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Abstract

Generating captions to describe images is a fundamen-

tal problem that combines computer vision and natural

language processing. Recent works focus on descriptive

phrases, such as “a white dog” to explain the visual com-

posites of an input image. The phrases can not only ex-

press objects, attributes, events, and their relations but can

also reduce visual complexity. A caption for an input im-

age can be generated by connecting estimated phrases us-

ing a grammar model. However, because phrases are com-

binations of various words, the number of phrases is much

larger than the number of single words. Consequently, the

accuracy of phrase estimation suffers from too few training

samples per phrase.

In this paper, we propose a novel phrase-learning

method: Common Subspace for Model and Similarity (CoS-

MoS). In order to overcome the shortage of training sam-

ples, CoSMoS obtains a subspace in which (a) all feature

vectors associated with the same phrase are mapped as

mutually close, (b) classifiers for each phrase are learned,

and (c) training samples are shared among co-occurring

phrases. Experimental results demonstrate that our system

is more accurate than those in earlier work and that the ac-

curacy increases when the dataset from the web increases.

1. Introduction

Object, event, and attribute recognition from images

have been widely investigated. Recently, several works

have tackled the sentential description of images to more

flexibly explain the contents of images.

In general, collecting a large amount of data from the

web is a common means to understand various images.

What we can collect automatically are images associated

not with semantically clear labels but with surrounding sen-

tences. Hence, the requirements for caption generation from

images are: scalability, learning image contents, and cap-

tion generation using estimated content.

BabyTalk: This is a picture of three persons, 
one bottle and one diningtable. The first rusty 
person is beside the second person. The rusty 
bottle is near the first rusty person, and within 
the colorful diningtable. The second person is 
by the third rusty person. The colorful dining-
table is near the first rusty person, and near 

Ours: Group of people sitting at a table with a dinner.

Corpus-Guided: Three people are showing the bottle on the street.

Midge: People with a bottle at the table.

the second person, and near the third rusty person.

Figure 1. Qualitative comparison. A common input image is

shown in the upper left. We compare our result with Corpus-

Guided [48], Midge [28], and BabyTalk [18].

In order to represent image contents, such as objects,

events, attributes, and their relations, recent works [7, 10,

20,22,28,35,41,43] focus on visual phrases describing im-

age contents and their relations. For example, in order to

learn a general class of “dog,” dogs in the following phrases

should be considered in the same class: “white dog”, “black

dog”, “running dog”, and “sleeping dog.” The semantic gap

between image content can be narrowed by learning each

phrase independently, not just the single word “dog. ’’A

caption for an input image can then be generated by con-

necting estimated phrases using a grammar model.

Because phrases are combinations of objects, attributes,

and events, a large number of phrases should be learned and

recognized. Therefore, the number of training samples per

phrase is much less than that for the usual object recogni-

tion. Recent large-scale visual classification is tackled us-

ing a combination of high-dimensional image features and

linear weight vector as classifiers [37] or using a deep con-

volutional neural network [17]. To adopt these methods to

learn phrases, however, learning many parameters using too

few training samples per phrase would result in over-fitting.

In order to overcome the shortage of training samples,

usage of a subspace is a reasonable way to approximate

classifiers for phrases. Traditional multivariable methods,

such as linear discriminant analysis, can absorb the short-

age of training samples by reducing the dimension of fea-
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(a) Subspace for Similarity (b) Subspace for Model

(c) CoSMoS

Integration

Figure 2. Simple overview of subspace learning. We would like to

obtain a one-dimensional subspace (black line) given training sam-

ples in a two-dimensional feature space. The blue line orthogonal

to each subspace is the decision plane between the green triangle

class and the purple rectangle class. The two crossed circles are

the mean of each class.

ture vectors. All feature vectors associated with the same

phrase are mapped as mutually close in the subspace. Re-

cent works [26,27,42] also propose online learning methods

to obtain such subspace. In the subspace obtained via these

methods, the Nearest Class Mean (NCM) classifier is em-

ployed as a scalable linear classifier. However, the NCM

classifier is suboptimal if the distribution for each label is

biased, as depicted in Fig. 2 (a). In this paper, we refer to

this variation of the subspace learning method as the simi-

larity-based method.

Another way to utilize a subspace is to learn linear

weight vectors as classifiers in the obtained subspace as pro-

posed in [47]. We refer to this variation of subspace learn-

ing as the model-based method. However, because there

are no constrains for the subspace itself, it is not guaranteed

that an obtained subspace is appropriate for classification as

depicted in Fig. 2 (b).

