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Abstract

Most of the feature-learning methods for RGB-D objec-

t recognition either learn features from color and depth

modalities separately, or simply treat RGB-D as undiffer-

entiated four-channel data, which cannot adequately ex-

ploit the relationship between different modalities. Moti-

vated by the intuition that different modalities should con-

tain not only some modal-specific patterns but also some

shared common patterns, we propose a multi-modal feature

learning framework for RGB-D object recognition. We first

construct deep CNN layers for color and depth separately,

and then connect them with our carefully designed multi-

modal layers, which fuse color and depth information by

enforcing a common part to be shared by features of dif-

ferent modalities. In this way, we obtain features reflect-

ing shared properties as well as modal-specific properties

in different modalities. The information of the multi-modal

learning frameworks is back-propagated to the early CNN

layers. Experimental results show that our proposed multi-

modal feature learning method outperforms state-of-the-art

approaches on two widely used RGB-D object benchmark

datasets.

1. Introduction

Object recognition in everyday environments is a fun-

damental problem in computer vision. It remains a chal-

lenging task, especially for the scenarios with clutter and

highly variable illumination. With the recent advent of low-

cost RGB-D cameras such as Kinect, there is an increasing

amount of visual data containing both color and depth infor-

mation. It is expected to enhance the inference of objects or

scenes as depth measurement is robust to light and color

variation.

Many methods have been proposed for RGB-D objec-

t recognition. Early works mainly focus on the design of

hand-crafted features in RGB-D image descriptors. For ex-

ample, Lai et al. [18] used hand-crafted features including
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Figure 1. Illustration of our proposed multi-modal feature learning

framework. The inputs X and Y are the activations of the second

fully connected layers of the CNNs pre-trained on color and depth

separately. The inputs are transformed by W1 and W2 respective-

ly, and the transformed features T1 and T2 are enforced to share a

common part Tc. The labeling information L is integrated in the

learning process to enhance the discrimination.

spin images [14] and SIFT descriptors [23] for depth im-

ages, while textons [21], color histograms [1] and SIFT de-

scriptors were used for color images. Lai et al. also utilized

the bag-of-words-based Efficient Match Kernel (EMK) to

encode local hand-crafted features, and derived an image-

level representation via integrating EMK features in differ-

ent spatial parts. Using the encoded features, they evaluated

the recognition performance of different classifiers: a linear

support vector machine, a Gaussian kernel support vector

machine and a random forest classifier. Bo et al. [5] devel-

oped a set of kernel features for depth images that model

sizes, 3D shapes, and depth edges to further improve recog-

nition performance. Although hand-crafted features in these

works boosted object recognition accuracy, the feature de-

sign process required a strong understanding of domain-

specific knowledge and cannot generalize to new data do-

mains readily. Another shortcoming for hand-crafted fea-

tures is that they can only capture a subset of the features
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that are discriminative for object recognition.

To reduce the dependency on hand-crafted features, sev-

eral recent methods have been proposed for unsupervised

learning of features from raw data directly, to be used in

RGB-D object recognition. In particular, Bo et al. [6]

proposed to use a Hierarchical Matching Pursuit (HMP)

method [5] based on sparse codes derived not only from

RGB-D images but also gray-scale intensities and surface

normals, computed via K-SVD [2]. These features captured

high-level information from local patches. Blum et al. [4]

described a feature learning approach which learns dictio-

naries from RGB-D data based on K-means clustering of

local-patch features, where the image patches are extracted

around the interest points detected by SURF features [3].

Socher et al. [29] outlined a framework which integrated

Convolutional Neural Networks (CNN) and Recursive Neu-

ral Networks (RNN) to learn features from color and depth

separately, where the single-layer CNN is pre-trained in an

unsupervised manner to produce lower-level features while

the RNN learns higher-level features.

