
Global, Dense Multiscale Reconstruction for a Billion Points

Benjamin Ummenhofer and Thomas Brox

Computer Vision Group

University of Freiburg, Germany

{ummenhof, brox}@cs.uni-freiburg.de

Abstract

We present a variational approach for surface recon-

struction from a set of oriented points with scale informa-

tion. We focus particularly on scenarios with non-uniform

point densities due to images taken from different distances.

In contrast to previous methods, we integrate the scale in-

formation in the objective and globally optimize the signed

distance function of the surface on a balanced octree grid.

We use a finite element discretization on the dual structure

of the octree minimizing the number of variables. The tetra-

hedral mesh is generated efficiently from the dual structure,

and also memory efficiency is optimized, such that robust

data terms can be used even on very large scenes. The sur-

face normals are explicitly optimized and used for surface

extraction to improve the reconstruction at edges and cor-

ners.

1. Introduction

Current structure from motion pipelines can create

sparse reconstructions of large scenes with thousands of im-

ages. Even city scale reconstructions have become feasible

[4]. Such large scenes come along with several challenges

for dense reconstruction. These include (1) an efficient

scene representation, both in terms of memory and com-

putational costs, (2) reconstruction of surfaces observed at

different levels of detail, and (3) graceful handling of noisy

and missing data.

In this paper, we deal with all three aspects. We pro-

pose for the first time to optimize a global cost function

that takes the scale of the imaged points into account. Such

scale adaptive reconstructions become important for scenes

that are too large to be modeled at a single scale or where

the focus of attention is concentrated on small parts of the

scene as shown in Fig. 1.

Especially in these cases, the scene representation must

be efficient in memory and should adapt to the scene struc-

ture rather than to the size of the input data. Therefore, we

propose an octree representation in conjunction with point

Figure 1. Reconstruction of a scene with large differences in scale.

The top right and bottom left corner show a close-up view of the

respectively marked spots.

aggregation and a fast finite element discretization of the

octree domain into a tetrahedral mesh based on the dual oc-

tree. Our discretization does not introduce additional nodes,

thus allowing us to state the optimization problem with a

minimum number of variables with respect to the the tree

structure. Together with the small memory footprint this

makes our approach suitable for the dense reconstruction

from a billion points.

By casting the reconstruction as a global optimization

problem we can complement the data fusion with regular-

ization to deal with noisy or missing measurements. To this

end, we use robust norms in the cost function. This is only

possible because we counter the high memory requirements

of robust norms by efficient storage of the data. To obtain a

faithful reconstruction also of edges and corners at all lev-

els of detail in the octree representation, we explicitly model

and optimize the surface normals.

The input to our method is a point cloud with normal

and scale information describing the size of the underlying

pixel or patch in the world coordinate system. Such data can

be obtained with off-the-shelf disparity estimation methods

and structure-from-motion packages. In particular, we used

the VisualSfM software [21, 20] to compute camera param-

11341

eters and [8] for estimating the depth maps.

Based on this input, in a first pass, we compute a bal-

anced octree representation of the scene by taking into ac-

count the sampling density and the scale of the points. The

scale information determines the octree levels to which each

individual point contributes.

In a second pass, we aggregate the points of each node in

the octree. We treat each point as a signed distance function

with compact support, the size of which is determined by

the point’s scale. After aggregation of the signed distance

values and normals in each node we obtain a compact rep-

resentation that does not require access to the original point

cloud anymore.

Once the octree is built, we generate the dual octree

structure and its tetrahedral mesh. We then minimize a dis-

cretized version of our energy functional on the tetrahedral

mesh. The result of this optimization is a regularized signed

distance function and its gradient. We generate a triangle

mesh of its zero level set with a dual contouring approach

to visualize the reconstruction.

2. Related Work

Many algorithms have been proposed for volumetric in-

tegration of depth data. We focus here on the most closely

related ones.

