
Unsupervised Learning of Visual Representations using Videos

Xiaolong Wang, Abhinav Gupta

Robotics Institute, Carnegie Mellon University

Abstract

Is strong supervision necessary for learning a good

visual representation? Do we really need millions of

semantically-labeled images to train a Convolutional Neu-

ral Network (CNN)? In this paper, we present a simple yet

surprisingly powerful approach for unsupervised learning

of CNN. Specifically, we use hundreds of thousands of un-

labeled videos from the web to learn visual representations.

Our key idea is that visual tracking provides the supervi-

sion. That is, two patches connected by a track should have

similar visual representation in deep feature space since

they probably belong to the same object or object part. We

design a Siamese-triplet network with a ranking loss func-

tion to train this CNN representation. Without using a sin-

gle image from ImageNet, just using 100K unlabeled videos

and the VOC 2012 dataset, we train an ensemble of un-

supervised networks that achieves 52% mAP (no bound-

ing box regression). This performance comes tantalizingly

close to its ImageNet-supervised counterpart, an ensemble

which achieves a mAP of 54.4%. We also show that our

unsupervised network can perform competitively in other

tasks such as surface-normal estimation.

1. Introduction

What is a good visual representation and how can we

learn it? At the start of this decade, most computer vision

research focused on “what” and used hand-defined features

such as SIFT [32] and HOG [5] as the underlying visual

representation. Learning was often the last step where these

low-level feature representations were mapped to seman-

tic/3D/functional categories. However, the last three years

have seen the resurgence of learning visual representations

directly from pixels themselves using the deep learning

and Convolutional Neural Networks (CNNs) [28, 24, 23].

At the heart of CNNs is a completely supervised learning

paradigm. Often millions of examples are first labeled us-

ing Mechanical Turk followed by data augmentation to cre-

ate tens of millions of training instances. CNNs are then

trained using gradient descent and back propagation. But

one question still remains: is strong-supervision necessary

for training these CNNs? Do we really need millions of

semantically-labeled images to learn a good representation?

… … … …

Learning to Rank

Conv

Net

Conv

Net

Conv

Net

Query
(First Frame)

Tracked
(Last Frame)

Negative
(Random)

(a) Unsupervised Tracking in Videos

� , � ,
� , � ,

�: Distance in deep feature space

(b) Siamese-triplet Network (c) Ranking Objective

Figure 1. Overview of our approach. (a) Given unlabeled videos,

we perform unsupervised tracking on the patches in them. (b)

Triplets of patches including query patch in the initial frame of

tracking, tracked patch in the last frame, and random patch from

other videos are fed into our siamese-triplet network for train-

ing. (c) The learning objective: Distance between the query and

tracked patch in feature space should be smaller than the distance

between query and random patches.

It seems humans can learn visual representations using little

or no semantic supervision but our approaches still remain

completely supervised.

In this paper, we explore the alternative: how we can ex-

ploit the unlabeled visual data on the web to train CNNs

(e.g. AlexNet [24])? In the past, there have been several at-

tempts at unsupervised learning using millions of static im-

ages [26, 44] or frames extracted from videos [56, 48, 34].

The most common architecture used is an auto-encoder

which learns representations based on its ability to recon-

struct the input images [35, 3, 49, 37]. While these ap-

proaches have been able to automatically learn V1-like fil-

ters given unlabeled data, they are still far away from su-

pervised approaches on tasks such as object detection. So,

what is the missing link? We argue that static images them-

selves might not have enough information to learn a good

12794

visual representation. But what about videos? Do they have

enough information to learn visual representations? In fact,

humans also learn their visual representations not from mil-

lions of static images but years of dynamic sensory inputs.

Can we have similar learning capabilities for CNNs?

We present a simple yet surprisingly powerful approach

for unsupervised learning of CNNs using hundreds of thou-

sands of unlabeled videos from the web. Visual tracking is

one of the first capabilities that develops in infants and often

before semantic representations are learned1. Taking a leaf

from this observation, we propose to exploit visual track-

ing for learning CNNs in an unsupervised manner. Specifi-

cally, we track millions of “moving” patches in hundreds of

thousands of videos. Our key idea is that two patches con-

nected by a track should have similar visual representation

in deep feature space since they probably belong to the same

object. We design a Siamese-triplet network with ranking

loss function to train the CNN representation. This ranking

loss function enforces that in the final deep feature space

the first frame patch should be much closer to the tracked

patch than any other randomly sampled patch. We demon-

strate the strength of our learning algorithm using exten-

sive experimental evaluation. Without using a single image

from ImageNet, just 100K unlabeled videos and VOC 2012

dataset, we train an ensemble of AlexNet networks that

achieves 52% mAP (no bounding box regression). This per-

formance is similar to its ImageNet-supervised counterpart,

an ensemble which achieves 54.4% mAP. We also show that

our network trained using unlabeled videos achieves simi-

lar performance to its completely supervised counterpart on

other tasks such as surface normal estimation. We believe

this is the first time an unsupervised-pretrained CNN has

been shown so competitive; that too on varied datasets and

tasks. Specifically for VOC, we would like to put our re-

sults in context: this is the best results till-date by using

only PASCAL-provided annotations (next best is scratch at

44%).