However, the relationship between different modalities

have not been thoroughly investigated in these feature-

learning methods for RGB-D object recognition. Most

of the methods either learn features from color and depth

modalities separately, or simply treat RGB-D as undiffer-

entiated four-channel data. The major shortcoming for the

separate learning is that the relation between the two modal-

ities is ignored and the feature learning of one modality is

not adjusted by the other modality. The major shortcoming

for a simple four-channel learning is that the combination

may not be physically meaningful and may not capitalize

on different characteristics of the modalities.

To exploit the implicit dependence between differen-

t modalities, we therefore propose a multi-modal learning

framework for RGB-D object recognition that treats color

and depth as two modalities. At the heart of our method, we

jointly explore two kinds of feature properties: shared com-

mon patterns of different modalities, and modal-specific

patterns owned by individual modalities. We learn a com-

pact and discriminative representation by transforming the

data of each modality to a new feature domain with two

parts: the common feature part shared by all modalities and

the modal-specific part. By concatenating the shared and

modal-specific features from all modalities, we obtain the

final object representation which has the intended desirable

properties. Supervised information is further integrated in-

to the framework to enhance discriminative capability. C-

NN layers are constructed to form the input to our multi-

modal feature learning framework, and the information of

the multi-modal learning framework is back-propagated to

the early CNN layers. The multi-modal feature learning and

the back-propagation are iteratively performed until conver-

gence. Fig. 1 shows the structure of the proposed multi-

modal feature learning framework.

We wish to point out that our work is inspired by the mul-

tiview learning method proposed by Liu et al. in [22], which

explores the consistency and complementarity properties

contained in multiview data. However, their method is built

based on nonnegative matrix factorization and focuses on

semi-supervised learning, which cannot handle the data un-

seen in the training stage. In contrast, our multi-modal fea-

ture learning framework is based on matrix transformation

which extracts both shared common patterns and modal-

specific properties of different modalities, and is integrat-

ed with CNN based supervised deep learning for RGB-D

object recognition. The method of Daumé [9] shares a sim-

ilar idea with our method but focuses on transfer learning.

Daumé proposed to augment data by containing general and

specific versions of features. With the augmented data from

both domains, their method trains a classifier which could

classify data from the target domain, while leveraging infor-

mation from both the source and target domains. In another

recent work [34], Zhang et al. [34] proposed a new discrim-

inative canonical correlation analysis (DCCA), which re-

gards color as the main modality and depth as the auxiliary

information for an object recognition task. They considered

a transfer learning setting where color and depth images are

used in training while only color images are used in testing,

which is different in our task.

Recently, the generative power of CNN has been shown

in many computer vision tasks [17, 10, 32, 15, 28, 11, 25,

30, 33, 16, 27]. There are also some approaches that use

CNN for RGB-D object detection and scene labeling. For

example, Couprie et al. [8] presented a multi-scale CNN

framework for RGB-D scene labeling. Gupta et al. [12]

proposed a CNN based approach which replaces the orig-

inal depth map with three channels (horizontal disparity,

height above ground, angle between point normal and in-

ferred gravity) as the CNN input for RGB-D object detec-

tion and segmentation. However, the relationship between

color and depth was ignored in these deep models. In ad-

dition, other deep structures have been used for different

tasks on RGB-D data. Lenz et al. [20] proposed a deep

learning method for robotic grasps detection. They used

stacked auto-encoder structures and derived multi-modal

features by encouraging each dimension of the learned fea-

tures using information from only a subset of the modali-

ties. Wang et al. [31] proposed a method for RGB-D scene

labeling with stacked joint feature learning and encoding

structures. It is worth to point out that, there is a concurrent

work by Hu et al. [13] which shares a similar idea with us.

They focus on the RGB-D activity recognition task by fus-

ing multiple different hand-crafted features while we focus

on RGB-D object recognition by integrating multi-modal

feature learning with CNN.
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Figure 2. Different CNN structures for RGB-D data. Green,

blue, yellow and red boxes indicate convolutional, pooling, fully-

connected and softmax layers, respectively.

