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Abstract

This paper presents our work on “SNaCK,” a low-

dimensional concept embedding algorithm that combines

human expertise with automatic machine similarity kernels.

Both parts are complimentary: human insight can capture

relationships that are not apparent from the object’s visual

similarity and the machine can help relieve the human from

having to exhaustively specify many constraints. We show

that our SNaCK embeddings are useful in several tasks:

distinguishing prime and nonprime numbers on MNIST,

discovering labeling mistakes in the Caltech UCSD Birds

(CUB) dataset with the help of deep-learned features, cre-

ating training datasets for bird classifiers, capturing subjec-

tive human taste on a new dataset of 10,000 foods, and qual-

itatively exploring an unstructured set of pictographic char-

acters. Comparisons with the state-of-the-art in these tasks

show that SNaCK produces better concept embeddings that

require less human supervision than the leading methods.

1 Introduction

Supervised learning tasks form the backbone of many state-

of-the-art computer vision applications. They help re-

searchers classify, localize, and characterize actions and ob-

jects. However, if the researcher’s goal is instead to inter-

actively explore the latent structure of a dataset, discover

novel categories, or find labeling mistakes, it is unclear what

kind of supervision to use. Sometimes the data does not

fall into well-defined taxonomic categories, or perhaps it

is simply too expensive to collect labels for every object.

Sometimes the expert wishes to capture a concept—some

intuitive constraint that they cannot articulate—about how

the data should be structured, but does not have the time to

specify this concept formally. If we wish to build models

that capture concepts, we need a new approach.

Our overall goal is to generate a concept embedding.

Distances within this space should correspond with a hu-

man’s intuitive idea of how similar two objects are. Many

researchers use similar embeddings to enhance the per-

formance of classifiers [27, 9, 34], build retrieval sys-

Figure 1. Our SNaCK embeddings capture human expertise with

the help of machine similarity kernels. For example, an expert can

use this concept embedding of a subset of CUB-200 to quickly find

labeling mistakes. Red-headed Woodpeckers are visually dissim-

ilar to Pileated Woodpeckers, but SNaCK moved a Red-headed

Woodpecker into the Pileated Woodpecker cluster because of its

appearance. This is probably a labeling mistake in CUB-200,

and this SNaCK embedding helped us discover it. The cluster

of three visually similar vireo species in the embedding center may

be another good place to look for label problems.

tems [32, 23], and create visualizations that help experts

better understand high-dimensional spaces [10, 11].

Concepts cannot always be inferred from appear-

ance. Within the past few years, huge research advances

have begun to produce systems that are excellent at com-

paring images based on visual cues. For example, one

can imagine building a CNN to compare food dishes based

solely on their appearance. However, if the concept we wish

to capture is similarity in taste, the task becomes harder. Al-

though taste and appearance are often correlated, any poor

diner who has confused guacamole and wasabi knows that

foods that taste very different may look deceptively similar

because the strongest visual cues may not be reliable. This

particular taste difference is difficult to capture without ex-

pert guidance. Similarly, when classifying birds, the goal

is often not to group similar-looking birds together, but to

group birds of the same species together. Experts know that
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appearance is important for this classification task, but there

are often large visual differences between the appearance of

male and female birds of the same species or between juve-

niles and adults. In these cases, domain-specific expertise

can greatly improve the resulting embedding.

Expert annotations can be expensive to collect. In or-

der to capture abstract concepts known only by humans,

the expert must provide hints [1] to help guide the learn-

ing process. Unfortunately, asking experts to exhaustively

and authoritatively annotate the dataset is not always possi-

ble [3]. Further, hints are most useful when they are task-

specific [11]: if the user wishes to discover some relation-

ship that is not apparent between objects, they should be

able to specify whatever hints they feel would best capture

those constraints. Previous work that uses perceptual anno-

tations [32, 37] note that collecting all hints based on rela-

tive similarity comparisons can take quadratic or cubic cost.

Hiring actual domain experts is often out of the question,

and even crowdsourcing websites such as Mechanical Turk

can be prohibitively expensive.

