
Dense Optical Flow Prediction from a Static Image

Jacob Walker, Abhinav Gupta, and Martial Hebert

Robotics Institute, Carnegie Mellon University

{jcwalker, abhinavg, hebert}@cs.cmu.edu

Abstract

Given a scene, what is going to move, and in what di-

rection will it move? Such a question could be considered

a non-semantic form of action prediction. In this work, we

present a convolutional neural network (CNN) based ap-

proach for motion prediction. Given a static image, this

CNN predicts the future motion of each and every pixel in

the image in terms of optical flow. Our CNN model lever-

ages the data in tens of thousands of realistic videos to train

our model. Our method relies on absolutely no human la-

beling and is able to predict motion based on the context of

the scene. Because our CNN model makes no assumptions

about the underlying scene, it can predict future optical flow

on a diverse set of scenarios. We outperform all previous

approaches by large margins.

1. Introduction
Consider the images shown in Figure 1. Given the girl in

front of the cake, we humans can easily predict that her head

will move downward to extinguish the candle. The man

with the discus is in a position to twist his body strongly to

the right, and the squatting man on the bottom has nowhere

to move but up. Humans have an amazing ability to not only

recognize what is present in the image but also predict what

is going to happen next. Prediction is an important com-

ponent of visual understanding and cognition. In order for

computers to react to their environment, simple activity de-

tection is not always sufficient. For successful interactions,

robots need to predict the future and plan accordingly.

There has been some recent work that has focused on this

task. The most common approach to this prediction prob-

lem is to use a planning-based agent-centric approach: an

object [10] or a patch [24] is modeled as an agent that per-

forms actions based on its current state and the goal state.

Each action is decided based on compatibility with the envi-

ronment and how these actions helps the agent move closer

to the goal state. The priors on actions are modeled via

transition matrices. Such an approach has been shown to

produce impressive results: predicting trajectories of hu-

mans in parking lots [10] or hallucinating car movements

on streets [24]. There are two main problems with this ap-

(a) Input Image (b) Prediction

Figure 1: Motion Prediction. Con-

sider single, static input images (a). Our

method can first identify what these ac-

tions are and predict (b) correct motion

based on the pose and stage of the ac-

tion without any video information. We

use the color coding from [1] shown on

the right.

proach. First, the predictions are still sparse, and the motion

is still modeled as a trajectory. Second, and more impor-

tantly, these approaches have always been shown to perform

in restrictive domains such as parking lots or streets.

In this paper, we take the next step towards generalized

prediction — a framework that can be learned from tens of

thousands of realistic videos. This framework can work in

indoor and outdoor environments; it can account for one or

12443



multiple agents whether the agent is an animal, a human,

or even a car. Specifically, this framework looks at the task

of motion prediction — given a static image we predict the

dense expected optical flow as if this image were part of

a video. This optical flow represents how and where each

and every pixel in the image is going to move in the fu-

ture. However, we can see that motion prediction is more

than identifying active agents; it is also highly dependent

on context. For example, someone’s entire body may move

up or down if they are jump-roping, but most of the body

will be stationary if they are playing the flute. Instead of

modeling agents and its context separately under restrictive

assumptions, we use a learning based approach for motion

prediction. Specifically, we train a deep network that can in-

corporate all of this contextual information to make accurate

predictions of future motion in a wide variety of scenes. We

train our model from thousands of realistic video datasets,

namely UCF-101 [21] and the HMDB-51 [13].

Contributions: Our paper makes three contributions. First,

we present a CNN model for motion prediction. Given

a static image, our CNN model predicts expected motion

in terms of optical flow. Our CNN-based model is agent-

free and makes almost no assumptions about the underlying

scene. Therefore, we show experimental results on diverse

set of scenes. Second, our CNN model gives state of the art

performance on prediction compared to contemporary ap-

proaches. Finally, we also present a proof of concept exten-

sion of the CNN model which makes long-range prediction

about future motion. Our preliminary results indicate that

this new CNN model might indeed be promising even for

the task of long-range prediction.