Kazhdan and Hoppe [10] and Calakli and Taubin [1] take

as input a point cloud with normal information and glob-

ally optimize a surface representation. However, they do

not take the scale of points into account and without robust

norms they are not robust to erroneous data. We compare to

[10] and [1] in Section 8. Recently, Estellers et al. [3] pro-

posed a version of [10] which uses a robust norm to penalize

deviations from the point normals but uses least squares for

the positions. They also do not deal with the scale.

To avoid artifacts due to different point resolutions,

Fuhrmann and Goesele [5] propose a fusion method that av-

erages samples from depth maps at compatible scales within

an octree data structure. They compute a weighted average

of signed distances similar to the VRIP method by Curless

and Levoy [2]. In contrast to VRIP, Fuhrmann and Goe-

sele use the scale information of each depth sample to se-

lect an appropriate octree level. In a later work Fuhrmann

and Goesele [6] use basis functions with compact support

that depend on the position, normal and scale of the point

samples. These basis functions are aggregated in an octree

representation. Both approaches by Fuhrmann and Goesele

are local approaches and lack global regularization capabil-

ities. We compare to them in Section 8.

Our regularization is strongly related to Pock et al. [15],

who compute the signed distance function with robust en-

ergy terms for the data and a regularizer based on the total

variation. They propose a convex functional with a second

order total generalized variation (TGV) regularizer. The

TGV regularization introduces an additional vector-valued

function, which increases the computational complexity.

Moreover, their robust data terms based on the Huber norm

require storing all samples in memory during optimization.

Zach [22] proposed a memory efficient robust approach us-

ing histograms to store the signed distance values. Both

methods work on a regular grid, which prevents them to be

applied to large scenes or scenes with large differences in

scale.

Although some of the discussed methods [10, 1, 6] use

the normal information to compute the implicit function,

none of these methods uses normal information directly for

the surface extraction. In contrast, we explicitly optimize

the surface orientation and use this additional information

for extracting the surface, which yields a more faithful rep-

resentation of edges and corners.

3. Octree Generation

We represent the scene with a linear octree implementa-

tion analogous to [7]. To process the input data in parallel

we use the concurrent hash map implementation of Li et al.

[13] to store the location keys for the octree nodes.

Our goals for building an octree representation of the

scene are twofold. First, the octree should adapt to the scene

structure to reduce the required memory. Second, the octree

should allow a fast discretization of the energy functional

(9). To achieve this second goal we restrict the octree to be

balanced, i.e., the depth difference of adjacent leaf nodes

must be at most one depth level. This permits us to build

a tetrahedral mesh with lookup tables and guarantees that

there are no degenerated tetrahedra.

We start with building an unconstrained octree based on

an estimate of the distribution of the point density in space

and scale. With this estimate we decide where and at which

scale to create the leaf nodes. The input scale of the points

and the scene bounding box allow us to assign each point

to an octree level. With the edge length L of the cubic

bounding box, the edge length of an octree voxel at depth

d is l = L/2d. We assign a point with input scale σ to

the highest octree level d ∈ {0, .., dmax} with 2σ ≤ L/2d.

Together with the position of the point we compute the loca-

tion key for each input point. The location key describes the

depth and position of the voxel in the octree containing the

point sample. Sorting the points with respect to the location

keys yields a linear octree that only stores nodes containing

points. For each node we accumulate the density contribu-

tion of each point. We compute the point density for a voxel

with edge length l as

ρ =
∑

i∈P

σ3

i

l3
, (1)

where P is the set of points with the same location key as

the voxel. The assignment of a point to a compatible octree

1342

(a) (b) (c) (d) (e)

Figure 2. (a) Quadtree before balancing. Each node stores the value of the scale function s. (b) Quadtree after balancing. The difference

of the quadtree level of adjacent nodes is limited to 1 by recursive splitting of nodes. Splitted nodes keep the original values of the scale

function. (c) Balanced quadtree (dashed) and its corresponding dual structure (solid red). Each node center becomes a vertex of the dual

structure. In contrast to octrees, the polygonal cells of the dual structure of a quadtree can be converted to a triangle mesh by just splitting

cells with 4 vertices into 2 triangles. (d) Primal sampling of a quadtree. Function values are stored in the vertices of the quadtree cells. (e)