2. Proposed Approach

2.1. Conventional CNNbased Learning Structure

Of the various ways of using CNNs with RGB-D data, a

straightforward approach is to combine RGB and depth data

from the outset as a four-channel input to the convolutional

neural network, as shown in Fig. 2(a) (akin to what is used

in Couprie et al. [8] for scene labeling), where green, blue,

yellow and red boxes indicate convolutional, pooling, fully-

connected and softmax layers, respectively. Alternatively,

discriminative features can be extracted independently from

color and depth images by concatenating the activations of

the second fully-connected layers of the two modalities, and

feeding them into the last fully-connected layer with dense

connections. From the final softmax layer, supervised in-

formation is back-propagated to the independent networks

for both modalities. Such a structure is shown in Fig. 2(b).

2.2. Proposed Multimodal Learning Structure

Rather than adopting the above two conventional learn-

ing structures that involve some simple fusions of color and

depth data, in this paper we propose to further explore the

relationship between the two modalities. We develop an

architecture for multi-modal feature learning carried out in

conjunction with convolutional neural networks. Specifi-

cally, we first pre-train CNNs on color and depth images

separately, as shown in Fig. 2(c) and (d). Then, the activa-

tions of the second fully-connected layers of the two modal-

ities are fed into the proposed multi-modal feature learning

framework shown in Fig. 1.

Our main idea is that the desired features should re-

flect the agreement or shared properties between different

modalities, while at the same time they should contain the

modal-specific properties that are only captured by one of

the modalities. To realize such a goal, we explicitly enforce

the learned features of different modalities to share a com-

mon part. In addition, the weights between different modal-
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Figure 3. Illustration of the transformation matrix.
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Figure 4. Illustration of the regression coefficient matrix.

ities are simultaneously learned in our framework without

prior knowledge of which modality is the most importance

one.

In Fig. 1, X = [x1, x2, · · · , xN ] ∈ R
M1×N denotes

the activations (with M1 dimensions) of the second fully-

connected layer of the CNN for color images in one data

batch with N images. Similarly, Y ∈ R
M2×N denotes

the activations of the CNN for depth images in one data

batch. Our objective is to learn a new feature representation

T containing two sets of properties: 1) common properties

shared by two modalities; and 2) modal-specific properties

captured separately by individual modalities.

Let T1 ∈ R
M1

′×N and T2 ∈ R
M2

′×N denote the

learned features for the color and depth modalities respec-

tively. Here we enforce T1 and T2 to 1) share a com-

mon part Tc ∈ R
Kc×N , and 2) contain modal-specific

parts T1s ∈ R
K1s×N and T2s ∈ R

K2s×N respectively,

where Mi
′ = Kc + Kis, i = 1, 2, as illustrated in Fig. 3.

The learned features for the two modalities are therefore:

T1 = [T1s;Tc] and T2 = [T2s;Tc]. We further denote

Wi ∈ R
Mi

′×Mi as the transformation matrix for modality i.
Our task is then to learn the appropriate transformation ma-

trices Wi to obtain the features T1 = W1X and T2 = W2Y .

The final learned features are T = [Tc;T1s;T2s].

Finally we require an additional matrix W ∈
R

(Kc+K1s+K2s)×Nc to map the T feature representation
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to actual labels for Nc number of classes, as illustrated in

Fig. 4. Here we incorporate supervised learning by enforc-

ing WTT to be close to the ground truth label L.

2.3. Formulation

To learn features containing both shared and modal-

specific properties, we formulate our cost function as

min
{W1,W2,α1,α2,T1,T2,W}

F = F1 + F2 + F3

= α1(‖W1X − T1‖
2
F +

∥

∥WT
1 T1 −X

∥

∥

2

F
+ λ1g(T1))

+ α2(‖W2Y − T2‖
2
F +

∥

∥WT
2 T2 − Y

∥

∥

2

F
+ λ1g(T2))

+ β(
∥

∥WTT − L
∥

∥

2

F
+ λ2‖W‖2,1)

subject to α1 + α2 = 1, α1 ≥ 0, α2 ≥ 0
(1)

where ‖·‖F and ‖·‖2,1 denote the Frobenius norm and l2,1
norm. F1 is the cost for regulating the color modality, in

which: the first term enforces T1 to be similar to the W1-

transformed X , the second term encourages the ability of

T1 to reconstruct X when back-transformed via WT
1 , while

the third term g is the smooth L1 penalty function [19].