Therefore, we propose an integrated form of the sub-

space learning methods, as shown in Fig. 2 (c). Addi-

tionally, semi-supervised learning includes the problem of

learning categories using a small number of training sam-

ples. To avoid over-fitting, some works [25, 36] share train-

ing samples among semantically similar classes. We also

introduce another function via multimodal NCM in Sec. 3.

To summarize, we propose a novel subspace-embedding

method–Common Subspace for Model and Similarity

(CoSMoS) for caption generation from images. CoSMoS

can obtain a subspace in which (a) all feature vectors asso-

ciated with the same phrase are mapped as mutually close,

(b) classifiers for each phrase are learned, and (c) training

samples are shared among co-occurring phrases. Our main

contributions are summarized as follows:

• Proposal of CoSMoS, which reduces the model com-

plexity by integrating both similarity and model to

learn phrases using relatively fewer training samples per

phrase. We also provide source codes1.

• Thorough experiments for caption generation from im-

ages. This includes evaluations of two approaches for

caption generation: sentence template and combina-

tional optimization. The use of an increasing number

of web images is also investigated.

The remainder of this paper is organized as follows: Sec.

2 introduces related work for caption generation and for

subspace learning. Details of CoSMoS are given in Sec.

3. In Sec. 4, we provide the rest of the pipeline of caption

generation. Experimental results are shown in Sec. 5, and

we conclude this paper in Sec. 6.

2. Related work

In this paper we focus on subspace learning to overcome

the shortage of training samples for each phrase to generate

captions. This section introduces related works for caption

generation and subspace learning.

Reuse of the entire caption. Natural language generation

itself is a challenging task. Therefore, some methods reuse

the entire caption associated with the training image to de-

scribe the input image. In [6], all images are labeled with

a triplet: ⟨object, action, scene⟩. In another method [29],

images are labeled according to their objects, stuff, people,

and scenes from different datasets. The images with similar

labels estimated from an input image are retrieved. In [29],

matching local descriptors is also used to search for similar

images. [12] adopts Kernel Canonical Correlation Analy-

sis to associate existing captions to input images. However,

using a whole caption directly requires a very large num-

ber of images related to all combinations of image contents.

Moreover, similar images must be retrieved accurately and

quickly from such a huge dataset.

Template-based caption generation. Some works gener-

ate a new caption using one or more templates. In [18], im-

ages are explained sententially with respect to the objects’

names, number, and their spatial relations by learning ob-

jects, stuff, and attributes from different datasets. [48] ex-

tended the concepts in [6] to generate a new caption. How-

ever, as the authors of [22, 28] indicate, the use of a tem-

plate to generate general captions is suboptimal because

templates cannot enable syntactic variability. In [20], inte-

ger linear programming is introduced to generate a caption

as a combinatorial optimization. However, the contents to

be described in a caption are manually defined.

1http://www.mi.t.u-tokyo.ac.jp/static/projects/mil_cosmos/
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Phrase-based caption generation. In [7,35], visual detec-

tion with “Visual Phrases” is presented. For example, de-

tecting “person riding horse” is performed by decoding the

results of object detection for each object, such as person

and horse. By connecting these phrases using a grammar

model, captions can be generated. Such phrase-based cap-

tion generation is common in statistical machine translation.

Various works [10, 22, 28, 41, 43] employ such phrases to

generate captions from images.

Some works [10, 43] adopt Large Margin Nearest Neigh-

bor (LMNN) classification [45], which is not scalable for

the data amount, and templates for caption generation. In

[22, 28, 41], phrases are estimated using the object recog-

nition method and connected using the n-gram model. Al-

though new captions can be generated, [22, 28] require an

extra dataset for object detection. The closest to this pa-

per is [41] where phrases are learned with model-based

linear classifiers and combined using a variation of multi-

stack beam search with the n-gram model. Although, cap-

tions can be generated using only images and corresponding

captions, as described in Sec. 1, few training samples per

phrase would increase over-fitting for phrase prediction.

Caption generation using neural networks. More re-

cently, [2,4,5,14,15,44] introduce a combination of a deep

Convolutional Neural Network (CNN) and a Recurrent

Neural Network (RNN). CNN is known as a state-of-the-art

method to learn image features for object recognition. RNN

and Long-Short Term Memory (LSTM) net [11], a kind

of RNN, can predict a word given an image feature and

currently generated part of a caption for an input image.

In general, however, neural networks require a sufficient

number of training samples for stable learning. Although

our pipeline is simpler, parameter reduction by a subspace

does help phrase learning. We experimentally show the

competitive performance in Sec. 5.