2. Background
Prediction has caught the interest of the vision commu-

nity in recent years. Most of research in this area has looked

at different aspects of the problem. The first aspect of in-

terest is the output space of prediction. Some of the initial

work in this area focused on predicting the trajectory for the

given input image [28]. Others have looked at more seman-

tic forms of prediction: that is, predicting the action class

of what is going to happen next [5, 15]. However, one of

the issues with semantic prediction is that it tells us noth-

ing about the future action beyond the category. One of our

goals in prediction is to go beyond classification and pre-

dict the spatial layout of future actions. For example, in

case of agents such as humans, the output space of predic-

tion can be trajectories themselves [10]. On the contrary,

recent approaches have argued for much richer form of pre-

dictions even in terms of pixels [24] or the features of the

next frame [7, 19].

The other aspect of research in visual prediction looks at

the question of selecting the right approach for prediction.

There have been two classes of approaches for the temporal

prediction. The first is a data-driven, non-parametric ap-

proach. In the case of non-parameteric approaches, they

do not make any assumptions about the underlying scene.

For example, [28] simply retrieves videos visually sim-

ilar to the static scene, allowing a warping [17] of the

matched action into the scene. The other end of the spec-

trum is parametric and domain-specific approaches. Here,

we make assumptions on what are the active elements in

the scene whether they may be cars or people. Once the

assumption is made, then a model is developed to predict

agent behavior. This includes forecasting pedestrian tra-

jectories [10], human-human interactions [7, 15], human

expressions through SOSVM [5], and human-object inter-

action through graphical models [11, 3].

Some of the recent work in this area has looked at a

more hybrid approach. For example, Walker et al. [24]

builds a data-derived dictionary of rigid objects given a

video domain and then makes long-term motion and ap-

pearance predictions using a transition and context model.

Recent approaches such as [19] and [22] have even looked

at training convolutional neural networks for predicting one

future frame in a clip [19] or motion of handwritten charac-

ters [22].

We make multiple advances over previous work in this

paper. First, our self-supervised method can generalize

across a large number of diverse domains. While [24] does

not explicitly require video labels, it is still domain depen-

dent, requiring a human-given distinction between videos in

and outside the domain. In addition, [24] focused only on

birds-eye domains where scene depth was limited or non ex-

istent, while our method is able to generalize to scenes with

perspective. [18] also uses self-supervised methods to train

a Structured Random Forest for motion prediction. How-

ever, the authors only learn a model from the simple KTH

[16] dataset. We show that our method is able to learn from

a set of videos that is far more diverse across scenes and

actions. In addition, we demonstrate much better general-

ization can be obtained as compared to the nearest-neighbor

approach of Yuen et al. [28].

Convolutional Neural Networks: We show in this paper

that a convolutional neural network can be trained for the

task of motion prediction in terms of optical flow. Current

work on CNNs have largely focused on recognition tasks

both in images and video [12, 9, 4, 23, 29, 20, 22]. There

has been some initial work where CNNs have been com-

bined with recurrent models for prediction. For example,

[19] uses a LSTM [6] to predict the immediate next frame

given a video input. [22] uses a recurrent architecture to

predict motions of handwritten characters from a video. On

the other hand, our approach predicts motion for each and

every pixel from a static image for any generic scene.

3. Methods
Our goal is to learn a mapping between the input RGB

image and the output space which corresponds to the pre-

2444



Figure 2: Overview. Our network is similar to the standard 7-layer architecture [12] used for many recognition tasks. We take a

200x200 image as input. However, we use a spatial softmax as the final output. For every pixel in the image we predict a distribution of

various motions with various directions and magnitudes. We can combine a weighted average of these vectors to produce the final output

for each pixel. For computational reasons, we predict a coarse 20x20 output.

(a) Input Image (b) Prediction (c) Ground Truth

Figure 3: Consider the images on the left. Is the man squatting

up or down? The bottom is near completion (or just starting), and

the top image is right in the middle of the action. Our dataset

contains a large number of ambiguous images such as these. In our

evaluation we consider the underlying distribution of movements

predicted by our network. It is highly likely that this man is going

to move up or down, but unlikely that he will veer off to the left or

right.

dicted motion of each and every pixel in terms of optical

flow. We propose to use CNNs as the underlying learning

algorithm for this task. However, there are a few questions

that need to be answered: what is a good output space, and

what is a good loss function? Should we model optical flow

prediction as a regression or a classification problem? What

is a good architecture to solve this problem? We now dis-

cuss these issues below in detail.