Likewise, F2 corresponds to the cost for regulating depth

modality. Although the definitions of F1 and F2 seem to

indicate that color and depth modalities are optimized inde-

pendently, T1 and T2 are not in fact independent since they

are explicitly required to share a common part Tc. By con-

catenating Tc and the modal-specific parts T1s, T2s, the fi-

nal representation for each image is T = [Tc;T1s;T2s]. The

third part, F3 in (1), incorporates supervised information to

enhance the discriminative power of the learned features, in

which W is the regression coefficient matrix and the l2,1
norm ensures W to be row-wise sparse, thus acting as a

feature selector in T . Fig. 3 illustrates the matrix transfor-

mation in F1, while Fig. 4 shows the regression coefficient

matrix in F3.

After we derive the learned matrices W , W1 and W2

in the training stage, the features of any test image can

be directly computed as: T1s = W1sX , T2s = W2sY ,

Tc = (W1cX + W2cY )/2. With the multi-modal feature

representation T = [Tc;T1s;T2s], the final recognition re-

sult will be directly computed as WTT .

2.4. Alternating Optimization

In this research, we employ the typical alternating opti-

mization strategy to obtain a local optimal solution for (1).

The pipeline of the algorithm is briefly described in Alg. 1.

First, W , W1, W2 and T are initialized randomly, and αi is

initialized as 0.5. All these variables including W , Wi, T
and αi will be learned and updated in Alg. 1. Other param-

eters such as λ1, λ2 and β in (1) are set empirically.

In Step 2.1, we fix Wi, W , T , and update αi. α1 and

α2 allows the different modalities to have different weights

Algorithm 1: Optimizing the proposed multi-modal

feature learning framework

Input: Training set with two modalities: X , Y , the

corresponding ground truth label L.

Output: Feature projection matrix: W1, W2.

Regression coefficient matrix W .
Step 1 (Initialization):

Initialize W , W1, W2, T , α1, α2.

Step 2 (Optimization):

loop

2.1. Fix W , W1, W2, T

Update α1, α2 according to (5).

2.2. Fix W1, W2, T , α1, α2,

Update W according to (7).

2.3. Fix W , W1, W2, α1, α2,

Update Tc and Tis according to (10).

2.4. Fix W , T , α1, α2,

Update W1, W2 according to (12).

end loop until convergence

since they are unlikely to play the same role. When Wi,

W , T are fixed, we can construct the following Lagrange

function based on (1):

L(α, η) = α1C1 + α2C2 + βC − η(α1 + α2 − 1). (2)

where C1, C2 and C are the corresponding constant values

in (1) due to fixing Wi, W , T . Unfortunately, the solution

to (2) will be trivial. For example, if C1 is less than C2,

then the solution of minimizing (2) will be: α1 = 1 and

α2 = 0, which means only one modality will be used in the

feature learning. Experimentally we found that this leads to

suboptimal results. In order to utilize the information from

different modalities, we modify our cost function to

min
{W1,W2,α1,α2,T1,T2,W}

F = F1 + F2 + F3

= αp
1(‖W1X − T1‖

2
F +

∥

∥WT
1 T1 −X

∥

∥

2

F
+ λ1g(T1))

+ αp
2(‖W2Y − T2‖

2
F +

∥

∥WT
2 T2 − Y

∥

∥

2

F
+ λ1g(T2))