Subspace learning for linear classification. To generate

an accurate caption, phrase estimation for an input image

is a crucial step. Hence, subspace learning is necessary to

overcome the shortage of training samples per phrase.

Traditional multivariable methods, such as Principal Com-

ponent Analysis (PCA), Linear Discriminant Analysis

(LDA), and Canonical Correlation Analysis (CCA), can be

considered as methods to satisfy requirement (a) in Sec.

1. In the subspace obtained via these methods, the Near-

est Class Mean (NCM) classifier is employed as a scal-

able linear classifier. These subspace learning methods can

be considered as the similarity-based methods because the

methods can obtain appropriate similarity between an input

feature and each NCM. Various methods for nonlinear met-

ric learning such as OASIS [1] and LMNN [45] can also

be considered as a similarity-based method among train-

ing samples rather than NCM. However, we focus on linear

classifiers for scalability.

Recent works [26, 27, 42] propose online learning methods

to obtain a subspace with an NCM classifier. Although an

NCM classifier is a kind of linear classifier, there is no guar-

antee that the decision planes according to the NCM classi-

fier are optimal, as illustrated in Fig. 2 (a) in Sec. 1.

WSABIE [47] obtains a subspace and linear weight vec-

tors in that subspace. This approach can be considered as

an approximation of linear classifiers (models) in the fea-

ture space. Such linear weight vectors are also employed in

combination with high-dimensional image feature [37], and

in the full connected layers in CNN [17]. We refer to this

variation of subspace learning as model-based method. Al-

though requirement (b) is satisfied, an obtained subspace

would be inappropriate because there are no constraints,

such as requirement (a) as described in Sec. 1.

Therefore, we propose an integrated form of subspace learn-

ing methods as shown in Fig. 2 (c). To the best of our

knowledge, this is the first method integrating similarity

and model for a linear classifier.

3. Common Subspace for Model and Similarity

This section describes the proposed method, Commons

for Similarity and Model (CoSMoS), to train the relations

between an image and extracted phrases. We define the

classification rule as a Multimodal NCM classifier.

3.1. Multimodal Nearest Class Mean classifier

We define the number of pairs of images and captions

as N . Given the i-th image and a set of captions Ci, we

define image feature xi ∈ R
d and extract phrases Pi ⊂ P .

The detail to extract phrases Pi is described in Sec. 4. We

also define the phrase feature vector y ∈ R
np as a Bag-of-

Phrases vector, the j-th element of which is one if the image

is associated with pj , and zero otherwise.

3.1.1 Classification based on similarity and model

In order to learn phrases using large-scale datasets, the lin-

ear classifier is preferable in terms of scalability. First, we

consider the well-known NCM classifier in a subspace to

realize the first requirement: (a) all feature vectors associ-

ated with the same phrase are mapped as mutually close.

We introduce a similarity-based classification,

p̂ = arg max
p

θps ≡ arg max
p

x̃p⊤S⊤Sxi − bps , (1)

using score θps , Class Mean x̃p, and bias bps for phrase p. S
is a r × d matrix to map x into an r-dimensional subspace.

In order to realize the second requirement, (b) classifiers

for each phrase are learned, we introduce a linear weight
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vector mp ∈ R
r as a model for each phrase p.The model-

based classification rule is defined as,

p̂ = arg max
p

θpm ≡ arg max
p

mp⊤Sxi − bpm, (2)

where θpm and bpm are, respectively, a score and a bias for

phrase p. Thus, integration of similarity and model for

classification becomes,

p̂ = arg max
p

θps + αθpm

≡ arg max
p

x̃p⊤S⊤Sxi + αmp⊤Sxi − bp, (3)

where α is a parameter balancing between the similarity-

based score θps and the model-based score θpm. bp is an in-

tegrated bias defined as bps +αbpm. Note that we can replace

αmp with mp because α can be implicitly learned by mp.

3.1.2 Sharing training samples among related phrases

In this subsection we (c) share training samples among

co-occurring phrases. For example, if a phrase “white

dog” often co-occurs with another phrase “dog run-

ning”, we can combine the model for “white dog”

mwhite dog⊤Sxi − bwhite dog and the model for “dog run-

ning” mdog running⊤Sxi−bdog running during both training

and estimating. Therefore, we consider the co-occurrence

among phrases using another Class Mean ỹp and the aver-

aged pairwise loss to share training samples.

In order to recognize “white dog”, we can use linear

weight vectors for frequently corresponding phrases such

as “dog running.” Hence, in order to utilize co-occurrence

among phrases, we calculate Class Mean ỹp, the aver-

age of Bag-of-Phrases vectors that are associated with a

phrase p. Then the element corresponding to “white dog”

of ỹdog running becomes close to one. Therefore, the model

mp for phrase p becomes M ỹp, where M is an r × np

matrix, the j-th column vector of which is a linear weight

vector for the j-th phrase.

