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Abstract

Recent reports suggest that a generic supervised deep

CNN model trained on a large-scale dataset reduces, but

does not remove, dataset bias. Fine-tuning deep models in

a new domain can require a significant amount of labeled

data, which for many applications is simply not available.

We propose a new CNN architecture to exploit unlabeled and

sparsely labeled target domain data. Our approach simulta-

neously optimizes for domain invariance to facilitate domain

transfer and uses a soft label distribution matching loss to

transfer information between tasks. Our proposed adapta-

tion method offers empirical performance which exceeds

previously published results on two standard benchmark vi-

sual domain adaptation tasks, evaluated across supervised

and semi-supervised adaptation settings.

1. Introduction

Consider a group of robots trained by the manufacturer

to recognize thousands of common objects using standard

image databases, then shipped to households around the

country. As each robot starts to operate in its own unique

environment, it is likely to have degraded performance due

to the shift in domain. It is clear that, given enough ex-

tra supervised data from the new environment, the original

performance could be recovered. However, state-of-the-art

recognition algorithms rely on high capacity convolutional

neural network (CNN) models that require millions of su-

pervised images for initial training. Even the traditional

approach for adapting deep models, fine-tuning [14, 29],

may require hundreds or thousands of labeled examples for

each object category that needs to be adapted.

It is reasonable to assume that the robot’s new owner

will label a handful of examples for a few types of objects,

but completely unrealistic to presume full supervision in

the new environment. Therefore, we propose an algorithm

that effectively adapts between the training (source) and test

(target) environments by utilizing both generic statistics from
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Figure 1. We transfer discriminative category information from

a source domain to a target domain via two methods. First, we

maximize domain confusion by making the marginal distributions

of the two domains as similar as possible. Second, we transfer cor-

relations between classes learned on the source examples directly to

the target examples, thereby preserving the relationships between

classes.

unlabeled data collected in the new environment as well as a

few human labeled examples from a subset of the categories

of interest. Our approach performs transfer learning both

across domains and across tasks (see Figure 1). Intuitively,

domain transfer is accomplished by making the marginal

feature distributions of source and target as similar to each

other as possible. Task transfer is enabled by transferring

empirical category correlations learned on the source to the

target domain. This helps to preserve relationships between

categories, e.g., bottle is similar to mug but different from

keyboard. Previous work proposed techniques for domain

transfer with CNN models [12, 24] but did not utilize the

learned source semantic structure for task transfer.

To enable domain transfer, we use the unlabeled target

data to compute an estimated marginal distribution over the

new environment and explicitly optimize a feature repre-
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sentation that minimizes the distance between the source

and target domain distributions. Dataset bias was classi-

cally illustrated in computer vision by the “name the dataset”

game of Torralba and Efros [31], which trained a classifier

to predict which dataset an image originates from, thereby

showing that visual datasets are biased samples of the visual

world. Indeed, this turns out to be formally connected to

measures of domain discrepancy [21, 5]. Optimizing for

domain invariance, therefore, can be considered equivalent

to the task of learning to predict the class labels while simul-

taneously finding a representation that makes the domains

appear as similar as possible. This principle forms the do-

main transfer component of our proposed approach. We

learn deep representations by optimizing over a loss which

includes both classification error on the labeled data as well

as a domain confusion loss which seeks to make the domains

indistinguishable.

However, while maximizing domain confusion pulls the

marginal distributions of the domains together, it does not

necessarily align the classes in the target with those in the

source. Thus, we also explicitly transfer the similarity struc-

ture amongst categories from the source to the target and

further optimize our representation to produce the same struc-

ture in the target domain using the few target labeled exam-

ples as reference points. We are inspired by prior work on

distilling deep models [3, 16] and extend the ideas presented

in these works to a domain adaptation setting. We first com-

pute the average output probability distribution, or “soft

label,” over the source training examples in each category.

Then, for each target labeled example, we directly optimize

our model to match the distribution over classes to the soft

label. In this way we are able to perform task adaptation by

transferring information to categories with no explicit labels

in the target domain.

We solve the two problems jointly using a new CNN ar-

chitecture, outlined in Figure 2. We combine a domain con-

fusion and softmax cross-entropy losses to train the network

with the target data. Our architecture can be used to solve su-

pervised adaptation, when a small amount of target labeled

data is available from each category, and semi-supervised

adaptation, when a small amount of target labeled data is

available from a subset of the categories. We provide a com-

prehensive evaluation on the popular Office benchmark [28]

and the recently introduced cross-dataset collection [30] for

classification across visually distinct domains. We demon-

strate that by jointly optimizing for domain confusion and

matching soft labels, we are able to outperform the current

state-of-the-art visual domain adaptation results.