Dual sampling of a quadtree. Function values are stored in the center of each cell. The dual sampling results in a lower number of samples

therefore reduces the memory and computational complexity for minimizing the energy functional (9)

level based on the scale limits the maximum contribution to

the point density to 1/8. This discards points with a scale

too large to describe the surface at the specific octree level.

On the other hand, we want to keep high resolution point

samples at a smaller scale. To include these points in the

density estimate, we recursively add the (averaged) density

of child nodes to their parents. This procedure creates all

missing parent nodes up to the root node.

The sparsity of the octree is improved by removing nodes

that fall below a user defined density threshold. Nodes that

are ancestors of at least one node that passes the threshold

are kept to preserve a valid tree structure.

3.1. Octree Balancing

We balance the octree by splitting nodes recursively until

all leaf nodes satisfy the balancing criterion. Alternatively,

leaf nodes could be merged, but this can cause artifacts in

the reconstruction.

To preserve the resolution information of the uncon-

strained octree we define a scale function s over the octree.

s stores the scale of the reconstruction at each node and is

initialized with the edge length of the corresponding octree

voxel. We use s to define a scale aware energy model in.

Splitting a leaf node creates the 8 child nodes and turns

the former leaf into an inner node. We assign the scale value

of the split node to the new leaf nodes. Passing on the scale

value prevents an artificial increase in the reconstruction’s

resolution. We also eliminate mixed nodes by adding miss-

ing children. Fig. 2 shows an example of a quadtree before

(a) and after balancing (b).

3.2. Point Aggregation

For each node in the balanced octree, we aggregate the

data of the input point cloud affecting this node. This yields

aggregated signed distance functions fn and aggregated ori-

entations gm that are used in the cost function in Section 4.

In Fuhrmann and Goesele [5], this aggregation is the only

form of regularization. Since we globally optimize a cost

function, in our case the aggregation mainly serves the effi-

cient representation of the raw input data.

We treat each point sample as a signed distance function

with a compact window function W . The support radius of

the weighting function W is the point’s scale σi; see also

Fig. 3. Moreover, we assign to each voxel a soft window

R with a compact support radius h proportional to the scale

of the voxel. This relates the influence computation to the

scale of the voxel and avoids missing points with a small

scale σi. For most of our experiments we use h = 3s(c)
with c as the voxel center. The signed distance value at the

voxel center for point i is

fi(c) =
1

wi

∫

Rh(x−c)Wσi
(x−pi) 〈ni, c− x〉 dx, (2)

where 〈·, ·〉 denotes the dot product, ni is the measured sur-

face normal of the point, and pi is the position of the point.

The associated weight is

wi =

∫

Rh(x− c)Wσi
(x− pi) dx. (3)

Gaussian windows R and W would not have compact

support, and considering all points for all voxels would be

prohibitively slow. Besides, evaluating the integrals of (2)

and (3) can become computationally expensive even in case

of a closed form solution. To speed up computation, we

approximate fi and wi using the window function proposed

in [14]:

Rh(r) =

{

315

64πh9 (h
2 − ‖r‖2)3 if ‖r‖ ≤ h

0 else.
(4)

It is fast to evaluate and frequently used in the smoothed

particle hydrodynamics literature.

1343

We define the weighting function W for the point sample

as

Wσi
(r) =

{

1 if ‖r‖ ≤ σi

0 else.
(5)

With R and W as above

wi(c) ≈
4

3
πσ3

iRh(pi − c) , and (6)

fi(c) ≈
1

wi

4

3
πσ3

iRh(pi − c) 〈ni, c− pi〉 = 〈ni, c− pi〉 .
(7)

Since the orientation does not depend on the distance to the

point, the orientation gi induced by point i simply reads

gi(c) = ni. (8)

Due to the compact support of R, wi is zero for point

samples outside the radius h and the points can be ignored.