Thus, the classification rule for CoSMoS is defined as a

multimodal NCM classification,

p̂ = arg max
p

x̃p⊤S⊤Sxi + ỹp⊤M⊤Sxi − bp. (4)

By introducing a matrix U ≡
(

S M
)

and a classification

score θp for phrase p, this rule becomes,

p̂ = arg max
p

θp ≡ arg max
p

(

x̃p

ỹp

)⊤

U⊤U

(

xi

0

)

− bp. (5)

Additional use of the co-occurrence among phrases is a

loss function with multiple pairs of positive and negative

phrases, as referred to in [41, 47].

ℓi ≡ 1−
1

|Si|

∑

p∈Si

θp +
1

|S′
i|

∑

p∈S′

i

θp. (6)

This loss function can be considered as an averaged hinge

loss. We can also employ a rank loss as presented in [47].

However, we use this simple loss function because we can-

not obtain significant improvements with rank loss. The

members of Si ⊂ Pi and S′
i ⊂ P/Pi are chosen by se-

lecting a pair of phrases that has a gap of scores is larger

than one. Particularly, we design the following procedure:

1. Pick up p ∈ Pi with the minimum score θp.

2. Pick up p′ /∈ Pi with the maximum score θp
′

.

3. If θp < θp
′

+ 1, add p and p′ to Si and S′
i respectively.

Then, (i) remove p and p′ respectively from Pi and Yi,

and (ii) go back to the first step if Pi ̸= ∅.

For a simple formulation, we use gi ∈ R
np and define the

j-th element gi,j = 1/|Si| if pj ∈ Si, −1/|S′
i| if pj ∈ S′

i,

and zero otherwise. Now Eq. (6) can be rewritten as,

ℓi=1−

np
∑

j=1

gi,jθ
pj =1−g⊤

i

(

(

X̃

Ỹ

)⊤

U⊤U

(

x

0

)

−b

)

, (7)

where X̃ and Ỹ are matrices consisting of Class Means, the

j-th column vector of which corresponds to the Class Mean

x̃pj and ỹpj for the phrase pj . b ∈ R
|P| is a vector of bias,

the j-th element of which is the bias of the phrase pj .

3.2. Learning algorithm using the averaged stochas­
tic gradient descent

The objective function L is defined as the following cu-

mulative loss for all N training samples:

L =
N
∑

i=1

ℓi =
N
∑

i=1

(

1−g⊤
i

(

(

X̃

Ỹ

)⊤

U⊤U

(

xi

0

)

−b

))

. (8)

In order to minimize an objective function, we adopt the

averaged Stochastic Gradient Descent (SGD) for faster con-

vergence [32]. Given the t-th training sample, SGD, an on-

line learning scheme, investigates if the current parameters

Ut and bt can recognize phrases and update these parame-

ters to Ut+1 and bt+1.

As described in [46, 47], U is initialized randomly with

mean 0 and standard deviation 1/
√

d+ np. Update rules

for U and b using SGD with learning rate η are,

Ut+1 = Ut+ηUt

(

(

xt

0

)

g⊤
t

(

X̃

Ỹ

)⊤

+

(

X̃

Ỹ

)

gt

(

xt

0

)⊤
)

, (9)

bt+1 = bt − ηgt. (10)

Given UT and bT after T -times training, the averaged SGD

uses the following averaged parameters Ũ and b̃ instead of

UT and bT to estimate phrases of a test sample:

Ũ =
1

T

T
∑

t=1

Ut, b̃ =
1

T

T
∑

t=1

bt. (11)
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Figure 3. Frequencies of the word gaps between related words.

4. Phrase-based caption generation

Phrase-based caption generation is divided into three

steps: phrase extraction from image descriptions, learning

phrases using images and extracted phrases, and caption

generation from estimated phrases. This section discusses

the first and third steps. The second step is achieved by

CoSMoS, as described in Sec. 3.

4.1. Phrase extraction from image descriptions

Given the t-th training image and ground truth captions,

we would like to extract a set of phrases Pt ⊂ P , where P
is a set of all phrases and np is the number of all phrases.

Some researchers [10, 28, 43] use a parser to extract

phrases from the ground truth. However, this method suf-

fers from the parse error.

In another work [41], the authors use continuous words

as phrases. To justify the use of continuous words as

phrases, we investigate whether most relations in the cap-

tions are included in two continuous words. We parse all

captions in PASCAL Sentence using Stanford Parser [16].