It seems reasonable that one can use machine kernels

to speed up the process of collecting hints. In this work,

we show how to overcome the inherent human scalability

problems by using human hints to refine a concept embed-

ding generated by an automatic similarity kernel. Our main

contributions are as follows:

• We present a novel algorithm, “SNE-and-Crowd-

Kernel Embedding” (SNaCK), that combines expert

triplet hints with machine assistance to efficiently gen-

erate concept embeddings;

• We show how to use our SNaCK embeddings for tasks

such as visualization, concept labeling, and perceptual

organization, and show that SNaCK embeddings are

competitive with the state of the art in these tasks.

We also present the following minor contributions:

• A dataset of 950,000 crowdsourced perceptual similar-

ity annotations on 10,000 food dishes from Yummly;

• A deep-learned food classifier that greatly improves

upon the previous state-of-the-art performance on the

Food-101 dataset [7];

• A proof that two perceptual embedding algorithms in

common use, CKL and t-STE, are equivalent for the

common 2D case for certain parameter settings. To our

knowledge, this connection has never been acknowl-

edged or explored before.

2 Background and related work

Perceptual embeddings. Our work builds upon a large

body of existing perceptual embedding literature. Notably,

our method combines aspects of both t-Distributed Stochas-

tic Neighbor Embedding (t-SNE, from [31]) and Stochastic

Triplet Embedding (t-STE, from [32]). The objective and

motivation behind these approaches are fundamentally dif-

ferent: t-SNE creates a low-dimensional visualization using

Figure 2. Overview of our SNE-and-Crowd-Kernel (“SNaCK”)

embedding method. As input, SNaCK accepts a dataset of objects,

a similarity kernel K, and a set of expert constraints in the form

of “Object i should be closer to j than it is to k”, which may be

inferred from crowdsourcing or label information. The output is a

low-dimensional concept embedding that satisfies the expert hints

while preserving the structure of K.

an automatic kernel from a higher-dimensional space and

t-STE generates an embedding from scratch that satisfies

as many human-provided similarity constraints as possible.

Nevertheless, we show that they are complementary. Inter-

estingly, there is a strong mathematical similarity between

t-STE and the Crowd Kernel Learning (CKL) method de-

scribed in [29]; in fact, in the supplementary material, we

show that CKL and t-STE are equivalent for certain param-

eter choices. To our knowledge, this connection has not

been explored before.

Triplet constraints and other kinds of hints. In our

work, we use triplet constraints, where the crowd or the

expert provides tuples of the form (i, j, k) to indicate that

object i seems more similar to object j than i does to object

k. We take these constraints to mean that object i should

thus be closer to object j than i is to k in the desired con-

cept embedding. These relative comparisons allow the ex-

pert to directly specify perceptual constraints about objects.

When compared to other forms of supervision, triplets are

one of the most flexible options in practical use because they

do not rely on a priori knowledge, are invariant to scale,

and are stable between and within subjects. Consider other

forms of supervision: placing objects into category labels

may not map to the abstract concepts the expert wishes to

capture and it requires the entire taxonomy to be known up-

front. Even with unlimited time and a patient expert, the

label results may be subject to scrutiny: one human expert

solving the ImageNet Large Scale Visual Recognition Chal-

lenge [26] took approximately a minute to label each image

and still made 5.1% error. The CUB-200 [33] dataset also

has labeling errors, which we will show in Sec. 4.1.

Pairwise similarity judgments are another common form

of supervision, but they have own problems. The clas-

sic 7-point Likert scale induces quantization into the met-

ric and may not be reliable between people. Several re-

searchers [25, 17, 10] note that methods based on triplet

comparisons are more stable than such pairwise measures.

In an experiment comparing the speed and effectiveness of
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pairwise, triplet, and spatial arrangement embeddings, [10]

found that triplet comparisons yield the least variance of

human perceptual similarity judgments than other meth-

ods, though triplet tasks also took humans the longest to

complete. One disadvantage of triplet constraints is that

triplet embeddings require at least O(n3) triplet constraints

to be uniquely specified [18], even though many triplets are

strongly correlated and do not contribute much to the over-

all structure [27]. This is why we propose using a machine

vision system to do most of the heavy lifting and reduce the

number of required triplet constraints.

Incorporating human judgments in automatic sys-

tems. Of course, we are not the first researchers to show

the benefits of combining human and machine expertise.