We reuse the spatial sorting of the input points with respect

to the location keys during density computation to acceler-

ate the radial search for candidates.

Again we discard points with a too large scale 2σi >
s(c) but consider high resolution points with low scale val-

ues. In contrast to [6], where sample contribution only de-

pends on a window centered at the points, we can aggregate

the data also reliably for voxels at coarser levels.

Efficient Storage Instead of storing values for each point

inside the octree nodes, we use histograms and k-means

clustering to store a fixed number of fn, wn and gm, wm for

each voxel. We store the signed distance values fi and the

corresponding weights wi for each point in the histogram

fn, wn with 8 bins. We use soft binning to reduce quanti-

zation effects. The minimum and maximum values of the

bin levels fn are bound individually for each voxel by ±h.

We reduce the number of normal hypotheses to 10 using an

online k-means clustering. We start with evenly distributed

cluster centers for 20 orientations. Each time we add a nor-

mal we update the cluster centers gm and the weights wm.

After adding all points for a voxel we pick the 10 clusters

with the largest weights. To further decrease the size in

memory, we quantize the normal direction of the selected

clusters with 8 bits for inclination and azimuth. We store

all weights of the histograms and the normal clusters in 16

bit half-precision floating-point format. The total memory

footprint of the data term is 64 byte per voxel including

fields for averaging color information.

4. Energy Model

The final reconstruction is obtained by minimizing the

energy

E(u,v) = λ1Edatau + λ2Edatav + α1Ecoupling + α2Esmooth

(9)

h

Rh

pi

ni

σi

Wσi

c

s(c)

Figure 3. Data aggregation for a voxel centered at c. The aggrega-

tion window Rh is depicted by the outer circle shaded in green. Its

support h depends on the value of the scale function at the voxel

center s(c). The weight function Wσi
of a point sample at posi-

tion pi is shown as the smaller circle in blue. Its support depends

on the point’s input scale σi.

over the signed distance function u(x) and the normal vec-

tor field v(x), where x is a coordinate in R
3. In the follow-

ing, we drop x in the notation. The factors λ1,2 and α1,2

steer the relative importance of the terms, which are defined

as

Edatau(u) =

∫

1

s

∑

n

wn|u− fn| dx (10)

Edatav(v) =

∫

∑

m

wm‖v − gm‖ dx (11)

Ecoupling(u,v) =

∫

‖∇u− v‖2 dx (12)

Esmooth(v) =

∫

s‖Jv‖ dx. (13)

The norm ‖·‖ denotes the Frobenius norm. It is not squared,

i.e., measurements can be ignored if the majority of data

points contradict them. This makes the energy robust to

erroneous points in the input data.

The term Ecoupling couples the functions u and v. The

squared term ensures that v stays close to the gradient of

the signed distance function and vice versa.

Finally, the smoothness term Esmooth adds a regulariza-

tion to the vector field v by penalizing its Jacobian Jv. The

norm is non-quadratic, i.e., Esmooth favours piecewise con-

stant vector fields corresponding to planar surfaces. This

preserves discontinuities in the vector field, for instance, at

object edges or corners.

To make the energy functional aware of the reconstruc-

tion scale we introduce the scale function s in (10) and (13).

s defines the scale of the reconstruction at each position.

Low values result in a reconstruction with a high spatial res-

olution while high values correspond to a coarse reconstruc-

tion. The scale function relates the signed distance values

1344

Figure 4. Two of the 27 possible cell configurations after rota-

tion normalization. Top Triangulation of a cubic cell with 5 tetra-

hedra (left), exploded view (center), corresponding octree (right).

Bottom Triangulation of a nonconvex cell with 6 tetrahedra (left),

exploded view (center), corresponding octree (right).

of u and fn in the energy Edatau to the reconstruction scale.