The frequencies of the word gaps between grammatically

related words are shown in Fig. 3. About half of the re-

lations between two words are extracted from two continu-

ous words. The frequent grammatical relations are shown

in the Supplemental Materials. We also find that the rela-

tions extracted from two discontinuous words include many

“prep ∗” relations. For example, relation “prep in” is found

from “airplane in flight.” Although “airplane” and “flight”

are distant from each other, these three words can be re-

stored by estimating two phrases, “airplane in” and “in

flight.” Consequently, “prep ∗” relations can also be rep-

resented by two continuous words.

In [41], phrases are filtered based on frequencies only.

The objective is to eliminate meaningless phrases, such as

“is-a”. However, this is not because “is-a” is overly frequent

but because “is-a” consists of an auxiliary verb and an ar-

ticle. Therefore, meaningless phrases are apparently found

by considering whether each word in the phrase is mean-

ingless. Although new words are made up every year, the

meaningless words determined once will be so for a long

time. In the literature on Information Retrieval, such mean-

ingless words are called stop words.

Therefore, we present another filter, Stop Word Filter

(SWF), based on the rate of stop words. In particular,

phrases including not more than one stop word are ex-

tracted. In Sec. 5, we evaluate the effect of this filter.

4.2. Caption generation from estimated phrases

Generating captions should (1) use estimated phrases,

(2) be grammatically correct, and (3) keep the target length.

We have two options: usage of template [48] and com-

binatorial optimization [20, 28, 41]. Because usage of tem-

plate is suboptimal, we would like to adopt a combinato-

rial optimization. In particular, we adopt multi-stack beam

search [41] rather than complicated integer linear program-

ing [20] and tree-generating process [28]. Beam search is a

well-known algorithm for statistical machine translation to

generate a sentence by minimizing the sum of costs. In this

study, we define phrase cost ϕp(wi−1, wi) and length cost

ϕl(l). The optimization problem is,

{w1, . . . , wl} = arg min
w1,...,wl

ϕl(l) + λp

∑

i

ϕp(wi−1, wi), (12)

where λp is weight parameter for phrase cost. If {wi−1, wi}
is one of the estimated phrases, ϕp(wi−1, wi) = 0. Other-

wise, the cost is calculated using the negative log of bigram

(and trigram if possible). For the third requirement, a length

cost with the target length l (ten words in this paper) is de-

fined as ϕl(l) = − logN (l0, σ0). Because it is unclear if

the accuracy of captions with a combinatorial optimization

method is better than the methods with templates [9,10,43],

we experimentally compare them in Sec. 5.1 later.

5. Experimental results

We evaluated our method using four datasets: PAS-

CAL Sentence [33], Microsoft COCO released in 2014 (MS

COCO) [23], IAPR-TC12 [8], and SBU [29]. PASCAL

Sentence and MS COCO respectively consists of 1000 pairs

and 164,062 pairs of images and five captions. IAPR-TC12

consists of 19,963 pairs of images and around 1.8 captions

for each image. These datasets are organized manually.

SBU consists of 1M pairs of images and captions collected

from Flickr. Note that we evaluate not only the accuracy

of the generated captions but also the classification perfor-

mance of CoSMoS. The evaluation of CoSMoS is reported

in the Supplemental Materials due to limitations of space.

For image feature, we used the Fisher Vector (FV) [31]

with SIFT [24] and CNN [17, 39] pretrained with 1.2M im-

ages from ILSVRC [34] using Caffe [13]. We extracted

dense SIFTs with five scales and reduced their dimensions

to 64 using PCA. For PASCAL Sentence and IAPR-TC12,

we obtained a Gaussian Mixture Model (GMM) with 256

components. The FV was then calculated over 1× 1, 2× 2,

and 3 × 1 cells. For SBU, the FV was calculated over the

whole image using a GMM with 16 components to make

all FVs fit for the memory space by reducing the dimen-

sion. For the CNN feature, we experimentally found that

the output of the seventh layer was optimal.
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Phrases consisting of two continuous words were ex-

tracted using SWF. For PASCAL Sentence, phrases associ-

ated with 10 or more images were extracted. We extracted

phrases occurring more than the same ratio from IAPR-

TC12 and SBU. For phrase learning, we trained CoSMoS

with a 128-dimensional subspace in 10 iterations. The best

learning rate η was selected from {2−3, 2−4, 2−5, 2−6} ac-

cording to the evaluation score with each test set.