For example, [9, 34] build a classification system by bring-

ing humans “into the loop” at runtime. Other work al-

lows humans to specify an attribute relationship to influ-

ence the label training [6]. These approaches are most

useful when classification is the end goal rather than vi-

sualization or perceptual organization. Another branch of

work starts from an automatically-generated distance ma-

trix and uses human constraints to further refine the recov-

ered clustering or distance metric, typically by asking the

human to provide pairwise “Must-link” or “Must-not-link”

constraints [22, 39, 40, 30, 41]. In some works, the human

can provide an attribute explanation for their choice [19].

In Sec. 4.1, we show that our approach is competitive with

many of these constrained clustering algorithms in a semi-

supervised labeling task.

Other particularly relevant contributions re-cast t-STE as

a multiple metric learning problem [42]. Here, the humans

are asked to evaluate multiple aspects of objects’ similarity

(eg. similarity of different parts), and the final embedding is

learned to jointly satisfy as many aspects as possible. Sim-

ilarly, [2] learns multiple maps from a single set of triplet

questions. Our work is similar in spirit, but our focus on

jointly learning both human and machine-judged similarity

rather than just multiple aspects of human similarity sets us

apart from these works and others such as [13], which fo-

cus on creating more efficient user interfaces to gather data

from crowdsourcing without using machine vision to accel-

erate the process.

Embeddings from deep learning and Siamese net-

works. Finally, an interesting branch of work revolves

around teaching CNNs to satisfy triplet questions as part of

the overall pipeline [35, 38]. One method based on this ap-

proach currently holds the state-of-the-art accuracy on the

LFW face verification challenge [27]. Methods like this

are very appealing if one wishes to build a classifier. Other

methods [14] train Siamese networks on pairwise distance

matrices to output the embedding directly. Though our

work does use deep learning as part of our pipeline, deep

learning is not necessary for our approach.

3 “SNE-and-Crowd-Kernel” (SNaCK)

embeddings

Our hybrid embedding algorithm, SNE-and-Crowd-Kernel

(SNaCK), jointly optimizes the objective functions of two

different low-dimensional embedding algorithms.1 The first

algorithm, t-SNE (t-Distributed Stochastic Neighbor Em-

bedding [31]), uses a distance matrix to construct a low-

dimensional embedding. Its goal is to ensure that objects

which are close in the original high-dimensional space are

also close in the low-dimensional output without constrain-

ing points that are far in the original space. The second

method, t-STE (Stochastic Triplet Embedding [32]), allows

experts to supply triplet constraints that draw from their do-

main knowledge and task-specific hints. We will show that

this surprisingly simple joint optimization can capture the

benefits of both objectives. See Fig. 2 for an overview.

3.1 Formulation

Consider N objects. We wish to produce a d-dimensional

embedding Y ∈ RN×d. Let K ∈ RN×N be a distance ma-

trix, and let T = {t1, . . . , tM} be a set of triplet constraints.

Each constraint tℓ = (i, j, k) implies that in the final em-

bedding, object i should be closer to object j than it is to

k, meaning ‖yi − yj‖
2 ≤ ‖yi − yk‖

2. According to [31],

the loss function for t-SNE can be interpreted as finding the

low-dimensional distribution of points that maximizes the

information gain from the original high-dimensional space.

CtSNE =
∑

i 6=j

pij log
pij
qij

, (1)

where

pj|i =
exp(−K2

ij/2σ
2
i )

∑

k 6=i exp(−K2
ik/2σ

2
i )

(2)

pij =
1

2N
(pj|i + pi|j) (3)

qij =
(1 + ‖yi − yj‖

2)−1

∑

k 6=l(1 + ‖yk − yl‖2)−1
(4)

and σi is chosen to satisfy certain perplexity constraints.

The loss function for t-STE, given in [32], can be inter-

preted as the joint probability of independently satisfying

all triplet constraints. It is defined as

CtSTE =
∑

(i,j,k)∈T

log ptSTE
(i,j,k), (5)

where

ptSTE
(i,j,k) =

(

1 +
‖yi−yj‖

2

α

)− 1+α
2

(

1 +
‖yi−yj‖2

α

)− 1+α
2

+
(

1 + ‖yi−yk‖2

α

)− 1+α
2

(6)

1Our code is available on the companion website, http://vision.

cornell.edu/se3/projects/concept-embeddings
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Interestingly, when α = 1 (as suggested in [32] for two-

dimensional visualizations), CtSTE becomes a special case

of the cost function CCKL from [29] for certain parameter

choices. We explore this relationship in the supplementary

material. Because they are equivalent, we use CtSTE in our

cost function, defined as

CSNaCK = λ · CtSTE + (1− λ) · CtSNE (7)

To optimize this cost, we use gradient descent on ∂CSNaCK

∂Y
.