2. Related work

There have been many approaches proposed in recent

years to solve the visual domain adaptation problem, which

is also commonly framed as the visual dataset bias prob-

lem [31]. All recognize that there is a shift in the distri-

bution of the source and target data representations. In

fact, the size of a domain shift is often measured by the

distance between the source and target subspace representa-

tions [5, 11, 21, 25, 27]. A large number of methods have

sought to overcome this difference by learning a feature

space transformation to align the source and target repre-

sentations [28, 23, 11, 15]. For the supervised adaptation

scenario, when a limited amount of labeled data is available

in the target domain, some approaches have been proposed

to learn a target classifier regularized against the source clas-

sifier [32, 2, 1]. Others have sought to both learn a feature

transformation and regularize a target classifier simultane-

ously [18, 10].

Recently, supervised CNN based feature representations

have been shown to be extremely effective for a variety of

visual recognition tasks [22, 9, 14, 29]. In particular, using

deep representations dramatically reduces the effect of reso-

lution and lighting on domain shifts [9, 19]. Parallel CNN

architectures such as Siamese networks have been shown

to be effective for learning invariant representations [6, 8].

However, training these networks requires labels for each

training instance, so it is unclear how to extend these meth-

ods to unsupervised or semi-supervised settings. Multimodal

deep learning architectures have also been explored to learn

representations that are invariant to different input modal-

ities [26]. However, this method operated primarily in a

generative context and therefore did not leverage the full

representational power of supervised CNN representations.

Training a joint source and target CNN architecture was

proposed by [7], but was limited to two layers and so was

significantly outperformed by the methods which used a

deeper architecture [22], pre-trained on a large auxiliary

data source (ex: ImageNet [4]). [13] proposed pre-training

with a denoising auto-encoder, then training a two-layer net-

work simultaneously with the MMD domain confusion loss.

This effectively learns a domain invariant representation, but

again, because the learned network is relatively shallow, it

lacks the strong semantic representation that is learned by di-

rectly optimizing a classification objective with a supervised

deep CNN.

Using classifier output distributions instead of category

labels during training has been explored in the context of

model compression or distillation [3, 16]. However, we are

the first to apply this technique in a domain adaptation setting

in order to transfer class correlations between domains.

Other works have cotemporaneously explored the idea

of directly optimizing a representation for domain invari-

ance [12, 24]. However, they either use weaker measures

of domain invariance or make use of optimization methods

that are less robust than our proposed method, and they do

not attempt to solve the task transfer problem in the semi-

supervised setting.
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3. Joint CNN architecture for domain and task

transfer

We first give an overview of our convolutional network

(CNN) architecture, depicted in Figure 2, that learns a rep-

resentation which both aligns visual domains and transfers

the semantic structure from a well labeled source domain to

the sparsely labeled target domain. We assume access to a

limited amount of labeled target data, potentially from only

a subset of the categories of interest. With limited labels on

a subset of the categories, the traditional domain transfer ap-

proach of fine-tuning on the available target data [14, 29, 17]

is not effective. Instead, since the source labeled data shares

the label space of our target domain, we use the source data

to guide training of the corresponding classifiers.

Our method takes as input the labeled source data

{xS , yS} (blue box Figure 2) and the target data {xT , yT }
(green box Figure 2), where the labels yT are only provided

for a subset of the target examples. Our goal is to produce

a category classifier θC that operates on an image feature

representation f(x; θrepr) parameterized by representation

parameters θrepr and can correctly classify target examples

at test time.

For a setting with K categories, let our desired classifica-

tion objective be defined as the standard softmax loss

LC(x, y; θrepr, θC) = −
∑

k

✶[y = k] log pk (1)

where p is the softmax of the classifier activations,

p = softmax(θTCf(x; θrepr)).
We could use the available source labeled data to train

our representation and classifier parameters according to

Equation (1), but this often leads to overfitting to the source

distribution, causing reduced performance at test time when

recognizing in the target domain. However, we note that

if the source and target domains are very similar then the

classifier trained on the source will perform well on the

target. In fact, it is sufficient for the source and target data to

be similar under the learned representation, θrepr.

Inspired by the “name the dataset” game of Torralba

and Efros [31], we can directly train a domain classifier

θD to identify whether a training example originates from

the source or target domain given its feature representation.

Intuitively, if our choice of representation suffers from do-

main shift, then they will lie in distinct parts of the feature

space, and a classifier will be able to easily separate the

domains. We use this notion to add a new domain confusion

loss Lconf(xS , xT , θD; θrepr) to our objective and directly op-

timize our representation so as to minimize the discrepancy

between the source and target distributions. This loss is

described in more detail in Section 3.1.

Domain confusion can be applied to learn a representation

that aligns source and target data without any target labeled

data. However, we also presume a handful of sparse labels

in the target domain, yT . In this setting, a simple approach is

to incorporate the target labeled data along with the source

labeled data into the classification objective of Equation (1)1.