2. Related Work

Unsupervised learning of visual representations has a

rich history starting from original auto-encoders work of

Olhausen and Field [35]. Most of the work in this area

can be broadly divided into three categories. The first

class of algorithms focus on learning generative models

with strong priors [20, 46]. These algorithms essentially

capture co-occurrence statistics of features. The second

class of algorithms use manually defined features such as

SIFT or HOG and perform clustering over training data

to discover semantic classes [42, 38]. Some of these re-

cent algorithms also focus on learning mid-level repre-

sentations rather than discovering semantic classes them-

1http://www.aoa.org/patients-and-public/good-vision-throughout-

life/childrens-vision/infant-vision-birth-to-24-months-of-age

selves [41, 6, 7]. The third class of algorithms and more

related to our paper is unsupervised learning of visual rep-

resentations from the pixels themselves using deep learning

approaches [21, 26, 44, 39, 29, 47, 9, 33, 2, 49, 8]. Starting

from the seminal work of Olhausen and Field [35], the goal

is to learn visual representations which are (a) sparse and

(b) reconstructive. Olhausen and Field [35] showed that us-

ing this criteria they can learn V1-like filters directly from

the data. However, this work only focused on learning a sin-

gle layer. This idea was extended by Hinton and Salakhut-

dinov [21] to train a deep belief network in an unsuper-

vised manner via stacking layer-by-layer RBMs. Similar to

this, Bengio et al. [3] investigated stacking of both RBMs

and autoencoders. As a next step, Le et al. [26] scaled up

the learning of multi-layer autoencoder on large-scale unla-

beled data. They demonstrated that although the network is

trained in an unsupervised manner, the neurons in high lay-

ers can still have high responses on semantic objects such

as human heads and cat faces. Sermanet et al. [39] applied

convolutional sparse coding to pre-train the model layer-by-

layer in unsupervised manner. The model is then fine-tuned

for pedestrian detection. In a contemporary work, Doersch

et al. [8] explored to use spatial context as a cue to perform

unsupervised learning for CNNs.

However, it is not clear if static images is the right way

to learn visual representations. Therefore, researchers have

started focusing on learning feature representations using

videos [11, 53, 27, 43, 56, 16, 48, 34, 45]. Early work

such as [56] focused on inclusion of constraints via video

to autoencoder framework. The most common constraint is

enforcing learned representations to be temporally smooth.

Similar to this, Goroshin et al. [16] proposed to learn auto-

encoders based on the slowness prior. Other approaches

such as Taylor et al. [48] trained convolutional gated RBMs

to learn latent representations from pairs of successive im-

ages. This was extended in a recent work by Srivastava et

al. [43] where they proposed to learn a LSTM model in an

unsupervised manner to predict future frames.

Finally, our work is also related to metric learning via

deep networks [51, 31, 4, 17, 15, 22, 54]. For example,

Chopra et al. [4] proposed to learn convolutional networks

in a siamese architecture for face verification. Wang et

al. [51] introduced a deep triplet ranking network to learn

fine-grained image similarity. Zhang et al. [55] optimized

the max-margin loss on triplet units to learn deep hashing

function for image retrieval. However, all these methods

required labeled data. Our work is also related to [30],

which used CNN pre-trained on ImageNet classification

and detection dataset as initialization, and performed semi-

supervised learning in videos to tackle object detection in

target domain. However, in our work, we propose an unsu-

pervised approach instead of semi-supervised algorithm.

2795

3. Overview

Our goal is to train convolutional neural networks using

hundreds of thousands of unlabeled videos from the Inter-

net. We follow the AlexNet architecture to design our base

network. However, since we do not have labels, it is not

clear what should be the loss function and how we should

optimize it. But in case of videos, we have another supervi-

sory information: time. For example, we all know that the

scene does not change drastically within a short time in a

video and same object instances appear in multiple frames

of the video. So, how do we exploit this information to train

a CNN-based representation?

We sample millions of patches in these videos and track

them over time. Since we are tracking these patches, we

know that the first and last tracked frames correspond to the

same instance of the moving object or object part. There-

fore, any visual representation that we learn should keep

these two data points close in the feature space. But just us-

ing this constraint is not sufficient: all points can be mapped

to a single point in feature space. Therefore, for training our

CNN, we sample a third patch which creates a triplet. For

training, we use a loss function [51] that enforces that the

first two patches connected by tracking are closer in feature

space than the first one and a random one.

Training a network with such triplets converges fast since

the task is easy to overfit to. One way is to increase the

number of training triplets. However, after initial conver-

gence most triplets satisfy the loss function and therefore

back-propagating gradients using such triplets is inefficient.

Instead, analogous to hard-negative mining, we select the

third patch from multiple patches that violates the constraint

(loss is maximum). Selecting this patch leads to more

meaningful gradients for faster learning.

4. Patch Mining in Videos

Given a video, we want to extract patches of interest

(patches with motion in our case) and track these patches to

create training instances. One obvious way to find patches

of interest is to compute optical flow and use the high mag-

nitude flow regions. However, since YouTube videos are

noisy with a lot of camera motion, it is hard to localize

moving objects using simple optical flow magnitude vec-

tors. Thus we follow a two-step approach: in the first step,

we obtain SURF [1] interest points and use Improved Dense

Trajectories (IDT) [50] to obtain motion of each SURF

point. Note that since IDT applies a homography estimation

(video stabilization) method, it reduces the problem caused

by camera motion. Given the trajectories of SURF inter-

est points, we classify these points as moving if the flow

magnitude is more than 0.5 pixels. We also reject frames

if (a) very few (< 25%) SURF interest points are classified

as moving because it might be just noise; (b) majority of

SURF interest points (> 75%) are classified as moving as

… …
Query

(First Frame)

Tracked

(Last Frame)

Sliding Window Searching

Tracking

Small Motion Camera Motion

Figure 2. Given the video about buses (the “bus” label are not

utilized), we perform IDT on it. red points represents the SURF

feature points, green represents the trajectories for the points. We

reject the frames with small and large camera motions (top pairs).