+ β(
∥

∥WTT − L
∥

∥

2

F
+ λ2‖W‖2,1)

subject to α1 + α2 = 1, α1 ≥ 0, α2 ≥ 0
(3)

where p > 1 is an additional parameter. By adding p, the

objective becomes nonlinear for αi and the two modalities

will be constrained to obtain shared common pattern and

modal-specific patterns in T , while at the same time keeping

the most of the original information in T . In this way, the

Lagrange function becomes

L(α, η) = αp
1C1 + αp

2C2 + βC − η(α1 + α2 − 1). (4)
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By setting
∂L(α,η)

∂α and
∂L(α,η)

∂η to 0, αi can be updated as:

αi =
(1/Ci)

1/(p−1)

2
∑

i=1

(1/Ci)
1/(p−1)

. (5)

In Steps 2.2-2.4, we update the other variables using the

gradient descent algorithm, where the same learning rate γ
is used. In particular, the regression coefficient matrix W is

updated in Step 2.2. According to [24], the derivative of the

cost function with respect to W can be expressed as

∂F

∂W
= 2β(T (WTT − L)T + λ2EW ) (6)

where E is a diagonal matrix with ekk = 1/2‖wk‖2, and

wk is the kth row of W . Then, W is updated according to

the gradient descent rule:

W ←W − γ
∂F

∂W
. (7)

In Step 2.3, the feature representation T is updated. Con-
sidering that T contains a common part Tc and modal-
specific parts T1s and T2s, we update these three parts sep-
arately. In this way, the learned features are enforced to
contain both shared common properties and modal-specific
properties. The derivatives of F with respect to Tc and T1s,
and the mechanism for updating Tc and T1s (and likewise
for T2s) are shown below:

∂F

∂Tc

= 2αp
1

[

(Tc −W1cX) +W1c(W
T
1cTc −X) + λ1g

′(Tc)
]

+ 2αp
2

[

(Tc −W2cY ) +W2c(W
T
2cTc − Y ) + λ1g

′(Tc)
]

+ 2βW (c)(W (c)T
Tc − L)

(8)

∂F

∂T1s
= 2αp

1

[

(T1s −W1sX) +W1s(W
T
1sT1s −X) + λ1g

′(T1s)
]

+ 2βW (1s)(W (1s)T
T1s − L).

(9)

The common part and the modal-specific parts of T are updated

according to the gradient descent rule:

Tc ← Tc − γ
∂F

∂Tc

T1s ← T1s − γ
∂F

∂T1s
. (10)

In Step 2.4, when T , W and αi are fixed, Wi is updated in a

similar way, e.g.

∂F

∂W1
= 2αp

1

[

(W1X − T1)X
T + T1(W

T
1 T1 −X)

T
]

(11)

W1 ←W1 − γ
∂F

∂W1
. (12)

In our framework, X and Y are the activations of the second

fully-connected CNN layers. The results of the multi-modal learn-

ing will then be back-propagated to the lower layers of CNN by

∂F

∂X
= 2αp

1

[

W
T
1 (W1X − T1)− (WT

1 T1 −X)
]

. (13)

The multi-modal feature learning and the back-propagation are it-

eratively performed until convergence. Here we have shown the

formulation for a two-modal problem. It can be straightforwardly

extended to a multi-modal formulation by representing the learned

features with the concatenation of the common part and the modal-

specific parts from more modalities.

3. Experiments

To evaluate the effectiveness of our proposed multi-modal

feature learning framework, we perform object recognition ex-

periments on the RGB-D Object Dataset [18] and the 2D3D

Dataset [7]. The details of the experiments and the results are

described in the following sections.

3.1. Datasets and Experiment Setup

RGB-D Object Dataset: This dataset has 51 object classes

and contains RGB-D images of 300 distinct objects taken from

multiple views. They are commonplace objects such as cups, key-

boards, fruits and vegetables. Each object is video-recorded with

cameras mounted at three different elevation angles of approxi-

mately 30◦, 45◦ and 60◦. There are in total 207,920 RGB-D im-

age frames, with roughly 600 images per object.