We followed the same experimental setup used in most

of the previous work in this area. PASCAL Sentence and

IAPR-TC12 were divided into 90% training samples and

10% testing samples. For SBU, 500 testing images were

extracted randomly. For each dataset, we repeated the divi-

sion five times. MS COCO already has training set, valida-

tion set, and testing set.

For automatic evaluation of generated captions, we em-

ployed BLEU [30] and NIST [3]. “BLEU x” is the cumu-

lative product of the n-gram match rate from unigram to x-

gram. “NIST x” is the cumulative sum of the n-gram match

rate from unigram to x-gram. Both BLEU and NIST have

length penalties to allow for fair evaluation of all captions,

including overly short captions. The ceiling on BLEU is one

because this score is a variation of the match rate. Because

NIST weighs rear expressions, the ceiling is unclear.

5.1. Discussion of the phrase approach

This subsection justifies the use of a phrase-based ap-

proach comparing it to a template-based approach. Whereas

most work attempts to generate captions from input images,

[9] presents a slightly different problem: generating a cap-

tion from an already annotated input image. Given labels

corresponding to objects and attributes, a proper caption is

generated using multiple templates. In [9], captions are gen-

erated from pairs of images and words extracted from the

ground truth captions. In order to investigate whether our

phrase-based approach is preferable to a template-based ap-

proach [9], we used “oracle” phrases. In the usual problem

setting of caption generation for images, a caption is gener-

ated from the input image on the left side. Here, we evalu-

ated our caption generation system by generating a caption

from correct phrases existing in the ground truth.

Table 1 presents the results of caption generation from

oracle phrases. This table shows that our captions generated

from oracle phrases and reference captions are more similar

than captions generated using templates.

5.2. Comparison using PASCAL Sentence

In this section, we show the results using the PASCAL

Sentence dataset. Typical examples of generated captions

are presented in Fig. 4. As shown, estimated phrases con-

tribute to the generation of appropriate captions. How-

ever, as the bottom example in Fig. 4 illustrates, even if

a few phrases (“decker bus” and “a bus”) are incorrect, our

Table 1. Comparison of output captions using oracle phrases

(“ours”) versus a template-based approach [9].

Dataset Method
BLEU NIST

1 2 3 4 5

PASCAL
Sentence

template 0.74 0.55 0.35 - -

ours 0.82 0.71 0.56 0.42 7.64

IAPR-
TC12

template 0.33 0.18 0.07 - -

ours 0.74 0.61 0.48 0.37 6.26

Input Image Estimated
Keyphrases

Generated Sentence
&

Ground Truth

a group
group of
of people
people sitting
a living

A living room with a group 
of people sitting.
Four Asian young people 
sitting in a den or living room.

A beautiful lake surrounded 
by trees with two small boats 
on the beach.

A grassy field in front of a 
body of water.

airplane is
a grassy
grass in
a field
grassy field

three people sitting at a table 
with food and wine 

Group of people sitting at a 
table with a dinner.

a group
of people
group of
people sitting
the table

a desk
desk with
computer and
a computer
table with

An office cube has a desktop 
computer, a cluttered desk, 
and a blue office chair.

Table with a desk with a 
computer and a chair.

room with
decker bus
a room
desk with
a bus

The entertainment center of the 
living room includes a TV, 
plants, and several baskets.

A living room with a view
 of a television.

Figure 4. Representative examples of estimated phrases and gener-

ated captions for PASCAL Sentence. The first column shows input

images. The second column shows estimated phrases for each in-

put image. The third column shows the generated caption at the

top and the ground truth in the dataset at the bottom. Red-colored

words in the generated captions derive from estimated phrases.

method using modified multi-stack beam search automati-

cally selects appropriate phrases to the greatest extent pos-

sible. As a result, such incorrect phrases are ignored and

an accurate caption (“A living room with a view of a tele-

vision.”) is generated. Qualitative comparison to previous

work was already presented in Fig. 1. Table 2 shows a quan-

titative comparison. Scores in parentheses were computed

by matching synonyms. In general, matching not only the

same word but also its synonyms increases the score. The

table shows that our framework can generate more accu-

rate captions. We also investigated a naive filter depending

on frequency only, as in [41]. As shown in Table 2, CoS-

MoS leads to better scores than the linear model in [41].

Additionally, usage of SWF contributes to BLEU 1/2 and

NIST 5, which is to be expected because eliminating mean-

ingless phrases contributes directly to the matching rate of

unigrams and bigrams. Therefore, we used SWF for phrase

extraction in the experiments described next.
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Table 2. Evaluation of output captions from PASCAL Sentence.

Scores in parentheses were computed by matching synonyms.