Given the selected frame, we find the bounding box containing

most of the moving SURF points. We then perform tracking. The

first and last frame of the track provide pair of patches for training

CNN.

it corresponds to moving camera. Once we have extracted

moving SURF interest points, in the second step, we find the

best bounding box such that it contains most of the moving

SURF points. The size of the bounding box is set as h×w,

and we perform sliding window with it in the frame. We

take the bounding box which contains the most number of

moving SURF interest points as the interest bounding box.

In the experiment, we set h = 227, w = 227 in the frame

with size 448× 600. Note that these patches might contain

objects or part of an object as shown in Figure 2.

Tracking. Given the initial bounding box, we perform

tracking using the KCF tracker [19]. After tracking along 30

frames in the video, we obtain the second patch. This patch

acts as the similar patch to the query patch in the triplet.

Note that the KCF tracker does not use any supervised in-

formation except for the initial bounding box.

5. Learning Via Videos

In the previous section, we discussed how we can use

tracking to generate pairs of patches. We use this procedure

to generate millions of such pairs (See Figure 3 for exam-

ples of pairs of patches mined). We now describe how we

use these as training instances for our visual representation

learning.

5.1. Siamese Triplet Network

Our goal is to learn a feature space such that the query

patch is closer to the tracked patch as compared to any other

randomly sampled patch. To learn this feature space we de-

sign a Siamese-triplet network. A Siamese-triplet network

consist of three base networks which share the same param-

2796

Query

(First Frame)

Tracked

(Last Frame)

Query

(First Frame)

Tracked

(Last Frame)

Patch

Pairs

Patch

Pairs

Figure 3. Examples of patch pairs we obtain via patch mining in the videos.

eters (see Figure 4). For our experiments, we take the image

with size 227 × 227 as input. The base network is based

on the AlexNet architecture [24] for the convolutional lay-

ers. Then we stack two fully connected layers on the pool5

outputs, whose neuron numbers are 4096 and 1024 respec-

tively. Thus the final output of each single network is 1024
dimensional feature space f(·). We define the loss function

on this feature space.

5.2. Ranking Loss Function

Given the set of patch pairs S sampled from the video,

we propose to learn an image similarity model in the form

of CNN. Specifically, given an image X as an input for the

network, we can obtain its feature in the final layer as f(X).
Then, we define the distance of two image patches X1, X2

based on the cosine distance in the feature space as,

D(X1, X2) = 1−
f(X1) · f(X2)

‖f(X1)‖‖f(X2)‖
. (1)

We want to train a CNN to obtain feature representation

f(·), so that the distance between query image patch and the

tracked patch is small and the distance between query patch

and other random patches is encouraged to be larger. For-

mally, given the patch set S, where Xi is the original query

patch (first patch in tracked frames), X+

i
is the tracked patch

and X−

i
is a random patch from a different video, we want

to enforce D(Xi, X
−

i
) > D(Xi, X

+

i
). Therefore, the loss

of our ranking model is defined by hinge loss as,

L(Xi, X
+

i
, X−

i
) = max{0, D(Xi, X

+

i
)−D(Xi, X

−

i
) +M}, (2)

where M represents the gap parameters between two dis-

tances. We set M = 0.5 in the experiment. Then our objec-

tive function for training can be represented as,

min
W

λ

2
‖ W ‖22 +

N∑

i=1

max{0, D(Xi, X
+

i
)−D(Xi, X

−

i
) +M}, (3)

where W is the parameter weights of the network, i.e., pa-

rameters for function f(·). N is the number of the triplets of

samples. λ is a constant representing weight decay, which

is set to λ = 0.0005.

5.3. Hard Negative Mining for Triplet Sampling

One non-trivial part for learning to rank is the process of

selecting negative samples. Given a pair of similar images

Xi, X
+

i
, how can we select the patch X−

i
, which is a nega-

tive match to Xi, from the large pool of patches? Here we

first select the negative patches randomly, and then find hard

examples (in a process analogous to hard negative mining).

Random Selection: During learning, we perform

mini-batch Stochastic Gradient Descent (SGD). For each

Xi, X
+

i
, we randomly sample K negative matches in the

same batch B, thus we have K sets of triplet of samples.

For every triplet of samples, we calculate the gradients over

three of them respectively and perform back propagation.

Note that we shuffle all the images randomly after each

epoch of training, thus the pair of patches Xi, X
+

i
can look

at different negative matches each time.

Hard Negative Mining: While one can continue to sam-

ple random patches for creating the triplets, it is more effi-

cient to search the negative patches smartly. After 10 epochs

of training using negative data selected randomly, we want

to make the problem harder to get more robust feature rep-

resentations. Analogous to hard-negative mining procedure

in SVM, where gradient descent learning is only performed

on hard-negatives (not all possible negative), we search for

��+

��−

��
�ሺ��+ሻ

�ሺ��−ሻ
�ሺ��ሻ Ranking

Loss

Layer

Shared Weights

Shared Weights

96
256 384 384 256

4096 1024

Figure 4. Siamese-triplet network. Each base network in the

Siamese-triplet network share the same architecture and parameter

weights. The architecture is rectified from AlexNet by using only

two fully connected layers. Given a triplet of training samples,

we obtain their features from the last layer by forward propagation

and compute the ranking loss.

2797

Figure 5. Top response regions for the pool5 neurons of our

unsupervised-CNN. Each row shows top response of one neuron.

the negative patch such that the loss is maximum and use

that patch to compute and back propagate gradients.