We conduct experiments for both category recognition and in-

stance recognition. We adopt the same setup as [6], where images

are sampled from every 5th frame of the videos. For the category

recognition, we run the 10 random splits provided. For each split,

one object from each class is sampled, resulting in 51 test object-

s. There are some 34,000 images for training and 6900 images

for testing. For the instance recognition, we use images captured

from elevation angles of 30◦ and 60◦ for training, and test on the

images of the 45◦ angle (leave-sequence-out).

2D3D Dataset: This dataset consists of 154 objects in 14 dif-

ferent classes. Each object is recorded by a PMDTM CamCube

2.0 time-of-flight camera with views at every 10◦ around the ver-

tical axis, resulting in a total of 5544 RGB-D images. For cat-

egory recognition, we adopt the setting of [7]. After excluding

some classes with few examples, 6 objects of each class are used

for training and the remaining objects are used for testing. For

each training (testing) object, only 18 views out of 36 views are

used. Eventually 82 objects in 1476 RGB-D images are regarded

as training data, while 74 objects in 1332 RGB-D images are used

for testing.

Architecture of CNNs: As we consider two modalities, for

each modality we construct a smaller network than the one in [17]

in order to ensure that the data of the two modalities can be placed

in the GPU memory simultaneously. The input images are resized

to 150 × 150. For the color modality, there are 96 kernels of size

7× 7× 3 with stride 2, 96 kernels of size 5× 5× 96 with stride

2, 112 kernels of size 3× 3× 96 with stride 1, 128 kernels of size

3×3×112 with stride 1, and 128 kernels of size 3×3×128 with

stride 1, for the filters of the 1st, 2nd, 3rd, 4th and 5th convolution-

al layers, respectively. The two fully-connected layers have the

sizes of 1024 and 512 respectively. A dropout of 0.5 probability is

used for the first fully-connected layer. For each 150×150 image,

overlapping 142×142 images are cropped for data augmentation.

There are max-pooling layers following the first, the second and

the fifth convolutional layers. ReLu non-linearity [17] is applied to
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the output of every convolutional layer and every fully-connected

layer. Note that when initializing CNNs by independently training

with color and depth images as shown in Fig. 2(c) and (d), the

final fully-connected layer has a size equal to the number of cate-

gories, which is then fed into the final softmax layer. We use the

same architecture for both color and depth modalities, apart from

the size of filters in the first convolutional layer (3 channels for

color and 1 channel for depth).

Parameters setting: For our multi-modal learning framework,

the dimension Mk
′ of the transformed features is set to be the same

as Mk = 512, although it could be different. Half of the Mk
′-

dimensional features are enforced to be the same between the two

modalities, i.e. Kc = 256 and Kis = 256. The parameters p, β,

λ1, λ2, γ are empirically set as 2, 1000, 1, 20, 0.001 respective-

ly for all the experiments for both the RGB-D object and 2D3D

datasets.

3.2. Results on RGBD Object Dataset

Comparison with different baselines of using CNNs: We

compare with five different CNN-based baselines: 1) CNN trained

using RGB images only (Fig. 2(c)), named ‘RGB CNN’; 2) CNN

trained using depth images only (Fig. 2(d)), named ‘Depth CNN’;

3) RGB-D used as the four-channel input to a CNN (Fig. 2(a)),
named ‘RGB-D CNN with 4-channel input’; 4) CNN with separate

training for color and depth at the lower layers, followed by con-

catenating the activations of the second fully-connected layer (fc7)

and feeding them into the last fully-connected layer (Fig. 2(b)),
named ‘RGB-D CNN connected at fc7’; 5) Similar setting with

4), but two modalities are concatenated at the fifth convolutional

layer (conv5), named ‘RGB-D CNN connected at conv5’.