Our implementation derives from the t-SNE implementa-

tion in scikit-learn, so we inherit their optimization

strategy. In particular, we use t-SNE’s early exaggera-

tion [31] heuristic for 100 iterations and then continue until

the 300th iteration.

The λ parameter specifies the relative contribution of the

machine-computed kernel and the human-provided triplet

constraints on the final embedding. For each experiment,

we pick λ up front such that the norm of δCtSTE

δY
is approx-

imately equal to δCtSNE

δY
in cross validation.

3.2 SNaCK example: MNIST

To briefly illustrate why this formulation is better than t-

STE or t-SNE alone, Fig. 3 shows a toy example on MNIST

data. In this example, suppose the expert wishes to cap-

ture the concept of primality by partitioning the dataset into

prime numbers {2, 3, 5, 7}, composite numbers {4, 6, 8, 9}
and {0, 1}. Also, for the purpose of this simple example, as-

sume that rather than labeling the digits directly, the expert

compares images based on concept similarity, i.e., primes

are more similar to primes than to other images. By run-

ning t-SNE on flattened pixel intensities, Fig. 3 (A) illus-

trates that the embedding does a reasonable job of cluster-

ing numbers by their label but clearly cannot understand

primality because this concept is not apparent from visual

appearance. To compensate, we sample triplet constraints

of the form (i, j, k) where i and j share the same concept

and k does not. However, we only sample 1,000 constraints

for these 2,000 images. t-STE (B) attempts to discover

the differences between the numbers in a “blind” fashion,

but since it cannot take advantage of any visual cues, the

underconstrained points are effectively random. If given

many more constraints, eventually t-STE can only collapse

everything into three points for each of the three abstract

concepts. Our SNaCK embedding (C) displays the desired

high-level concept grouping into primes/non-primes/others,

and it can capture the structure of each class. Points with

too few constraints are corrected by the t-SNE loss and the

t-STE loss captures the appropriate structure.

4 Experiments

Our MNIST example demonstrates SNaCK’s utility in a

domain where concepts can be derived from category la-

bels and everything is known a priori. How does SNaCK

Figure 3. A simple MNIST example to illustrate the advantages of

SNaCK’s formulation. Suppose an expert wishes to group MNIST

by some property that is not visually apparent, in this case: prime,

composite or {0, 1}. (A) shows t-SNE on 2,000 MNIST digits us-

ing flattened pixel intensities. (B) shows t-STE on 1,000 triplets

of the form (i, j, k), where i and j share the same concept but k
does not. (C) shows a SNaCK embedding using the same flattened

pixel intensities and the same triplet constraints. The SNaCK em-

bedding is the only one that captures the intra-class structure from

(A) and the desired abstract grouping of (B). See 3.2 for details.

perform on domains where a fixed taxonomy or fixed cat-

egory labels are not necessarily known up front? To ex-

plore this question, we perform a series of experiments:

first, we showcase SNaCK’s ability to help label a subset

of CUB-200 in a semi-supervised fashion. In this setting,

SNaCK learns concepts that are equivalent to category la-

bels and outperforms other semi-supervised learning algo-

rithms. Second, our experiments on a dataset of 10,000 un-

labeled food images demonstrate SNaCK’s ability to cap-

ture the concept of food taste using crowdsourcing. We

evaluate the embedding’s generalization error on a held-out

set of crowdsourced triplet constraints. Finally, we show-

case SNaCK’s ability to embed a set of pictographic char-

acters, showing how an expert can interactively explore and

refine the structure of an embedding where no prior knowl-

edge is available.