3.1. Regression as Classification

Intuitively, motion estimation can be posed as a regres-

sion problem since the space is continuous. Indeed, this is

exactly the approach used in [18], where the authors used

structured random forests to regress the magnitude and di-

rection of the optical flow. However, such an approach has

one drawback: such an output space tends to smoothen re-

sults to the mean. Interestingly, in a related regression prob-

lem of surface normal prediction, researchers have proposed

reformulating structured regression as a classification prob-

lem [26, 14]. Specifically, they quantize the surface normal

vectors into a codebook of clusters and then output space

becomes predicting the cluster membership. In our work,

we take a similar approach. We quantize optical flow vec-

tors into 40 clusters by k-means. We can then treat the prob-

lem in a manner similar to semantic segmentation, where

we classify each region as the image as a particular cluster

of optical flow. We use a soft-max loss layer at the output

for computing gradients.

However, at test time, we create a soft output by consid-

ering the underlying distribution of all the clusters, taking

a weighted-probability sum over all the classes in a given

pixel for the final output. Transforming the problem into

classification also leads directly to a discrete probability

distribution over vector directions and magnitudes. As the

problem of motion prediction can be ambiguous depending

on the image (see Figure 3), we can utilize this probability

distribution over directions to measure how informative our

predictions are. We may be unsure if the man in Figure 3 is

sitting down or standing up given only the image, but we can

be quite sure he will not turn right or left. In the same way,

our network can rank upward and downward facing clusters

much higher than other directions. Even if the ground truth

is upward, and the highest ranked cluster is downward, it

may be that the second-highest cluster is also upward. Be-

cause the receptive fields are shared by the top layer neu-

rons, the output trends to a globally coherent movement. A

discrete probability distribution, through classification, al-

lows an easier understanding of how well our network may

be performing.

3.2. Network Design

Our model is similar to the standard seven-layer architec-

ture from [12]. To simplify the description, we denote the

convolutional layers as C(k, s), which indicates that there

are k kernels, each having the size of s × s. During con-

volution, we set all the strides to 1 except for the first layer,

2445



which is 4. We also denote the local response normalization

layer as LRN, and the max-pooling layer as MP. The stride

for pooling is 2 and we set the pooling operator size as 3×3.

Finally, F (n) denotes fully connected layer with n neurons.

Our network architecture can be described as:

C(96, 11) → LRN → P → C(256, 5) → LRN →

P → C(384, 3) → C(384, 3) → C(256, 3) → P →

F (4096) → F (4096). We used a modified version of the

popular Caffe toolbox [8] for our implementation. For

computational simplicity, we use 200x200 windows as in-

put. We used a learning rate of 0.0001 and a stepsize of

50000 iterations. Other network parameters were set to de-

fault. The only exception is that we used Xavier initial-

ization of parameters. Instead of using the default soft-

max output, we used a spatial softmax loss function from

[26] to classify every region in the image. This leads to a

M×N×C softmax layer, where M is the number of rows,

N is the number of columns, and C is the number of clus-

ters in our codebook. We used M = 20, N = 20, and

C = 40 for a softmax layer of 16,000 neurons. Our soft-

max loss is spatial, summing over all the individual region

losses. Let I represent the image and Y be the ground truth

optical flow labels represented as quantized clusters. Then

our spatial loss function L(I, Y ) is:

L(I, Y ) = −

M×N∑

i=1

C∑

r=1

(✶(yi = r) logFi,r(I)) (1)

where Fi,r(I) represents the probability that the ith pixel

will move according to cluster r. ✶(yi = r) is an indicator

function.

Data Augmentation: For many deep networks, datasets

which are insufficiently diverse or too small will lead to

overfitting. [20] and [9] show that training directly on

datasets such as the UCF-101 for action classification leads

to overfitting, as there is only on the order of tens of thou-

sands of videos in the dataset. However, our problem of

single-frame prediction is different from this task. We find

that we are able to build a generalizable representation for

prediction by training our model over 350,000 frames from

the UCF-101 dataset as well as over 150,000 frames from

the HMDB-51 dataset. We benefit additionally from data

augmentation techniques. We randomly flip each image as

well as use randomly cropped windows. For each input, we

also mirror or flip the respective labels. In this way we are

able to avoid spatial biases (such as humans always appear-

ing in the middle of the image) and train a general model on

a far smaller set of videos than for recognition tasks.