Specifically, the sampling of negative matches is similar

as random selection before, except that this time we select

according to the loss(Eq. 2). For each pair Xi, X
+

i
, we cal-

culate the loss of all other negative matches in batch B, and

select the top K ones with highest losses. We apply the loss

on these K negative matches as our final loss and calculate

the gradients over them. Since the feature of each sample

is already computed after the forward propagation, we only

need to calculate the loss over these features, thus the extra

computation for hard negative mining is very small. For the

experiments, we use K = 4. Note that while some of the

negatives might be semantically similar patches, our em-

bedding constraint only requires same instance examples to

be closer than category examples (which can be closer than

other negatives in the space).

5.4. Adapting for Supervised Tasks

Given the CNN learned by using unsupervised data, we

want to transfer the learned representations to the tasks with

supervised data. In our experiments, we apply our model

to two different tasks including object detection and sur-

face normal estimation. In both tasks we take the base net-

work from our Siamese-triplet network and adjust the fully

connected layers and outputs accordingly. We introduce

two ways to fine-tune and transfer the information obtained

from unsupervised data to supervised learning.

One straight forward approach is directly applying our

ranking model as a pre-trained network for the target task.

More specifically, we use the parameters of the convolu-

tional layers in the base network of our triplet architecture

as initialization for the target task. For the fully connected

layers, we initialize them randomly. This method of trans-

ferring feature representation is very similar to the approach

applied in RCNN [14]. However, RCNN uses the network

pre-trained with ImageNet Classification data. In our case,

the unsupervised ranking task is quite different from object

detection and surface normal estimation. Thus, we need

to adapt the learning rate to the fine-tuning procedure in-

troduced in RCNN. We start with the learning rate with

ǫ = 0.01 instead of 0.001 and set the same learning rate

for all layers. This setting is crucial since we want the pre-

trained features to be used as initialization of supervised

learning, and adapting the features to the new task.

In this paper, we explore one more approach to

transfer/fine-tune the network. Specifically, we note that

there might be more juice left in the millions of unsuper-

vised training data (which could not be captured in the ini-

tial learning stage). Therefore, we use an iterative fine-

tuning scheme. Given the initial unsupervised network, we

first fine-tune using the PASCAL VOC data. Given the new

fine-tuned network, we use this network to re-adapt to rank-

ing triplet task. Here we again transfer convolutional pa-

rameters for re-adapting. Finally, this re-adapted network is

fine-tuned on the VOC data yielding a better trained model.

We show in the experiment that this circular approach gives

improvement in performance. We also notice that after two

iterations of this approach the network converges.

5.5. Model Ensemble

We proposed an approach to learn CNNs using unlabeled

videos. However, there is absolutely no limit to generating

training instances and pairs of tracked patches (YouTube

has more than billions of videos). This opens up the possi-

bility of training multiple CNNs using different sets of data.

Once we have trained these CNNs, we append the fc7 fea-

tures from each of these CNNs to train the final SVM. Note

that the ImageNet trained models also provide initial boost

for adding more networks (See Table 1).

5.6. Implementation Details

We apply mini-batch SGD in training. As the 3 networks

share the same parameters, instead of inputting 3 samples

to the triplet network, we perform the forward propagation

for the whole batch by a single network and calculate the

loss based on the output feature. Given a pair of patches

Xi, X
+

i
, we randomly select another patch X−

i
∈ B which

is extracted in a different video from Xi, X
+

i
. Given their

features from forward propagation f(Xi), f(X
+

i
), f(X−

i
),

we can compute the loss as Eq. 2.

For unsupervised learning, we download 100K videos

from YouTube using the URLs provided by [30]. [30] used

thousands of keywords to retrieve videos from YouTube.

Note we drop the labels associated with each video. By per-

forming our patch mining method on the videos, we obtain

8 million image patches. We train three different networks

separately using 1.5M, 5M and 8M training samples. We

report numbers based on these three networks. To train our

siamese-triplet networks, we set the batch size as |B| = 100,

2798

(a) Unsupervised Pre-trained

(b) Fine-tuned

Figure 6. Conv1 filters visualization. (a) The filters of the first

convolutional layer of the siamese-triplet network trained in unsu-

pervised manner. (b) By fine-tuning the unsupervised pre-trained

network on PASCAL VOC 2012, we obtain sharper filters.

the learning rate starting with ǫ0 = 0.001. We first train our

network with random negative samples at this learning rate

for 150K iterations, and then we apply hard negative min-

ing based on it. For training on 1.5M patches, we reduce

the learning rate by a factor of 10 at every 80K iterations

and train for 240K iterations. For training on 5M and 8M

patches, we reduce the learning rate by a factor of 10 at ev-

ery 120K iterations and train for 350K iterations.

6. Experiments

We demonstrate the quality of our learned visual rep-

resentations with qualitative and quantitative experiments.

Qualitatively, we show the convolutional filters learned in

layer 1 (See Figure 6). Our learned filters are similar to V1

though not as strong. However, after fine-tuning on PAS-

CAL VOC 2012, these filters become quite strong. We also

show that the underlying representation learns a reasonable

nearness metric by showing what the units in Pool5 layers

represent (See Figure 5). Ignoring boundary effects, each

pool5 unit has a receptive field of 195 × 195 pixels in the

original 227 × 227 pixel input. A central pool5 unit has a

nearly global view, while one near the edge has a smaller,

clipped support. Each row displays top 6 activations for a

pool5 unit. We have chosen 5 pool5 units for visualization.