Without knowing the reconstruction scale we cannot tell if

a deviation of one meter between u and fn is significant

or not. We can also see s as a spatially varying weighting

parameter, giving more weight to the data term in regions

with higher resolution. In Esmooth we increase the smooth-

ing strength proportional to the scale to obtain a coarser re-

construction and decrease it to obtain a reconstruction with

fine details. The functions v, gm and ∇u describe direc-

tions and therefore are scale independent. While the vectors

in gm are forced to unit length, we do not enforce this for v

and ∇u to keep the functional convex.

5. Problem Discretization

To find the minimizer of (9), we discretize the functional

using a finite element and finite volume discretization. We

create a discrete problem with a finite dimensional search

space based on the dual sampling of the octree, as shown in

Fig. 2(e). Dual sampling describes the domain by sampling

functions at the center of each octree node. This leads to

a smaller number of degrees of freedom and reduces com-

plexity.

We use the following approximations for the functions u
and v in the coupling term (12) and the smoothness term

(13)

u(x) ≈ ũ(x) =
∑N

k Ukφk(x)

v(x) ≈ ṽ(x) =
∑N

k Vkφk(x)
, (14)

where N is the number of nodes and Uk, Vk are the dis-

crete degrees of freedom of the respective approximations.

The global shape functions Φk define the interpolation of

the approximate functions ũ and ṽ. Each shape function is

1 at its own node and 0 at all other nodes. We describe each

global shape function as a composition of local shape func-

tions defined on the tetrahedral elements. The local shape

functions defined on the tetrahedra are the linear barycentric

coordinate functions.

For the data terms (10) and (11) we use the approxima-

tions

u(x) ≈ û(x) =
∑N

k UkIk(x)

v(x) ≈ v̂(x) =
∑N

k VkIk(x)
(15)

with the indicator functions Ik as shape functions. Ik is 1

inside the cubic voxel and 0 otherwise. Setting up the lin-

earized system requires us to compute the volume integrals

over the shape functions. For the shape functions φk we

must compute the integrals over the tetrahedra, while the

volume integral for Ik is simply the volume of the voxel.

5.1. Tetrahedral Mesh Generation

Before triangulation (the generation of the tetrahedral

mesh) we compute the dual octree. We use the parallel al-

gorithm presented by Lewiner et al. [12] to create the cells

of the dual octree. Fig. 2(c) shows the dual of a quadtree.

Creating the dual swaps the roles of vertices and cells of the

octree. Each vertex in the primal octree becomes a cell in

the dual, and each vertex in the dual becomes a cell in the

primal; see Fig. 2(d,e) for the positions of primal and dual

vertices of a quadtree.

We can generate a triangulation by decomposing the

cells of the dual octree. In the 2D quadtree example, as

shown in Fig. 2(c), we can create a triangulation by split-

ting cells with four vertices into two triangles.

For octrees, the decomposition of the polyhedral cells

into tetrahedrons is more involved. This is due to the non-

planar faces with four vertices of some dual cells. Choosing

a triangulated surface for a nonplanar face makes at least

one of the adjacent cells nonconvex. Since the triangulation

of nonconvex polyhedra is a NP-complete problem [16], we

use a lookup table approach and precompute the triangula-

tion for all possible cell configurations.

We normalize the possible configurations for rotations to

keep the lookup table down to 27 entries. Fig. 4 shows the

triangulation for two of the 27 configurations of the polyhe-

dral cells. The range of the created tetrahedra per configu-

ration is 2-6. To compute the triangulations, we have used

a naive algorithm as initialization. For the failure cases we

have manually generated the tetrahedral decomposition. We

encode the configurations in a compact 32-bit key. The key

uses quantized edge lengths of the cell and the octree level

of the vertices.

Our lookup table guarantees a tetrahedral mesh without

holes and without intersecting tetrahedra under the assump-

tion that the octree is balanced as described in Section 3.1.