The top part of Table 1 shows the recognition results of the

five baselines on RGB-D Object Dataset. It can be seen that al-

though simply adding depth as the fourth channel of the CNN in-

put (‘RGB-D CNN with 4-channel input’) greatly improves the

performance of those only using one modality (‘RGB CNN’ and

‘Depth CNN’), extracting features separately from color and depth

and connecting them at the later stage (‘RGB-D CNN connected at

conv5’) performs better with significant gain. This is because sep-

arately learning features at the early stage for different modalities

result in more independent features, which could prevent the CNN

from primarily learning features for the predominant modality.

Following [6], we also use surface normals to replace the depth

map as the input, which results in another three baselines: 6) C-

NN trained using surface normals only, named ‘Surface Normals

(SN) CNN’; 7) RGB and surface normals used as the six-channel

input to a CNN, named ‘RGB-SN CNN with 6-channel input’;

8) CNN with separate training for color and surface normals at

the lower layers, followed by concatenating the activations of the

second fully-connected layer and feeding them into the last fully-

connected layer, named ‘RGB-SN CNN connected at fc7’; 9) Sim-

ilar setting with 8), but two modalities are concatenated at conv5,

named ‘RGB-SN CNN connected at conv5’. The comparison in

Table 1 indicates that surface normals can better represent geom-

etry information than the depth map. To further boost the per-

formance, we use images of first 50 classes of ILSVRC2012 [26]

to pretrain CNN layers of both color and surface normals, which

leads to another baseline: 10) named ‘RGB-SN CNN connected at

conv5 (pretrained)’, achieving the best performance among all the

Table 1. Comparison of different baselines of using CNNs on

RGB-D Object Dataset.

Method Accuracy (%)

RGB CNN 74.6 ± 2.9

Depth CNN 75.5 ± 2.7

RGB-D CNN with 4-channel input 80.2 ± 1.9

RGB-D CNN connected at fc7 84.7 ± 2.1

RGB-D CNN connected at conv5 85.1 ± 2.0

Surface Normal (SN) CNN 76.3 ± 2.5

RGB-SN CNN with 6-channel input 80.7 ± 2.1

RGB-SN CNN connected at fc7 85.0 ± 2.4

RGB-SN CNN connected at conv5 85.5 ± 2.2

RGB-SN CNN connected at conv5

(pretrained)

86.8 ± 2.1

Table 2. Comparison of our method with the best baseline. Here

the CNNs in both methods are pretrained with a subset of ILSVR-

C2012 dataset.

Method Accuracy (%)

RGB-SN CNN connected at conv5

(pretrained)

86.8 ± 2.1

Ours 88.5 ± 2.2

baselines.

Table 2 compares the results of our proposed multi-modal

learning with the best baseline, ‘RGB-SN CNN connected at con-

v5 (pretrained)’. Note that our method also uses surface normals

to replace depth images and uses pretrained CNN layers. It can

be seen from Table 2 that our method outperforms the best base-

line by 1.7% in recognition accuracy. This is mainly because our

method extracts both shared common patterns and modal-specific

patterns of different modalities, which cannot be achieved through

simply connecting color and surface normals by a fully-connected

layer.

Comparison with state-of-the-art methods: We also com-

pare our method with state-of-the-art methods including: 1) Lai et

al. [18]: using SIFT and spin images for depth, and SIFT, color

histogram and texton histogram for color; 2) Blum et al. [4]: us-

ing convolutional k-means descriptors; 3) Socher et al. [29]: using

Recursive Neural Network plus CNN; 4) Zhang et al. [34]: us-

ing transfer learning based method; 5) Bo et al. [6]: using sparse

coding based feature learning with additional input channels such

as gray-scale image and surface normals. The comparison results

are shown in Table 3. It can be seen that our method achieves the

best performance, outperforming state-of-the-art method in both

category recognition and instance recognition.

The confusion matrix of our final results is shown in Fig. 5,

whose diagonal elements represent the recognition accuracy for

each category. Fig. 6 shows a few misclassification examples. For

instance, in Fig. 6 (a) the light bulb is misclassified as a cap due to
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Figure 5. Confusion matrix of the category recognition results on RGB-D Object Dataset. The vertical axis shows the true labels and the

horizontal axis shows the predicted labels.