However, fine-tuning with hard category labels limits the

impact of a single training example, making it hard for the

network to learn to generalize from the limited labeled data.

Additionally, fine-tuning with hard labels is ineffective when

labeled data is available for only a subset of the categories.

For our approach, we draw inspiration from recent net-

work distillation works [3, 16], which demonstrate that a

large network can be “distilled” into a simpler model by re-

placing the hard labels with the softmax activations from the

original large model. This modification proves to be critical,

as the distribution holds key information about the relation-

ships between categories and imposes additional structure

during the training process. In essence, because each train-

ing example is paired with an output distribution, it provides

valuable information about not only the category it belongs

to, but also each other category the classifier is trained to

recognize.

Thus, we propose using the labeled target data to op-

timize the network parameters through a soft label loss,

Lsoft(xT , yT ; θrepr, θC). This loss will train the network pa-

rameters to produce a “soft label” activation that matches

the average output distribution of source examples on a net-

work trained to classify source data. This loss is described in

more detail in Section 3.2. By training the network to match

the expected source output distributions on target data, we

transfer the learned inter-class correlations from the source

domain to examples in the target domain. This directly trans-

fers useful information from source to target, such as the fact

that bookshelves appear more similar to filing cabinets than

to bicycles.

Our full method then minimizes the joint loss function

L(xS , yS , xT , yT , θD;θrepr, θC) =

LC(xS , yS , xT , yT ; θrepr, θC)

+ λLconf(xS , xT , θD; θrepr)

+ νLsoft(xT , yT ; θrepr, θC).

(2)

where the hyperparameters λ and ν determine how strongly

domain confusion and soft labels influence the optimization.

Our ideas of domain confusion and soft label loss for task

transfer are generic and can be applied to any CNN classifi-

cation architecture. For our experiments and for the detailed

discussion in this paper we modify the standard Krizhevsky

architecture [22], which has five convolutional layers (conv1–

conv5) and three fully connected layers (fc6–fc8). The rep-

resentation parameter θrepr corresponds to layers 1–7 of the

network, and the classification parameter θC corresponds to

layer 8. For the remainder of this section, we provide further

1We present this approach as one of our baselines.
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Figure 2. Our overall CNN architecture for domain and task transfer. We use a domain confusion loss over all source and target (both labeled

and unlabeled) data to learn a domain invariant representation. We simultaneously transfer the learned source semantic structure to the target

domain by optimizing the network to produce activation distributions that match those learned for source data in the source only CNN. Best

viewed in color.

details on our novel loss definitions and the implementation

of our model.

3.1. Aligning domains via domain confusion

In this section we describe in detail our proposed domain

confusion loss objective. Recall that we introduce the domain

confusion loss as a means to learn a representation that is

domain invariant, and thus will allow us to better utilize a

classifier trained using the labeled source data. We consider

a representation to be domain invariant if a classifier trained

using that representation can not distinguish examples from

the two domains.

To this end, we add an additional domain classification

layer, denoted as fcD in Figure 2, with parameters θD. This

layer simply performs binary classification using the domain

corresponding to an image as its label. For a particular fea-

ture representation, θrepr, we evaluate its domain invariance

by learning the best domain classifier on the representation.

This can be learned by optimizing the following objective,

where yD denotes the domain that the example is drawn

from:

LD(xS , xT , θrepr; θD) = −
∑

d

✶[yD = d] log qd (3)

with q corresponding to the softmax of the domain classifier

activation: q = softmax(θTDf(x; θrepr)).

For a particular domain classifier, θD, we can now in-

troduce our loss which seeks to “maximally confuse” the

two domains by computing the cross entropy between the

output predicted domain labels and a uniform distribution

over domain labels:

Lconf(xS , xT , θD; θrepr) = −
∑

d

1

D
log qd. (4)

This domain confusion loss seeks to learn domain invari-

ance by finding a representation in which the best domain

classifier performs poorly.

Ideally, we want to simultaneously minimize Equa-

tions (3) and (4) for the representation and the domain clas-

sifier parameters. However, the two losses stand in direct

opposition to one another: learning a fully domain invariant

representation means the domain classifier must do poorly,

and learning an effective domain classifier means that the

representation is not domain invariant. Rather than globally

optimizing θD and θrepr, we instead perform iterative updates

for the following two objectives given the fixed parameters

from the previous iteration:

min
θD

LD(xS , xT , θrepr; θD) (5)

min
θrepr

Lconf(xS , xT , θD; θrepr). (6)

These losses are readily implemented in standard deep

learning frameworks, and after setting learning rates properly

so that Equation (5) only updates θD and Equation (6) only

updates θrepr, the updates can be performed via standard

backpropagation. Together, these updates ensure that we

learn a representation that is domain invariant.