Labeling: We automatically label our training dataset

with an optical flow algorithm. We chose the publicly avail-

able implementation of DeepFlow [27] to compute opti-

cal flow. The UCF-101 and the HMDB-51 dataset use re-

alistic, sometimes low-quality videos from a wide variety

of sources. They often suffer from compression artifacts.

Thus, we aim to make our labels somewhat less noisy by

taking the average optical flow of five future frames for each

image. The videos in these datasets are also unstabilized.

[25] showed that action recognition can be greatly improved

with camera stabilization. In order to further denoise our la-

bels, we wish to focus on the motion of objects inside the

image, not the camera motion. We thus use the stabiliza-

tion portion of the implementation of [25] to automatically

stabilize videos using an estimated homography.

4. Experiments
For our experiments, we mostly focused on two datasets,

the UCF-101 and HMDB-51, which have been popular for

action recognition. For both of these datasets, we com-

pared against baselines using 3-fold cross validation with

the splits specified by the dataset organizers. We also eval-

uated our method on the KTH [16] dataset using the ex-

act same configuration in [18] with DeepFlow. Because

the KTH dataset is very small for a CNN, we finetuned our

UCF-101 trained network on the training data. For train-

ing, we subsampled frames by a factor of 5. For testing, we

sampled 26,000 frames per split. For our comparison with

AlexNet finetuning, we used a split which incorporated a

larger portion of the training data. We will release this split

publicly. We used three baselines for evaluation. First we

used the technique of [18], a SRF approach to motion pre-

diction. We took their publicly available implementation

and trained a model according to their default parameters.

Because of the much larger size of our datasets, we had to

sample SIFT-patches less densely. We also use a Nearest-

Neighbor baseline using both fc7 features from the pre-

trained AlexNet network as well as pooled-5 features. Fi-

nally, we compare unsupervised training from scratch with

finetuning on the supervised AlexNet network.

4.1. Evaluation Metrics
Because of the complexity and sometimes high level of

label ambiguity in motion prediction, we use a variety of

metrics to evaluate our method and baselines. Following

from [18], we use traditional End-Point-Error, measuring

the Euclidean distance of the estimated optical flow vector

from the ground truth vector. In addition, given vectors x1

and x2, we also measure direction similarity using the co-

sine similarity distance:
x
T

1
x2

‖x1‖‖x2‖
and orientation similarity

(angle taken on half-circle):
|xT

1
x2|

‖x1‖‖x2‖
. The orientation sim-

ilarity measures how parallel is predicted optical flow vec-

tor with respect to given ground truth optical flow vector.

Some motions may be strictly left-right or up-down, but the

exact direction may be ambiguous. This measure accounts

for this situation.

We choose these metrics established by earlier work.

However, we also add some additional metrics to account

for the level of ambiguity in many of the test images. As

2446



(a) Input Image (b) [18] (c) Ours (d) Ground Truth (a) Input Image (b) [18] (c) Ours (d) Ground Truth

Figure 4: Qualitative results from our method for the single frame model. While [18] is able to predict motion in the

KTH dataset (top left), we find our network strongly outperforms the baseline on more complex datasets. Our network

can find the active elements in the scene and correctly predict future motion based on the context in a wide variety and

scenes and actions. The color coding is on the right.

[18] notes, EPE is a poor metric in the case where motion

is small and may reasonably proceed in more than one pos-

sible direction. We thus additionally look at the underlying

distribution of the predicted classes to understand how well

the algorithm accounts for this ambiguity. For instance, if

we are shown an image as in Figure 3, it is unknown if the

man will move up or down. It is certainly the case, however,

that he will not move right or left. Given the probability dis-

tribution over the quantized flow clusters, we check to see

if the ground truth is within the top probable clusters. For

the implementation of [18], we create an estimated proba-

bility distribution by quantizing the regression output from

all the trees and then, for each pixel, we bin count the clus-

ters over the trees. For Nearest-Neighbor we take the top-N

matched frames and use the matched clusters in each pixel

as our top-N ranking. We evaluate over the mean rank of all

pixels in the image. Following [18], we also evaluate over

the Canny edges. Because of the simplicity of the datasets

in [18], Canny edges were a good approximation for mea-

suring the error of pixels of moving objects in the scene.