4.1 Incrementally labeling CUB-200-2011

In this scenario, we show how SNaCK embeddings can

help experts label a new dataset. Suppose an expert has

a large dataset with category annotations and an unlabeled

smaller set containing new classes similar to those they al-

ready know. The expert wishes to use their extensive pre-

existing knowledge to quickly label the new set with a min-

imum amount of human effort. Our goal is to show that

SNaCK allows the expert to collect high-quality labels more

quickly than other methods. Here, the “concepts” we learn

are equivalent to category labels. These experiments are in-

spired by [20]. See Fig. 4.

Figure 4. Experiment overview on CUB-200. See text for details.

Dataset. For this task, we use the “Caltech-UCSD Birds

200-2011” (CUB-200) dataset [33]. We assume the expert
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has access to all images and labels of 186 classes in the

dataset (to train a machine kernel) and wishes to quickly la-

bel a testing set of 14 classes of woodpeckers and vireos.

This subset contains 776 images and was defined in [12].

We only use profile-view bird images where a single eye

and the beak is visible. Images are rotated, scaled, and pos-

sibly flipped so the eye is on the left side of the image and

the beak is on the right side; part locations are collected us-

ing crowdsourcing. The image is then cropped to the head.

This is the same normalization strategy as [8].

Automatic similarity kernel. To generate K, we fine-

tune a CNN to a classification task on all images in the

186 known classes. This allows the expert to leverage

their extensive pre-existing dataset to speed up label col-

lection for the novel classes. Our network is a varia-

tion of the “Network-in-Network” model [21], which takes

cropped normalized bird heads as input and outputs a 186-

dimensional classification result. We started from the pre-

trained ImageNet model in the Caffe model zoo [16] and

fine-tuned the network for 20,000 iterations on an Amazon

EC2 GPU instance. To do this, we replaced the last layer

with a 186-class output and reduced the learning rate for

the other layers to a tenth of the previous value.2 Finally,

KCNN
i,j is the Euclidean distance between features in the

final layer before softmax. To evaluate the importance of

specialized kernels, we also compare this KCNN kernel to

Euclidean distances between pre-trained GoogLeNet [28]

features, and Euclidean distance between HOG features.

Expert constraints. To generate triplet constraints in

a semi-supervised fashion, we reveal the labels for n im-

ages of the dataset and sample all triplets between these im-

ages that satisfy same/different label constraints to generate

Tn = {(i, j, k) | ℓi = ℓj 6= ℓk,max(i, j, k) ≤ n}. This

allows us to vary the amount of expert effort required to la-

bel the novel images. Note that in this test, our concepts to

learn are equivalent to class labels, so all of our sampled

constraints are derived from ground truth. Our food ex-

periments, described in the next section, will demonstrate

SNaCK’s ability to learn more abstract concepts captured

from subjective human judgments.

Comparisons and metrics. To perform labeling with

SNaCK, we generate an embedding of all 776 images and

use KMeans to find clusters. To evaluate, we assign all

points within each discovered cluster to their most com-

mon ground truth label and calculate the accuracy of this

assignment. See Fig. 6 for example embeddings varying the

number of expert label annotations. We compare against

other semi-supervised learning and constrained cluster-

ing systems: Label Propagation [4], the multiclass ver-

sion of the Constrained Spectral Clustering KMeans (CSP-

2When trained using the standard training/testing protocol on all of

CUB-200, this kind of model achieves 74.91% classification accuracy,

which is comparable to the state-of-the-art [8].
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Figure 5. Incremental labeling accuracy of several semi-

supervised methods. X axis: how many labels are revealed to each

algorithm. Y axis: Dataset labeling accuracy. Error bars show

standard error of the mean (σ/
√
n) across five runs. With 14 clus-

ters, chance is ≈ 0.071. See Sec. 4.1 for details.
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Figure 6. Embedding examples on CUB-200 Woodpeckers and

Vireos, showing the “SNaCK” method with (left-to-right) 10, 50,

and 200 expert label annotations. Colors indicate ground truth

labels. As the number of expert annotations increases, clusters

within the SNaCK embedding become more consistent.