For example, the first neuron represents animal heads, sec-

ond represents potted plant, etc. This visualization indicates

the nearness metric learned by the network since each row

corresponds to similar firing patterns inside the CNN. Our

unsupervised networks are available for download.

6.1. Unsupervised CNNs without Finetuning
First, we demonstrate that the unsupervised-CNN rep-

resentation learned using videos (without fine-tuning) is

reasonable. We perform Nearest Neighbors (NN) using

ground-truth (GT) windows in VOC 2012 val set as query.

The retrieval-database consists of all selective search win-

dows (more than 0.5 overlap with GT windows) in VOC

2012 train set. See Figure 7 for qualitative results. Our

unsupervised-CNN is far superior to a random AlexNet ar-

chitecture and the results are quite comparable to AlexNet

trained on ImageNet.

Quantitatively, we measure the retrieval rate by counting

number of correct retrievals in top-K (K=20) retrievals. A

retrieval is correct if the semantic class for retrieved patch

and query patch are the same. Using our unsupervised-CNN

(Pool5 features) without fine-tuning and cosine distance, we

obtain 40% retrieval rate. Our performance is significantly

better as compared to 24% by ELDA [18] on HOG and

19% by AlexNet with random parameters (our initializa-

tion). This clearly demonstrates our unsupervised network

learns a good visual representation compared to a random

parameter CNN. As a baseline, ImageNet CNN performs

62% (but note it already learns on semantics).

We also evaluate our unsupervised-CNN without fine-

tuning for scene classification task on MIT Indoor 67 [36].

We train a linear classifier using softmax loss. Using

pool5 features from unsupervised-CNN without fine-tuning

gives 41% classification accuracy compared to 21% for

GIST+SVM and 16% for random AlexNet. ImageNet-

trained AlexNet has 54% accuracy. We also provide object

detection results without fine-tuning in the next section.

6.2. Unsupervised CNNs with Finetuning

Next, we evaluate our approach by transferring the fea-

ture representation learned in unsupervised manner to the

tasks with labeled data. We focus on two challenging prob-

lems: object detection and surface normal estimation.

6.2.1 Object Detection

For object detection, we perform our experiments on PAS-

CAL VOC 2012 dataset [10]. We follow the detection

pipeline introduced in RCNN [14], which borrowed the

CNNs pre-trained on other datasets and fine-tuned on it with

the VOC data. The fine-tuned CNN was then used to extract

features followed by training SVMs for each object class.

However, instead of using ImageNet pre-trained network as

initialization in RCNN, we use our unsupervised-CNN. We

fine-tune our network with the trainval set (11540 images)

and train SVMs with them. Evaluation is performed in the

standard test set (10991 images).

At the fine-tuning stage, we change the output to 21
classes and initialize the convolutional layers with our unsu-

pervised pre-trained network. To fine-tune the network, we

start with learning rate as ǫ = 0.01 and reduce the learning

rate by a factor of 10 at every 80K iterations. The network

is fine-tuned for 200K iterations. Note that for all the exper-

iments, no bounding box regression is performed.

2799

Query (a) Random AlexNet (b) Imagenet AlexNet (c) Unsupervised AlexNet

Figure 7. Nearest neighbors results. Given the query object from VOC 2012 val, we retrieve the NN from VOC 2012 train via calculating

the cosine distance on pool5 feature space. We compare the results of 3 different models: (a) AlexNet with random parameters; (b) AlexNet

trained with Imagenet data; (c) AlexNet trained using our unsupervised method on 8M data.

Table 1. mean Average Precision (mAP) on VOC 2012. “external” column shows the number of patches used to pre-train unsupervised-CNN.

VOC 2012 test external aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

scratch 0 66.1 58.1 32.7 23.0 21.8 54.5 56.4 50.8 21.6 42.2 31.8 49.2 49.8 61.6 52.1 25.1 52.6 31.3 50.0 49.1 44.0

scratch (3 ensemble) 0 68.7 61.2 36.1 25.7 24.3 58.9 58.8 55.3 24.4 43.5 36.7 53.0 53.8 65.6 54.3 27.3 53.5 38.3 54.6 51.8 47.3

unsup + ft 1.5M 68.8 62.1 34.7 25.3 26.6 57.7 59.6 56.3 22.0 42.6 33.8 52.3 50.3 65.6 53.9 25.8 51.5 32.3 51.7 51.8 46.2

unsup + ft 5M 69.0 64.0 37.1 23.6 24.6 58.7 58.9 59.6 22.3 46.0 35.1 53.3 53.7 66.9 54.1 25.4 52.9 31.2 51.9 51.8 47.0

unsup + ft 8M 67.6 63.4 37.3 27.6 24.0 58.7 59.9 59.5 23.7 46.3 37.6 54.8 54.7 66.4 54.8 25.8 52.5 31.2 52.6 52.6 47.5

unsup + ft (2 ensemble) 6.5M 72.4 66.2 41.3 26.4 26.8 61.0 61.9 63.1 25.3 51.0 38.7 58.1 58.3 70.0 56.2 28.6 56.1 38.5 55.9 54.3 50.5

unsup + ft (3 ensemble) 8M 73.4 67.3 44.1 30.4 27.8 63.3 62.6 64.2 27.7 51.1 40.6 60.8 59.2 71.2 58.5 28.2 55.6 39.4 58.0 56.1 52.0

unsup + iterative ft 5M 67.7 64.0 41.3 25.3 27.3 58.8 60.3 60.2 24.3 46.7 34.4 53.6 53.8 68.2 55.7 26.4 51.1 34.3 53.4 52.3 48.0

