing the correlation across different color

channels. For each individual color channel, modified cen-

sus filtering is performed to capture the relative intensity

distribution. Given pixel p and local patch Np centered at

p in single channel image I , the filter output F (p) is com-

puted by counting and comparing the number of brighter
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Figure 3: Data cost curve comparison of a patch in Tsukuba

data (red line denotes the ground truth). (a) Adaptive data

cost (p = (304,97)); (b) Modified census data cost (p =

(336,170)).

(a) (b) (c)

(d) (e) (f)

Figure 4: Disparity maps of each data cost (Tsukuba data).

(a) Left red image; (b) Right cyan image; (c) Result of pro-

posed adaptive data cost; (d) Result of conventional adap-

tive data cost [20]; (e) Result of proposed census data cost;

(f) Result of conventional census data cost [21].

and darker pixels in Np compared with the intensity of p.

The mathematical formulation of the filter output is given

by:

C(q)|q∈Np
=

{

1 if I(q) < I(p)

−1 otherwise
(10)

F (p) =

{

1 if
∑

q C(q) > 0

0 otherwise
(11)

where I(p) is the intensity of center pixel p. Consequently,

filter output F (p) encodes the intensity distribution at p,

thereby indicating whether p belongs to the brighter group

of pixels (i.e. F (p) = 1) or darker group of pixels (i.e.

F (p) = 0).

After performing filtering on three individual color chan-

nels, the filtered pixel value between a pair of color channels

(e.g. red to green and red to blue) is compared. If the values

are the same at the given pixel location, two channels have

coherent intensity distribution at the pixel. On the contrary,

if they are different, they have the reverse relative intensity,

which means that the local bright/dark relation between pix-

els is reversed. In this paper, this is called reverse intensity

(a) (b) (c) (d) (e) (f)

Figure 5: Corresponding left and right patches (us-

ing ground truth disparity). (a),(c),(e) Left red patches;

(b),(d),(f) Right cyan patches.

distribution. Figure 5 (a) and (b) show the patch pairs with

reverse intensity distribution.

To obtain accurate cross channel correlation value, we

introduce a modified census data cost based on the re-

verse intensity distribution. Given each pair of color

channels, two data costs are measured for corresponding

patches: reverse data cost (DR
p (fp)) and non-reverse data

cost (DNR
p (fp)). Then, the final modified census data cost

(DRID
p (fp)) is obtained by selecting the minimum data cost

as follows:

DNR
p (fp) =

∑

q∈Np,q′∈N
p′

C(q) = C(q′) (12)

DR
p (fp) =

∑

q∈Np,q′∈N
p′

C(q) ̸= C(q′) (13)

DRID
p (fp) = min{DNR

p (fp)|RG, D
R
p (fp)|RG, (14)

DNR
p (fp)|RB , D

R
p (fp)|RB}

where {RG,RB} is the set of cross color channel pairs. p′

is the corresponding pixel of pixel p with disparity label fp.

As shown in Figure 3 (b), the proposed census data cost ob-

tains smaller value at the ground truth disparity. Subjective

comparison is shown in Figure 4 (e) and (f). Modified cen-

sus data cost gains better results in the regions that are under

reverse intensity distribution.

3.3. Segmentation-based Plane Fitting Data Cost

The segmentation-based plane fitting data cost is used as

a soft constraint to produce more accurate results [9]. The

data cost using segmentation-based plane fitting (DSeg
p (fp))

is formulated as:

DSeg
p (fp) = |asxp + bsyp + cs − fp| (15)

where as, bs, and cs are the estimated 3D plane coefficients

of segment s to which pixel p belongs, and (xp, yp) are the

coordinates of pixel p in x and y directions. We refer to [9]

for details of the segmentation-based plane fitting data cost.

3.4. Data Cost Integration

The integration of two novel data costs is required be-

cause each data cost may have cost ambiguity depends on

the patch. The adaptive cost meets the ambiguity when

there is similar spatial structure with high weight value. On
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