6. Energy Minimization

Two difficulties arise with the minimization of en-

ergy (9). First, the energy functional consists of non-

differentiable functions and nonlinear terms. Second, the

1345

problem size requires a minimization algorithm that makes

best use of the available memory and computing resources.

We first address differentiability by regularizing the non-

squared data terms (10), (11), and the smoothness term (13).

For the data term Edatau we replace the absolute value in

(10) with its regularized version |a|δ =
√
a2 + δ2. The

function |a|δ is differentiable everywhere and has similar

properties as the Huber norm. In case of the data term (10),

we set the parameter δ individually to the histogram bin

widths of the voxels. This avoids quantization artifacts in

the reconstruction. Analogously, we replace the Frobenius

norm with a modified version. We set δ = 10−3 for (11)

and (13).

To deal with nonlinearity we use an iterative reweighted

least squares approach. Within each iteration we solve a

linearized least squares problem using a parallel 8-color

Gauss-Seidel scheme, which is an in-place method and,

thus, has a small memory footprint. To speed up conver-

gence we employ a coarse-to-fine scheme on top. Transi-

tions from a coarser grid to a finer grid use the shape func-

tions φk for interpolation.

7. Surface Extraction

Once the signed distance function u is computed we can

extract the surface as the zero level set. We use the dual con-

touring algorithm proposed by Ju et al. [9]. The algorithm

can be applied to adaptive grids and additional information

can be used to improve the vertex placement. We use the ad-

ditional information about the surface orientation from the

vector function v to compute vertex positions.

We compute the improved vertex position q as the mini-

mizer of the quadratic error function

q = argmin
x

(

1

N

N
∑

i

〈ni,x− pi〉2 + ‖x−m‖2
)

.

(16)

For each edge intersecting the surface, we add two plane

constraints with the intersection point pi and the normals

of the adjacent edge vertices ni. The normals ni equal the

degrees of freedom Vk of the respective dual vertex.

The point m is the center of gravity of the edge inter-

sections pi. In degenerate cases, where the normals ni are

very similar, m stabilizes the solution and avoids vertex po-

sitions far away from the cell. Since m does not depend on

the normals, it can be used for algorithms without normal

information. Fig. 5 compares the positions of q and m.

8. Results

We present results on synthetic and real data sets. For the

real data sets we use the Multi-View-Environment [19] and

[8] to create point clouds with scale information. Camera

parameters have been computed with [21], [20].

n1 n2,3

n4

+ -

++

p1,2

p3,4

m

q pi iso surface zero crossing on edge
ni estimated surface normals
m center of gravity of the

intersections pi

q optimized vertex position

Figure 5. Computation of the vertex position. The point q min-

imizes the distances to the planes defined by (ni,pi) and to the

point m. Each edge intersecting the surface adds two plane equa-

tions to the quadratic error function (16).

Original Ours Ours*

FSSR PSR SSD

Figure 6. Reconstruction of a synthetic cube. Original: Origi-

nal cube. Ours: Our reconstruction using the center of mass m to

place vertices. Ours*: Our reconstruction solving the QEF (16) to

compute vertex positions. FSSR: Floating Scale Surface Recon-

struction using marching cubes as in [11]. PSR: Poisson surface

reconstruction also using [11]. SSD: Smoothed Signed Distance

reconstruction using dual marching cubes [17]. The maximum oc-

tree depth was set to 5 for PSR, SSD and our method.

a

b

c

d

Figure 7. Effect of vertex positions being computed by solving

(16) on a real data set. Left: Reconstruction with limited octree

depth of 9 using dual contouring with improved vertex positions.

Right: Close-up views comparing the reconstruction of edges us-

ing the center of mass (a),(c) and the improved vertex positions

using normal information (b),(d). Using normal information to

compute vertex positions leads to a more faithful reconstruction of

edges and improves visual quality.

1346