Kmeans) method described in [36], and Metric Pairwise-

Constrained KMeans (MPCKmeans) [5]. Label propaga-

tion uses KCNN and the n revealed labels. The constrained

clustering systems use KCNN and pairwise “Must-Link”

and “Cannot-Link” constraints as input, so we reveal n im-

age labels and sample all possible pairwise constraints be-

tween them. As baselines, we calculate CNN features and

try to cluster them with KMeans and spectral clustering,

which do not benefit from extra human effort. Finally, we

also compare against the cluster results of using K-Means

on a t-STE embedding from the same triplet constraints

used by SNaCK.

Results are shown in Fig. 5. SNaCK outperforms all

other algorithms, but label propagation and MPCKMeans

also perform well. CSPKmeans is eventually outpaced by

naively asking the expert for image labels, perhaps because

it was designed for the two-class setting rather than our

14-class case. These experiments show that t-STE bene-

fits from an automatic machine kernel (compare SNaCK to

t-STE), but we can improve the machine kernel with a small

number of expert annotations (compare KMeans or Spectral

Clustering to SNaCK).

Using a kernel that captures bird similarity well is partic-

ularly important for this task. All of the algorithms which

use KCNN generally outperform SNaCK when using a pre-
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trained GoogLeNet kernel. HOG features, which use no

learning, are only slightly better than naive labeling. Fi-

nally, t-STE cannot use any visual kernel, so it can only

consider the images the expert already revealed.

Sometimes the machine kernel disagrees with the expert

hints. This may happen for interesting reasons, such as mis-

takes in the training data. For example, Figure 1 shows

an instance of a Red-headed Woodpecker that was moved

into a cluster containing many Pileated Woodpeckers. Even

though the human constraints encourage this sample to lie

near similarly labeled examples, this individual looks over-

whelmingly similar to a Pileated Woodpecker, so the t-SNE

loss overpowered the t-STE constraints. If the embedding

is colored with ground truth labels, this mistake shows up

as a single differently-colored point in the expected cluster,

which is immediately apparent to an expert.

4.1.1 Discovering labels for semi-supervised

classifiers
Does better incremental labeling translate into increased

classification performance? In this scenario, we extend our

previous experiment: we use SNaCK to discover labels for

a training set and measure the accuracy of a simple SVM

classifier on a testing set. Our goal is to decide whether just

letting an expert reveal n labels and training on this smaller

set is better than revealing n labels and using SNaCK to dis-

cover the rest. Will a classifier trained on many noisy, dis-

covered labels perform differently than a classifier trained

on a smaller, perfect training set?

Dataset. This task uses the same set of 14 woodpeckers

and vireos from CUB-200 as before, but the procedure is

different. We split our set into 396 training and 380 testing

images using the same train/test split as CUB-200. We then

discover labels on the training images using varying num-

bers of expert annotations and train a linear SVM classifier

on all CNN features using the discovered labels. Finally, we

report accuracy on the 380 testing images. The idea is that

the quality of the discovered labels influences the accuracy

of the classifier: a poor labeling method will cause the clas-

sifier to be trained on incorrect labels. Because all methods

use the same type of classifier, we are evaluating the quality

of our discovered labels, not the classifier itself.

Comparisons. As a baseline, we compare SVM classi-

fiers trained on SNaCK-discovered labels to an SVM clas-

sifier trained on a smaller, better set of n correct labels

provided by expert ground truth. This corresponds to the

“Naive Human Sampling” method in Fig. 5. We also com-

pare baselines where the SVM training set labels are dis-

covered using KMeans, spectral clustering, and label prop-

agation.

Results are shown in Fig. 7. Classifiers trained on noisy

labels discovered from SNaCK embeddings significantly

outperform classifiers that are trained on smaller training

sets, even though many of SNaCK’s labels are incorrect.
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show standard error of the mean (σ/
√
n) across five runs. See

Sec. 4.1 for details.

This is particularly true for fewer than 50 annotations. Ac-

curacy of SNaCK, Label Propagation, and naive label sam-

pling saturates at about 85%, which is likely due to the lin-

ear SVM’s limited generalization ability.

Interestingly, classification accuracy of labels discov-

ered with MPCKMeans does not monotonically improve

with more expert annotations. This surprises us, but Fig. 5

does show that MPCKmeans saturates to a smaller value in

our semi-supervised labeling experiments, indicating that it

cannot perfectly satisfy (and thus does not benefit from) ad-

ditional constraints.