However, our data includes highly cluttered scenes that in-

corporate multiple non-moving objects. In addition, we find

that our network is very effective at identifying moving vs

non-moving elements in the scene. We find that the differ-

ence between overall pixel mean and Canny edges is very

small across all metrics and baselines. Thus, we also eval-

uate over the moving pixels according to the ground-truth.

Moving pixels in this case includes all clusters in our code-

book except for the vector of smallest magnitude. While

unfortunately this metric depends on the choice of code-

book, we find that the greatest variation in performance and

ambiguity lies in predicting the direction and magnitude of

the active elements in the scene.

4.2. Qualitative Results

Figure 4 shows some of our qualitative results. For sin-

gle frame prediction, our network is able to predict mo-

tion in many different contexts. We find that while [18]

is able to make reasonable predictions on the KTH, qualita-

tive performance collapses once the complexity and size of

the dataset increases. Although most of our datasets consist

of human actions, our model can generalize beyond simply

detecting general motion on humans. Our method is able

to successfully predict the falling of the ocean wave in the

second row, and it predicts the motion of the entire horse

in the first row. Furthermore, our network can specify mo-

tion depending on the action being performed. For the man

2447



UCF-101

Method EPE EPE-Canny EPE-NZ

SRF [18] 1.30 1.23 3.24

NN pooled-5 2.31 2.20 4.40

NN fc7 2.24 2.16 4.27

Ours-HMDB 1.35 1.26 3.26

Ours 1.27 1.17 3.19

— Dir Dir-Canny Dir-NZ

SRF [18] .004 .000 -.013

NN pooled-5 -.001 -.001 -.067

NN fc7 -.005 -.006 -.060

Ours-HMDB 0.017 0.007 0.032

Ours .045 .025 .092

— Orient Orient-Canny Orient-NZ

SRF [18] .492 .600 .515

NN pooled-5 .650 .650 .677

NN fc7 .649 .649 .672

Ours-HMDB .653 .653 .672

Ours .659 .657 .688

— Top-5 Top-5-Canny Top-5-NZ

SRF [18] 79.4% 81.7% 10.0%

NN pooled-5 77.8% 79.5% 20.0%

NN fc7 78.3% 79.9% 18.8%

Ours-HMDB 88.7% 90.0% 60.6%

Ours 89.7% 90.5% 65.0%

— Top-10 Top-10-Canny Top-10-NZ

SRF [18] 82.2% 84.4% 17.2%

NN pooled-5 83.2% 85.3% 32.9%

NN fc7 84.0% 85.4% 32.3%

Ours-HMDB 95.6% 95.9% 88.8%

Ours 96.5% 96.7% 90.9%

Table 1: Single-image evaluation using the 3-fold split on UCF-

101. Ours-HMDB represents our network trained only on HMDB

data. The Canny suffix represents pixels on the Canny edges, and

the NZ suffix represents moving pixels according to the ground-

truth. NN represents a nearest-neighbor approach. Dir and Ori-

ent represent direction and orientation metrics respectively. For

EPE, less is better, and for other metrics, higher is better. With the

exception of Orient-NZ against both NN features, all differences

against our model are significant at the 5% level with a paired t-

test.

playing guitar and the man writing on the wall, the arm is

the most salient part to be moved. For the man walking the

dog and the man doing a pushup, the entire body will move

according to the action.