Method
BLEU NIST

1 2 3 4 5

Baby talk [18]
0.25

(0.30) - - - -

Corpus-guided [48] (0.41) (0.13) (0.03) - -

Verma et al. [43]
0.36

(0.43) - - - -

Gupta et al. [10] (0.54) (0.23) (0.07) - -

FV + Linear model
+naive filter [41] - - - 0.07 2.65

FV + CoSMoS
+naive filter 0.53 0.32 0.19 0.11 3.37

FV+CoSMoS+SWF 0.56 0.33 0.19 0.11 3.45

Table 3. Evaluation of output captions from MS COCO.

Method
BLEU METEOR

1 2 3 4 -

Multimodal RNN [14] 0.63 0.45 0.32 0.23 0.20

Mind’s Eye [2] - - - 0.22 0.25

LRCN [4] 0.67 0.49 0.35 0.25 -

[5] 0.70 - - 0.29 0.25

VGG net + CoSMoS 0.65 0.49 0.32 0.20 0.20

Table 4. Evaluation of output captions from PASCAL Sentence.

We used MS COCO as a training dataset, as described in [44].

Method
BLEU NIST

1 2 3 4 5

Google NIC [44] 0.59 - - - -

AlexNet+CoSMoS 0.62 0.41 0.25 0.15 4.43

5.3. Comparison to neural networks + MS COCO

After the first submission of this paper, various works

based on neural networks such as CNN and RNN are eval-

uated using larger dataset than PASCAL Sentence. This

would be mainly because sufficient number of training sam-

ples are required to train neural networks. Since MS COCO,

one of the largest manually-organized datasets, is common

to RNN-based works for evaluation, we also evaluated our

method using this dataset. In this subsection, we employed

two kinds of CNN features: AlexNet [17] and VGG net

[39]. Because the captions for the test set are not available,

we report the BLEU and METEOR [21] scores computed

with the coco-caption code2.

As shown in Table 3, we achieved performance compet-

itive with RNN-based approaches. Multimodal RNN [14]

is a combination of AlexNet and Bidirectional RNN [38].

LRCN [4] integrates VGG net and LSTM net [11], trained

for feature learning and caption generation, respectively.

2http://github.com/tylin/coco-caption

Table 5. Evaluation of output captions from IAPR-TC12. Scores

in parentheses were computed by matching synonyms.

Method
BLEU NIST

1 2 3 4 5

Gupta et al. [10]
0.15

(0.21)
0.06

(0.07)
0.01

(0.01) - -

FV+CoSMoS 0.60 0.40 0.28 0.20 3.73

Table 6. Evaluation of output captions from the SBU dataset.

Scores in parentheses were computed by matching synonyms.

Method
BLEU NIST

1 2 3 4 5

Im2text [29] 0.13 - - - -

Kuznetsova et al. [20] 0.11 (0.11) - - - -

FV+CoSMoS 0.20 0.09 0.04 0.02 1.15

Google NIC [44] combines LSTM net and GoogLeNet

[40], a deeper CNN than VGG net. LSTM net can accu-

rately generate captions by learning the probability of skip-

gram, which is a kind of n-gram with word gaps. RNN-

based methods were slightly better than our results in terms

of BLEU-4 because of the ability of learning skip-gram.

Therefore, the competitive performance reported in this sec-

tion in terms of BLEU-1/2 would be attributable mainly to

CoSMoS, which can learn the classifiers for phrases with

few training samples. Obviously, we can introduce CoS-

MoS between CNN and LSTM because CoSMoS can prop-

agate the gradient of loss backward, although a proposal of

that combination is beyond the scope of this paper.

For evaluation of generality, we evaluated captions gen-

erated from PASCAL Sentence by training MS COCO, as

reported in [44]. First, images and captions in MS COCO

were trained. All images in PASCAL Sentence dataset were

then used as testing samples. Table 4 shows that we slightly

outperform the RNN-based approach. For more evaluations

about generality, we use SBU dataset in Sec. 5.5.

5.4. Comparison with IAPR­TC12 and SBU dataset

Typical examples of generated captions are shown in Fig.

5 for the IAPR-TC12 and SBU datasets. Although there

are many noisy descriptions [19], the results show that our

methodology can generate captions for images from a large-

scale dataset collected from the web.

Comparisons using the IAPR-TC12 and SBU are shown

in Table 5 and Table 6, respectively. These tables also show

that we achieve state-of-the-art performance using these

datasets. [10] employs LMNN [45] to predict phrases. Al-

though Table 2 shows that the small-scale dataset can be

utilized by [10], Table 5 may indicate that such nonlinear

metric learning fail to treat a middle-scale dataset.
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Input Image Estimated
Keyphrases

Generated Sentence
&

Ground Truth

blue sky
clock tower
blue in
sky EOS
tower in

stained glass
glass window
window in
in St.
the church

the background
mountain range
mountains in
range in
snow-covered 
summit

A steep, grey canyon in the m-
iddle of a green valley with
trees and houses, and a 
brownish, bald mountain in 
the background.