Using SNaCK, an expert can build a classifier that

achieves 78.8% classification accuracy by labeling 50 im-

ages (12.6% of the dataset). A standard SVM that achieves

this level of accuracy requires a training set of 95 perfectly

labeled images, showing that SNaCK can cut down the ex-

pert’s work load to build training sets for classifiers.

4.2 Experiments on Yummly-10k

In this scenario, we use SNaCK to generate embeddings of

food dishes. The goal is to create a concept embedding that

captures the concept of taste. Two foods should be close in

this embedding if they taste similar, according to subjective

human judgments. This is different from the earlier bird

experiments because we can no longer rely on labels or tax-

onomies to help refine the embedding; all expert hints must

come directly from unquantified human perception annota-

tions. See Fig. 9.

Figure 9. Experiment Overview for Yummly-10k. See text for

details.

Dataset. For this experiment, we used 10,000 food im-

ages from the Yummly recipe web site, dubbed Yummly-10k.

This data contains a variety of meals, appetizers, and snacks
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Figure 8. Left: Example SNaCK embedding on Yummly-10k, combining expertise from Kernel 2 (CNN features) and 950,000 crowd-

sourced triplet constraints. Middle/right: Close-ups of the embedding. On a large scale, SNaCK groups major food kinds together, such as

desserts, salad, and main courses. On a small scale, each food closely resembles the taste of its neighbors. See the supplementary material

version for larger versions of this figure.

from different cultures and styles. We filtered the images by

removing all images shorter or thinner than 300 pixels and

removed all drinks and non-edibles. As metadata, Yummly

includes weak ingredients lists and the title of the dish, but

it does not include food labels.

Automatic similarity kernels. SNaCK is not specific

to any specific kernel representation, so we compare two

kinds of similarity measures. Food Kernel 1 is a seman-

tic similarity measure of the best matching between two

foods’ ingredient lists, and Food Kernel 2 is a visual simi-

larity measure based on a convolutional neural network. To

create Kword2vec
i,j (Food Kernel 1), let Ii and Ij be food i and

j’s ingredients lists from Yummly. Let w(·) be an ingredi-

ent’s word2vec[24] representation, scaled to unit norm, and

let cost matrix C(a, b) = w(a) · w(b) for a ∈ Ii, b ∈ Ij .

Finally, let f : Ii → Ij be the maximum-weight assign-

ment between the two ingredient lists. Then, Kword2vec
i,j =

−
∑

a∈Ii
C(a, f(a)). This way, Food Kernel 1 determines

foods that share many common ingredients are more similar

than foods that have many dissimilar ingredients.

To build Food Kernel 2, we fine-tuned a CNN to pre-

dict a food label. Because Yummly-10k does not have any

labels, we train on the Food-101 dataset from [7]. Simi-

larly to our earlier bird experiments, our network is a vari-

ation of the “Network-in-Network” model trained to clas-

sify 101 different foods. It was trained for 20,000 itera-

tions on an Amazon EC2 GPU instance by replacing the

last layer and reducing the learning rate. The final kernel

is defined as the Euclidean distance between these CNN

features. Our CNN model provides an excellent kernel to

start from: when trained via the standard Food-101 pro-

tocol, this model achieves rank 1 classification accuracy

of 73.5%. The previous best accuracy on this dataset is

56.40% from [7]; the best non-CNN is 50.76%. Of course,

building a good classification model is not our focus, but

we report this accuracy to show that the automatic kernel

we use is effective at distinguishing different foods.

Expert annotation. Because we want our embedding
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Figure 10. Increasing the number of crowdsourced triplet con-

straints allows all methods to improve the embedding quality,

measured as the fraction of unsatisfied held-out triplet constraints

(“triplet generalization error”). However, SNaCK-based methods

converge much more quickly than t-STE and require less expert

annotation to get a better result.

to properly capture the concept of food taste, we collect

our expert annotations directly from humans on Amazon

Mechanical Turk using the crowdsourcing interface of [37].

For each screen, we show a reference food image i and a

grid of 12 food images. The human is asked to “Please

select 4 food images that taste similar to the reference

food i.” We then generate all possible triplet constraints

{(i, j, k), j ∈ S, k /∈ S}, where S is the user’s selection.

Each HIT has 10 screens and yields 320 triplet constraints.