RCNN 70K 72.7 62.9 49.3 31.1 25.9 56.2 53.0 70.0 23.3 49.0 38.0 69.5 60.1 68.2 46.4 17.5 57.2 46.2 50.8 54.1 50.1

RCNN 70K (2 ensemble) 75.3 68.3 53.1 35.2 27.7 59.6 54.7 73.4 26.5 53.0 42.2 73.1 66.1 71.0 48.5 21.7 59.2 50.8 55.2 58.0 53.6

RCNN 70K (3 ensemble) 74.6 68.7 54.9 35.7 29.4 61.0 54.4 74.0 28.4 53.6 43.0 74.0 66.1 72.8 50.3 20.5 60.0 51.2 57.9 58.0 54.4

RCNN 200K (big stepsize) 73.3 67.1 46.3 31.7 30.6 59.4 61.0 67.9 27.3 53.1 39.1 64.1 60.5 70.9 57.2 26.1 59.0 40.1 56.2 54.9 52.3

We compare our method with the model trained from

scratch as well as using ImagNet pre-trained network. No-

tice that the results for VOC 2012 reported in RCNN [14]

are obtained by only fine-tuning on the train set without

using the val set. For fair comparison, we fine-tuned the

ImageNet pre-trained network with VOC 2012 trainval set.

Moreover, as the step size of reducing learning rate in

RCNN [14] is set to 20K and iterations for fine-tuning is

70K, we also try to enlarge the step size to 50K and fine-

tune the network for 200K iterations. We report the results

for both of these settings.

Single Model. We show the results in Table 1. As a

baseline, we train the network from scratch on VOC 2012

dataset and obtain 44% mAP. Using our unsupervised net-

work pre-trained with 1.5M pair of patches and then fine-

tuned on VOC 2012, we obtain mAP of 46.2% (unsup+ft,

external data = 1.5M). However, using more data, 5M

and 8M patches in pre-training and then fine-tune, we can

achieve 47% and 47.5% mAP. These results indicate that

our unsupervised network provides a significant boost as

compared to the scratch network. More importantly, when

more unlabeled data is applied, we can get better perfor-

mance (3.5% boost compared to training from scratch).

Model Ensemble. We also try combining different mod-

els using different sets of unlabeled data in pre-training. By

ensembling two fine-tuned networks which are pre-trained

using 1.5M and 5M patches, we obtained a boost of 3.5%

comparing to the single model, which is 50.5%(unsup+ft

(2 ensemble)). Finally, we ensemble all three different net-

works pre-trained with different sets of data, whose size are

1.5M, 5M and 8M respectively. We get another boost and

reach 52% mAP (unsup+ft (3 ensemble)).

Baselines. We compare our approach with RCNN [14]

which uses ImageNet pre-trained models. Following the

procedure in [14], we obtain 50.1% mAP (RCNN 70K) by

setting the step size to 20K and fine-tuning for 70K itera-

tions. To generate a model ensemble, the CNNs are first

trained on the ImageNet dataset separately, and then they

are fine-tuned with the VOC 2012 dataset. The result of

ensembling two of these networks is 53.6% mAP (RCNN

70K (2 ensemble)). If we ensemble three networks, we get

a mAP of 54.4%. For fair of comparison, we also fine-

tuned the ImageNet pre-trained model with larger step size

(50K) and more iterations (200K). The result is 52.3% mAP

(RCNN 200K (big stepsize)). Note that while ImageNet

network shows diminishing returns with ensembling since

the training data remains similar, in our case since every

network in the ensemble looks at different sets of data, we

get huge performance boosts.

Exploring a better way to transfer learned represen-

tation. Given our fine-tuned model using 5M patches in

pre-training (unsup+ft, external = 5M), we use it to re-learn

and re-adapt to the unsupervised triplet task. After that, the

network is re-applied to fine-tune on VOC 2012. The final

2800

Table 2. Results on NYU v2 for per-pixel surface normal estimation, eval-

uated over valid pixels.

(Lower Better) (Higher Better)

Mean Median 11.25
◦

22.5
◦

30
◦

scratch 38.6 26.5 33.1 46.8 52.5

unsup + ft 34.2 21.9 35.7 50.6 57.0

ImageNet + ft 33.3 20.8 36.7 51.7 58.1

UNFOLD [13] 35.1 19.2 37.6 53.3 58.9

Discr. [25] 32.5 22.4 27.4 50.2 60.2

3DP (MW) [12] 36.0 20.5 35.9 52.0 57.8

result for this single model is 48% mAP (unsup + iterative

ft), which is 1% better than the initial fine-tuned network.

Unsupervised network without fine-tuning: We also

perform object detection without fine-tuning on VOC 2012.

We extract pool5 features using our unsupervised-CNN and

train SVM on top of it. We obtain mAP of 26.1% using our

unsupervised network (training with 8M data). The ensem-

ble of two unsupervised-network (training with 5M and 8M

data) gets mAP of 28.2%. As a comparison, Imagenet pre-

trained network without fine-tuning gets mAP of 40.4%.

6.2.2 Surface Normal Estimation

To illustrate that our unsupervised representation can be

generalized to different tasks, we adapt the unsupervised

CNN to the task of surface normal estimation from a RGB

image. In this task, we want to estimate the orienta-

tion of the pixels. We perform our experiments on the

NYUv2 dataset [40], which includes 795 images for train-

ing and 654 images for testing. Each image is has corre-

sponding depth information which can be used to generate

groundtruth surface normals. For evaluation and generating

the groundtruth, we adopt the protocols introduced in [12]

which is used by different methods [12, 25, 13] on this task.