4.3. Quantitative Results

UCF101 and HMDB: We show in tables 1 and 2 that our

method strongly outperforms both the Nearest-Neighbor

and SRF-based baselines by a large margin on most met-

rics. This holds true for both datasets. Interestingly, the

SRF-based approach seems to come close to ours based on

End-Point-Error on all datasets, but is heavily outperformed

on all other metrics. This is largely a product of the End-

HMDB-51

Method EPE EPE-Canny EPE-NZ

SRF [18] 1.23 1.20 3.46

NN pooled-5 2.51 2.49 4.89

NN fc7 2.43 2.43 4.69

Ours-UCF 1.30 1.26 3.49

Ours 1.21 1.17 3.45

— Dir Dir-Canny Dir-NZ

SRF [18] .000 .000 -.010

NN pooled-5 -.008 -.007 -.061

NN fc7 -.007 -.005 -.061

Ours-UCF .016 .011 .003

Ours .016 .012 .030

— Orient Orient-Canny Orient-NZ

SRF [18] .461 .557 .495

NN pooled-5 .631 .631 .644

NN fc7 .630 .631 .655

Ours-UCF .634 .634 .664

Ours .636 .636 .667

— Top-5 Top-5-Canny Top-5-NZ

SRF [18] 81.9% 83.6% 13.5%

NN pooled-5 76.3% 77.8% 14.0%

NN fc7 77.3% 78.7% 13.5%

Ours-UCF 89.4% 89.9% 60.8%

Ours 90.2% 90.5% 61.0%

— Top-10 Top-10-Canny Top-10-NZ

SRF [18] 84.4% 86.1% 22.1%

NN pooled-5 82.9% 84.0% 23.9%

NN fc7 83.6% 84.4% 23.2%

Ours-UCF 95.8% 95.9% 87.6%

Ours 95.9% 95.9% 87.5%

Table 2: Single-image evaluation using the 3-fold split on

HMDB-51. Ours-UCF represents our network trained only on

UCF data. The Canny suffix represents pixels on the Canny

edges, and the NZ suffix represents moving pixels according to

the ground-truth. NN represents a nearest-neighbor approach. Dir

and Orient represent direction and orientation metrics respectively.

For EPE, less is better, and for other metrics, higher is better. With

the exception of EPE-NZ against SRF, all differences against our

model are significant at the 5% level with a paired t-test.

Point-Error metric, as we find that the SRF tends to output

the mean (optical flow with very small magnitude). This

is consistent with the results found in [18], where actions

with low, bidirectional motion can result in higher EPE than

predicting no motion at all. When we account for this ambi-

guity in motion in the top-N metric, however, the difference

in performance is large. The most dramatic differences ap-

pear over the non-zero pixels. This is due to the fact that

most pixels in the image are not going to move, and an al-

gorithm that outputs motion that is small or zero over the

entire image will appear to perform artificially well without

taking the moving objects into account.

2448



KTH (DeepFlow)

Method EPE EPE-Canny EPE-NZ

[18] 0.21 0.19 1.72

Ours 0.19 0.18 1.17

— Orient Orient-Canny Orient-NZ

[18] .30 .32 .75

Ours .67 .67 .90

— Top-5 Top-5-Canny Top-5-NZ

[18] 93.9% 94.4% 2.3%

Ours 99.0% 99.0% 98.0%

Table 3: We compare our network fine-tuned on the KTH dataset

to [18]. Orient represents orientation metric. NZ and Canny are

non-zero and Canny pixels. All differences are significant at the

5% level with a paired t-test.

Pretrained vs. From Scratch

Method EPE EPE-Canny EPE-NZ

Pretrained 1.19 1.12 3.12

From Scratch 1.28 1.21 3.21

— Orient Orient-Canny Orient-NZ

Pretrained .661 .659 .692

From Scratch .659 .658 .691

— Top-5 Top-5-Canny Top-5-NZ

Pretrained 91.0% 91.1% 65.8%

From Scratch 89.9% 90.3% 65.1%

Table 4: We compare finetuning from ImageNet features to a ran-

domly initialized network on UCF-101. Orient represents orienta-

tion metric. NZ and Canny are non-zero and Canny pixels.

Stabilization

Method EPE EPE-Canny EPE-NZ

Unstabilized 1.35 1.28 3.60

Stabilized 1.49 1.42 3.61

— Orient Orient-Canny Orient-NZ

Unstabilized .641 .641 0.664

Stabilized .652 .652 0.698

— Top-5 Top-5-Canny Top-5-NZ

Unstabilized 88.9% 89.2% 63.4%

Stabilized 88.3% 88.8% 59.7%

Table 5: We also compare our network trained with and without

camera stabilization on a split of HMDB. Orient represents orien-

tation metric. NZ and Canny are non-zero and Canny pixels.

KTH: For KTH in table 3, [18] is close to our method in

EPE and Orientation, but Top-N suffers greatly because it

often output vectors of correct direction but incorrect mag-

nitude. On absolute levels our method seems to perform

well on this simple dataset, with the network predicting the

correct cluster will over 98% of the time.