Table 3. Comparison with state-of-the-art methods on RGB-D Ob-

ject Dataset.

Method Category (%) Instance (%)

Lai et al. [18] 81.9 ± 2.8 73.9

Blum et al. [4] 86.4 ± 2.3 90.4

Socher et al. [29] 86.8 ± 3.3 -

Zhang et al. [34] - 86.6

Bo et al. [6] 87.5 ± 2.9 92.8

Ours 88.5 ± 2.2 94.0

similar geometrical shapes. Likewise, the tomato is misclassified

as a potato due to strong similarities in both color and shape. In

Fig. 6 (b), the cellphone is misclassified as toothbrush as there is

a missing part of the surface normals, which is misleading.

ሺܽሻ
ሺܾሻ

Figure 6. Misclassification examples. Misclassifications are due to

similar color, texture or geometry shape.
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Table 4. Comparison on 2D3D Dataset.

Method Accuracy (%)

Browatzki et al. [7] 82.8

Bo et al. [6] 91.0

RGB-SN CNN connected at conv5 (pretrained) 89.2

Ours 91.3

Figure 7. Confusion matrix of the category recognition results on

2D3D Dataset.

3.3. Results on 2D3D Dataset

We use the CNNs pretrained as described in Sec 3.2 and fine-

tuned on RGB-D Object Dataset for the initialization. Table 4

shows the comparison between our method and the best baseline

approach, ‘RGB-SN CNN connected at conv5 (pretrained)’. This

table also shows the comparison of our method and state-of-the-

art methods that reported results on this dataset, including Bo et

al. [6] and Browatzki et al. [7], which use multiple descriptors

such as 3D shape context and depth buffer for depth and multiple

descriptors such as SURF and self similarity features for color.

Similar remarks as those for the results on RcGB-D Object Dataset

can be made here, i.e. our multi-modal feature learning method

achieves superior performance to state-of-the-art methods. The

confusion matrix is shown in Fig. 7.

3.4. Parameter Analysis

In our method, there are some important parameters. One is

R =
Kc

Kc +Kis

c (14)

which ranges from 0 to 1 and controls the percentage of the shared

features occupying the transformed features (note that K1s = K2s

in our setting). Fig. 8 shows how the category recognition perfor-

mance on RGB-D Object Dataset split 1 varies with different R.

When R is too small, the recognition accuracy is relatively low s-

ince there is only a small portion of common features between the

85

85.2

85.4

85.6

85.8

86

86.2

86.4

86.6

86.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
cc

u
ra

cy
 (

%
)

�
Figure 8. The effect of choosing different R.

�
A

cc
u

ra
cy

 (
%

)

40

45

50

55

60

65

70

75

80

85

90

ͳ ͳͲଶ ͳͲͳͲଷ ͳͲସ ͳͲହ ͳͲͳͲ

Figure 9. The effect of choosing different β.

two modalities, which cannot fully exploit the shared properties.

On the other hand, when R is too large, the modal-specific features

will vanish.

Another important parameter is β, which balances the relation

between the feature reconstruction constraints and the supervised

constraints. Fig. 9 shows the accuracy performance under differ-

ent β values on RGB-D Object Dataset. It can be seen that an ex-

cessively small or large weight will result in a performance drop,

especially when a small weight is set on the supervised cost.

4. Conclusion

In this paper, we have proposed a CNN-based multi-modal fea-

ture learning framework for RGB-D object recognition task. In-

stead of fusing color and depth data from the outset or concatenat-

ing separately learned features before the classification, we extrac-

t both features with sharedc common patterns and features with

modal-specific patterns in a joint framework. The experimental

results show that our method integrated with CNN layers greatly

boosts the performance. Our method outperforms state-of-the-art

approaches on both of RGB-D Object Datast and 2D3D Dataset.
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