To apply deep learning to this task, we followed the same

form of outputs and loss function as the coarse network

mentioned in [52]. Specifically, we first learn a codebook

by performing k-means on surface normals and generate 20

codewords. Each codeword represents one class and thus

we transform the problem to 20-class classification for each

pixel. Given a 227× 227 image as input, our network gen-

erates surface normals for the whole scene. The output of

our network is 20× 20 pixels, each of which is represented

by a distribution over 20 codewords. Thus the dimension of

output is 20× 20× 20 = 8000.

The network architecture for this task is also based on

the AlexNet. To relieve over-fitting, we only stack two fully

connected layers with 4096 and 8000 neurons on the pool5

layer. During training, we initialize the network with the

unsupervised pre-trained network (single network using 8M

external data). We use the same learning rate 1.0 × 10−6

as [52] and fine-tune with 10K iterations given the small

number of training data. Note that unlike [52], we do not

utilize any data from the videos in NYU dataset for training.

Figure 8. Surface normal estimation results on NYU dataset. For

visualization, we use green for horizontal surface, blue for facing

right and red for facing left, i.e., blue → X; green → Y; red → Z.

For comparison, we also trained networks from scratch

as well as using ImageNet pre-trained. For evaluation, we

report mean and median error (in degrees). We also report

percentage of pixels with less than 11.25, 22.5 and 30 de-

gree errors. We show our qualitative results in in Figure 8.

and quantitative results in Table 2. Our approach (unsup +

ft) is significantly better than network trained from scratch

and comes very close to Imagenet-pretrained CNN (∼ 1%).

7. Discussion and Conclusion
We have presented an approach to train CNNs in an un-

supervised manner using videos. Specifically, we track mil-

lions of patches and learn an embedding using CNN that

keeps patches from same track closer in the embedding

space as compared to any random third patch. Our unsuper-

vised pre-trained CNN fine-tuned using VOC training data

outperforms CNN trained from scratch by 3.5%. An ensem-

ble version of our approach outperforms scratch by 4.7%
and comes tantalizingly close to an Imagenet-pretrained

CNN (within 2.5%). We believe this is an extremely sur-

prising result since until recently semantic supervision was

considered a strong requirement for training CNNs. We be-

lieve our successful implementation opens up a new space

for designing unsupervised learning algorithms for CNN

training.

Acknowledgement: This work was partially supported by ONR MURI

N000141010934 and NSF IIS 1320083. This material was also based on

research partially sponsored by DARPA under agreement number FA8750-

14-2-0244. The U.S. Government is authorized to reproduce and distribute

reprints for Governmental purposes notwithstanding any copyright nota-

tion thereon. The views and conclusions contained herein are those of the

authors and should not be interpreted as necessarily representing the offi-

cial policies or endorsements, either expressed or implied, of DARPA or

the U.S. Government. The authors would like to thank Yahoo! and Nvidia

for the compute cluster and GPU donations respectively.

References

[1] H. Bay, T. Tuytelaars, and L. V. Gool. Surf: Speeded up robust

features. In ECCV, 2006. 3

2801

[2] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A

review and new perspectives. TPAMI, 35(8):1798–1828, 2013. 2

[3] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-

wise training of deep networks. In NIPS, 2007. 1, 2

[4] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity met-

ric discriminatively, with application to face verification. In CVPR,

2005. 2

[5] N. Dalal and B. Triggs. Histograms of oriented gradients for human

detection. In CVPR, 2005. 1

[6] C. Doersch, A. Gupta, and A. A. Efros. Mid-level visual element

discovery as discriminative mode seeking. In NIPS, 2013. 2

[7] C. Doersch, A. Gupta, and A. A. Efros. Context as supervisory sig-

nal: Discovering objects with predictable context. In ECCV, 2014.

2

[8] C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual repre-

sentation learning by context prediction. In ICCV, 2015. 2

[9] S. M. A. Eslami, N. Heess, and J. Winn. The shape boltzmann ma-

chine: a strong model of object shape. In CVPR, 2012. 2

[10] M. Everingham, L. V. Gool, C. K. Williams, J. Winn, , and A. Zis-

serman. The pascal visual object classes (voc) challenge. IJCV,

88(2):303–338, 2010. 6

[11] P. Foldiak. Learning invariance from transformation sequences. Neu-

ral Computation, 3(2):194–200, 1991. 2

[12] D. F. Fouhey, A. Gupta, and M. Hebert. Data-driven 3D primitives

for single image understanding. In ICCV, 2013. 8

[13] D. F. Fouhey, A. Gupta, and M. Hebert. Unfolding an indoor origami

world. In ECCV, 2014. 8

[14] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hier-

archies for accurate object detection and semantic segmentation. In

CVPR, 2014. 5, 6, 7

[15] Y. Gong, Y. Jia, T. K. Leung, A. Toshev, and S. Ioffe. Deep con-

volutional ranking for multilabel image annotation. In ICLR, 2007.

2

[16] R. Goroshin, J. Bruna, J. Tompson, D. Eigen, and Y. LeCun. Un-

supervised learning of spatiotemporally coherent metrics. CoRR,

abs/1412.6056, 2015. 2

[17] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by

learning an invariant mapping. In CVPR, 2006. 2

[18] B. Hariharan, J. Malik, and D. Ramanan. Discriminative decorrela-

tion for clustering and classification. In ECCV, 2012. 6

[19] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. High-speed

tracking with kernelized correlation filters. TPAMI, 2015. 3

[20] G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal. The”

wake-sleep” algorithm for unsupervised neural networks. Science,

268(5214):1158–1161, 1995. 2

[21] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality

of data with neural networks. Science, 313:504–507, 2006. 2

[22] E. Hoffer and N. Ailon. Deep metric learning using triplet network.