Cross Dataset: As both the UCF101 and HMDB dataset

are curated by humans, it is important to determine how

well our method is able to generalize beyond the structure

of a particular dataset. In table 1 we show that training on

HMDB (Ours-HMDB) and testing on UCF101 leads only to

a small drop in performance. Likewise, training on UCF101

(Ours-UCF101) and testing on HMDB in table 2 shows

little performance loss.

Pretraining: We train our representation in a self-

supervised manner, using no semantic information. How-

ever, do human labels help? We compared finetuning

from supervised, pretrained features trained on ImageNet

to a randomly initialized network trained only on self-

supervised data. The pretrained net has been exposed to

far more diverse data, and the network has been trained on

explicity semantic information. However, we find in table

4 that the pretrained network yields only a very small im-

provement in performance.

Stabilization: How robust is the network to the effects of

camera motion? We explicitly stabilized the camera in our

training data in order for the network to focus on moving

objects and not camera motion itself. In table 5 we compare

a network trained on data with and without stabilization. We

test on stablilized data, and we find even without camera

stabilization that the difference in performance is small.

5. Multi-Frame Prediction
Until now we have described an architecture for predict-

ing optical flow given a static image as input. However, it

would be interesting to predict not just the next frame but

a few seconds into future. How should we design such a

network?

We present a proof-of-concept network to predict 6 fu-

ture frames. In order to predict multiple frames into the

future, we take our pre-trained single frame network and

output the seventh feature layer into a ”temporally deep”

network, using the implementation of [2]. This network

architecture is the same as an unrolled recurrent neural net-

work with some important differences. On a high level, our

network is similar to the unfactored architecture in [2], with

each sequence having access to the image features and the

previous hidden state in order to predict the next state. We

replace the LSTM module with a fully connected layer as

in a RNN. However, we also do not use a true recurrent net-

work. The weights for each sequence layer are not shared,

and each sequence has access to all the past hidden states.

We used 2000 hidden states in our network, but we predict

at most six future sequences. We attempted to use recurrent

architectures with the publicly available LSTM implemen-

tation from [2]. However, in our experiments they always

regressed to a mean trajectory across the data. Our fully

connected network has much higher number of parameters

than a RNN and therefore highlights the inherent difficulty

of this task. Due to the much larger size of the state space,

we do not predict optical flow for each and every pixel. In-

stead, we use kmeans to created a codebook of 1000 pos-

sible optical flow frames, and we predict one of 1000 class

as output as each time step. This can be thought of as anal-

ogous to a sequential prediction problem similar to caption

2449



Figure 5: Overview. For our multiframe prediction, we predict entire clustered frames of optical flow as a sequence of frames. We take

the learned features for our single frame model as our input, and we input them to a series of six fully connected layers, with each layer

having access to the states of the past layers.

(a) Input Image (b) Frame 1 (c) Frame 2 (c) Frame 3 (d) Frame 4 (e) Frame 5

Figure 6: Qualitative results for multi-frame prediction. The five rows represent predictions from our multi-frame

model for future frames. Our extension can predict optical flow over multiple frames.

generation. Instead of a sequence of words, our ”words”

are clusters of optical flow frames, and our ”sentence” is an

entire trajectory. We used a set number of sequences, six, in

our experiments with each frame representing the average

optical flow of one-sixth of a second.

6. Conclusion
In this paper we have presented an approach to general-

ized prediction in static scenes. By using an optical flow al-

gorithm to label the data, we can train this model on a large

number of unlabeled videos. Furthermore, our framework

utilizes the success of deep networks to outperform con-

temporary approaches to motion prediction. We find that

our network successfully predicts motion based on the con-

text of the scene and the stage of the action taking place.

Possible work includes incorporating this motion model to

predict semantic action labels in images and video. Another

possible direction is to utilize the predicted optical flow to

predict in raw pixel space, synthesizing a video from a sin-

gle image.

Acknowledgements: We thank Xiaolong Wang for many help-

ful discussions. We thank the NVIDIA Corporation for the dona-

tion of Tesla K40 GPUs for this research. In addition, this work

was supported by NSF grant IIS1227495.

2450