A green trees and brown mou-
ntain range in the background.

the background
tourists are
are standing
are sitting
the middle

People are looking at rocks in
the middle of a desert 
landscape.

Tourists are standing on the 
middle of a flat desert.

Clock tower in the city of the 
blue sky.
The clock tower at Sydney Uni 
against a perfect blue sky.

Stained glass window in the 
church in St. Vitus Cathedral.
Stained glass window in 
Notre Dame.

Figure 5. Examples of estimated phrases and captions for the

IAPR-TC12 (top two) and SBU (bottom two). Each column has

the same information as Fig. 4.

1K
10K

100K
1M

Input Image
# of

Images Generated Sentence

Is a train station in the lake in the small.
All the lake in the water is a shot.
View of the lake in the water in a boat.
It is a picture of the boat in the water.

1K

10K
100K

1M

Building a 5D2 from a bar in the 
evening sky.

Fienile master bedroom window in the 
house in my office.

To my desk in the box in the little girl.

Desk in the kitchen table in the wall.

1K
10K

100K

1M An office building near the roof of the
building.

Like the backfground of our house in the
bottom.

On the 13h floor in the beach at the park.
Hat in the roof of the castle in the tower.

Stained glass window in the church in St.
Vitus Cathedral.

Stained glass in the tower of the church 
in St.

Stained glass window in aanbouw 
cofferdam for a field.
Window in the ossuary glass windows in 
St. Louis Missouri.

1K

10K

100K

1M

Figure 6. Examples of captions generated for PASCAL Sentence

(top two) and SBU (bottom two) images using a varying number

of SBU datasets.

5.5. Justification for collecting larger web images

We generated captions for images from PASCAL Sen-

tence after learning pairs of images and captions from SBU.

The objective of this experiment was to investigate (1) if we

could generate captions with automatically collected web

data rather than manually labeled data, and (2) the impact

of the size of SBU.

10^3 10^4 10^5 10^6
1.6

1.7

1.8

1.9

2.0

Dataset size

N
IS

T
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co
re

NIST 1
NIST 2
NIST 3
NIST 4
NIST 5

0.1

0.2

0.3

0.4

0

BLEU 1
BLEU 2
BLEU 3
BLEU 4

10^3 10^4 10^5 10^6

Dataset size

B
L

E
U
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re

Figure 7. Impact of different dataset sizes within SBU.

We trained our system using 1M images from SBU and

generated captions for both PASCAL Sentence and SBU

images. We reduced the number of images before gener-

ating captions. Fig. 6 presents examples of captions gener-

ated using a varying number of SBU datasets for PASCAL

Sentence images and SBU images. All captions were gen-

erated using the same grammar model extracted from 1M

captions in SBU. These examples indicate that, even if the

dataset is not manually organized, we can generate a caption

using numerous images collected from the web. The im-

provement of these captions demonstrates that phrase pre-

diction can be improved when the number of images is in-

creased. The NIST and BLEU scores for all dataset sizes

up to the full-size dataset are shown in Fig. 7. As this fig-

ure shows, increasing the size of the dataset improves these

scores, especially the NIST score. Because NIST empha-

sizes less frequent n-grams, this score improvement means

that our system is able to learn less frequent phrases when

the number of images is increased. Although the BLEU

scores obtained with training samples from SBU are lower

than those obtained with training samples from PASCAL

Sentence shown in Table 2, they are still comparable to

those of several existing works [18, 48].

6. Conclusion

In this paper, we address caption generation of images.

We propose a novel subspace embedding method, Common

Subspace for Model and Similarity (CoSMoS), for phrase

learning using few training samples per phrase. CoSMoS

obtains a subspace in which (a) all feature vectors associ-

ated with the same phrase are mapped as mutually close,

(b) classifiers for each phrase are learned, and (c) training

samples are shared among co-occurring phrases. We also

propose a simple but effective phrase extraction method.

Our experimental results demonstrate that our method

achieves state-of-the-art accuracy although RNN is not em-

ployed for caption generation. Captions can be generated

for images even with automatically collected web data, and

the accuracy of captions increases when the size of the

dataset increases. This paper utilizes CNN only for feature

extraction. In a future work, we can integrate CoSMoS into

combined network of CNN and RNN [4, 14, 44].
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