CoRR, /abs/1412.6622, 2015. 2

[23] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,

S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for

fast feature embedding. CoRR, /abs/1408.5093, 2014. 1

[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classifica-

tion with deep convolutional neural networks. In NIPS, 2012. 1,

4

[25] L. Ladický, B. Zeisl, and M. Pollefeys. Discriminatively trained

dense surface normal estimation. In ECCV, 2014. 8

[26] Q. V. Le, M. A. Ranzato, R. Monga, M. Devin, K. Chen, G. S. Cor-

rado, J. Dean, and A. Y. Ng. Building high-level features using large

scale unsupervised learning. In ICML, 2012. 1, 2

[27] Q. V. Le, W. Y. Zou, S. Y. Yeung, and A. Y. Ng. Learning hierar-

chical invariant spatio-temporal features for action recognition with

independent subspace analysis. In CVPR, 2011. 2

[28] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. E. Howard, W. Hub-

bard, and L. D. Jackel. Handwritten digit recognition with a back-

propagation network. In NIPS, 1990. 1

[29] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep

belief networks for scalable unsupervised learning of hierarchical

representations. In ICML, 2009. 2

[30] X. Liang, S. Liu, Y. Wei, L. Liu, L. Lin, and S. Yan. Computational

baby learning. CoRR, abs/1411.2861, 2014. 2, 5

[31] S. Liu, X. Liang, L. Liu, X. Shen, J. Yang, C. Xu, X. Cao, and

S. Yan. Matching-cnn meets knn: Quasi-parametric human parsing.

In CVPR, 2015. 2

[32] D. Lowe. Distinctive Image Features from Scale-Invariant Key-

points. IJCV, 60(2):91–110, 2004. 1

[33] P. Luo, X. Wang, and X. Tang. Hierarchical face parsing via deep

learning. In CVPR, 2012. 2

[34] H. Mobahi, R. Collobert, and J. Weston. Deep learning from tempo-

ral coherence in video. In ICML, 2009. 1, 2

[35] B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete

basis set: A strategy employed by v1? Vision research, 1997. 1, 2

[36] A. Quattoni and A.Torralba. Recognizing indoor scenes. In CVPR,

2009. 6

[37] M. A. Ranzato, F. J. Huang, Y.-L. Boureau, and Y. LeCun. Unsu-

pervised learning of invariant feature hierarchies with applications to

object recognition. In CVPR, 2007. 1

[38] B. C. Russell, A. A. Efros, J. Sivic, W. T. Freeman, and A. Zisserman.

Using multiple segmentations to discover objects and their extent in

image collections. In CVPR, 2006. 2

[39] P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. LeCun. Pedestrian

detection with unsupervised multi-stage feature learning. In CVPR,

2013. 2

[40] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmen-

tation and support inference from RGBD images. In ECCV, 2012.

8

[41] S. Singh, A. Gupta, and A. A. Efros. Unsupervised discovery of

mid-level discriminative patches. In ECCV, 2012. 2

[42] J. Sivic, B. C. Russell, A. A. Efros, A. Zisserman, and W. T. Freeman.

Discovering objects and their location in images. In ICCV, 2005. 2

[43] N. Srivastava, E. Mansimov, and R. Salakhutdinov. Unsuper-

vised learning of video representations using lstms. CoRR,

abs/1502.04681, 2015. 2

[44] N. Srivastava and R. R. Salakhutdinov. Multimodal learning with

deep boltzmann machines. In NIPS, 2012. 1, 2

[45] D. Stavens and S. Thrun. Unsupervised learning of invariant features

using video. In CVPR, 2010. 2

[46] E. B. Sudderth, A. Torralba, W. T. Freeman, and A. S. Willsky.

Describing visual scenes using transformed dirichlet processes. In

NIPS, 2005. 2

[47] Y. Tang, R. Salakhutdinov, and G. Hinton. Robust boltzmann ma-

chines for recognition and denoising. In CVPR, 2012. 2

[48] G. W. Taylor, R. Fergus, Y. LeCun, and C. Bregler. Convolutional

learning of spatio-temporal features. In ECCV, 2010. 1, 2

[49] P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol. Extract-

ing and composing robust features with denoising autoencoders. In

ICML, 2008. 1, 2

[50] H. Wang and C. Schmid. Action recognition with improved trajecto-

ries. In ICCV, 2013. 3

[51] J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang, J. Philbin,

B. Chen, and Y. Wu. Learning fine-grained image similarity with

deep ranking. In CVPR, 2014. 2, 3

[52] X. Wang, D. F. Fouhey, and A. Gupta. Designing deep networks for

surface normal estimation. In CVPR, 2015. 8

[53] L. Wiskott and T. J. Sejnowski. Slow feature analysis:unsupervised

learning of invariances. Neural Computation, 14:715–770, 2002. 2

[54] P. Wohlhart and V. Lepetit. Learning descriptors for object recogni-

tion and 3d pose estimation. In CVPR, 2015. 2

[55] R. Zhang, L. Lin, R. Zhang, W. Zuo, and L. Zhang. Bit-scalable deep

hashing with regularized similarity learning for image retrieval and

person re-identification. TIP, 24(12):4766–4779, 2015. 2

[56] W. Y. Zou, S. Zhu, A. Y. Ng, and K. Yu. Deep learning of invariant

features via simulated fixations in video. In NIPS, 2012. 1, 2

2802