In total, we collected 958,400 triplet constraints.3

Experiment design. There are no labels associated with

taste in our Yummly data, so we must use other metrics

to evaluate the quality of our perceptual embeddings. To

do this, we adopt the “Triplet Generalization Error” met-

ric common to previous work [15, 42, 32, 37]. We split all

triplet constraints into training and testing sets and generate

embeddings with varying numbers of training triplet con-

straints. Triplet generalization error is defined as the frac-

tion of violated testing triplet constraints, which measures

the embedding’s ability to generalize to constraints the ex-

3Triplets are available from the companion website,

http://vision.cornell.edu/se3/projects/

concept-embeddings

987

http://vision.cornell.edu/se3/projects/concept-embeddings
http://vision.cornell.edu/se3/projects/concept-embeddings


B

C D

A

Figure 11. An example GUI used to interactively explore and re-

fine concept embeddings. (A) shows a t-SNE embedding of Emoji

using pre-trained ImageNet features. The user selects a set of im-

ages (B) and indicates which ones share the same emotion (C).

For example, the user selected the smiling frog because it has a

similar emotion to the top left image. The updated SNaCK em-

bedding (D) moves smiling emoji away from unrelated images,

regardless of the artistic style of the faces. Additionally one of the

highlighted fearful faces, separate from the main cluster of faces in

(A) has moved to be near faces with a similar expression without

collecting triplets between them.

pert did not specify. We compare our two SNaCK kernels

to t-STE.

Results are shown in Fig. 10 and an example embed-

ding is shown in Fig. 8. As more triplet constraint anno-

tations become available, all methods produce embeddings

of higher quality. SNaCK with Kernel 2 eventually con-

verges to 28% while t-STE reaches 33% error. Note that t-

STE starts from random chance (50%) because it starts with

no information, while SNaCK-based methods initially start

with lower error because the Stochastic Neighbor loss on

the automatic kernel encourages an initial embedding that

contains some fine-grained information. Kernel 2 consis-

tently outperforms Kernel 1, indicating that in this experi-

ment, deep-learned visual features may be a better indica-

tion of food taste than the similarity of food ingredient lists.

However, even the “weaker” semantic ingredient informa-

tion provides a much better initial kernel than nothing at all.

4.3 Interactively discovering the structure of

pictographic character symbols

In this section we describe possible tools for exploring un-

labeled data. We chose to analyze a set of 887 pictographic

characters, colloquially known as Emoji. Using CNN fea-

tures pre-trained on ImageNet, we can create an embedding

that does a good job of grouping visually similar Emoji

together. However, if the goal is to capture the concept

of emotion within the set of Emoji, then similarity of vi-

sual features alone may be inadequate. For example, in

Fig. 11.A, a group of yellow faces are clustered at the upper

right, but this group contains different emotions and does

not contain similar images in other artistic styles.

To interactively refine the embedding, the expert selects

a reference Emoji and drags a box around several images.

The expert then indicates which of these images share the

same emotion as the reference. In the example in Fig. 11, a

smiling Emoji was selected and compared to all the Emoji

in the green box (Fig. 11.B). After two bounding box se-

lections and a few minutes of work, we are able to collect

20,000 triplets and separate many of the smiling Emoji from

the rest of the embedding. From here, we could further

inspect these Emoji and separate the emotion of laughing

from smiling.

As mentioned in the MNIST experiments, the SNaCK

embeddings are capable of taking advantage of visual cues

when triplet information is not available. An example of

this can be seen in Fig. 11.D. A fearful face with glasses is

moved from the left side of embedding to be near other faces

with similar expressions. SNaCK was able to do this with-

out requiring triplets to be collected between these faces.

These examples give a brief illustration of how SNaCK can

be useful for examining unlabeled data.

5 Conclusion

Our SNaCK algorithm can learn concept embeddings by

combining human expertise with machine similarity. We

showed that SNaCK can help experts quickly label new sets

of woodpeckers and vireos, build training sets for classi-

fiers in a semi-supervised fashion, and capture the percep-

tual structure of food taste. We also presented a snapshot of

a tool that can help experts interactively explore and refine a

set of pictographic characters. In the future, we will pursue

intelligent sampling for active learning of embeddings, and

will extend our system to explore large video datasets.
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