3.2. Aligning source and target classes via soft labels

While training the network to confuse the domains acts

to align their marginal distributions, there are no guarantees

about the alignment of classes between each domain. To

ensure that the relationships between classes are preserved

across source and target, we fine-tune the network against

“soft labels” rather than the image category hard label.

We define a soft label for category k as the average over

the softmax of all activations of source examples in category
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tions with the cross entropy loss function over the current target

activations.

k, depicted graphically in Figure 3, and denote this aver-

age as l(k). Note that, since the source network was trained

purely to optimize a classification objective, a simple soft-

max over each ziS will hide much of the useful information

by producing a very peaked distribution. Instead, we use a

softmax with a high temperature τ so that the related classes

have enough probability mass to have an effect during fine-

tuning. With our computed per-category soft labels we can

now define our soft label loss:

Lsoft(xT , yT ; θrepr, θC) = −
∑

i

l
(yT )
i log pi (7)

where p denotes the soft activation of the target image,

p = softmax(θTCf(xT ; θrepr)/τ). The loss above corre-

sponds to the cross-entropy loss between the soft activation

of a particular target image and the soft label corresponding

to the category of that image, as shown in Figure 4.

To see why this will help, consider the soft label for a

particular category, such as bottle. The soft label l(bottle) is

a K-dimensional vector, where each dimension indicates

the similarity of bottles to each of the K categories. In this

example, the bottle soft label will have a higher weight on

mug than on keyboard, since bottles and mugs are more

visually similar. Thus, soft label training with this particular

soft label directly enforces the relationship that bottles and

mugs should be closer in feature space than bottles and

keyboards.

One important benefit of using this soft label loss is that

we ensure that the parameters for categories without any

labeled target data are still updated to output non-zero proba-

bilities. We explore this benefit in Section 4, where we train

a network using labels from a subset of the target categories

and find significant performance improvement even when

evaluating only on the unlabeled categories.

4. Evaluation

To analyze the effectiveness of our method, we evaluate it

on the Office dataset, a standard benchmark dataset for visual

domain adaptation, and on a new large-scale cross-dataset

domain adaptation challenge.

4.1. Adaptation on the Office dataset

The Office dataset is a collection of images from three

distinct domains, Amazon, DSLR, and Webcam, the largest

of which has 2817 labeled images [28]. The 31 categories

in the dataset consist of objects commonly encountered in

office settings, such as keyboards, file cabinets, and laptops.

We evaluate our method in two different settings:

• Supervised adaptation Labeled training data for all

categories is available in source and sparsely in target.

• Semi-supervised adaptation (task adaptation) La-

beled training data is available in source and sparsely

for a subset of the target categories.

For all experiments we initialize the parameters of conv1–

fc7 using the released CaffeNet [20] weights. We then fur-

ther fine-tune the network using the source labeled data in or-

der to produce the soft label distributions and use the learned

source CNN weights as the initial parameters for training

our method. All implementations are produced using the

open source Caffe [20] framework, and the network defini-

tion files and cross entropy loss layer needed for training

will be released upon acceptance. We optimize the network

using a learning rate of 0.001 and set the hyper-parameters

to λ = 0.01 (confusion) and ν = 0.1 (soft).

For each of the six domain shifts, we evaluate across five

train/test splits, which are generated by sampling examples

from the full set of images per domain. In the source domain,

we follow the standard protocol for this dataset and generate

splits by sampling 20 examples per category for the Amazon

domain, and 8 examples per category for the DSLR and

Webcam domains.

We first present results for the supervised setting, where

3 labeled examples are provided for each category in the

target domain. We report accuracies on the remaining un-

labeled images, following the standard protocol introduced
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A → W A → D W → A W → D D → A D → W Average

DLID [7] 51.9 – – 89.9 – 78.2 –

DeCAF6 S+T [9] 80.7 ± 2.3 – – – – 94.8 ± 1.2 –

DaNN [13] 53.6 ± 0.2 – – 83.5 ± 0.0 – 71.2 ± 0.0 –

Source CNN 56.5 ± 0.3 64.6 ± 0.4 42.7 ± 0.1 93.6 ± 0.2 47.6 ± 0.1 92.4 ± 0.3 66.22

Target CNN 80.5 ± 0.5 81.8 ± 1.0 59.9 ± 0.3 81.8 ± 1.0 59.9 ± 0.3 80.5 ± 0.5 74.05

Source+Target CNN 82.5 ± 0.9 85.2 ± 1.1 65.2 ± 0.7 96.3 ± 0.5 65.8 ± 0.5 93.9 ± 0.5 81.50

Ours: dom confusion only 82.8 ± 0.9 85.9 ± 1.1 64.9 ± 0.5 97.5 ± 0.2 66.2 ± 0.4 95.6 ± 0.4 82.13

Ours: soft labels only 82.7 ± 0.7 84.9 ± 1.2 65.2 ± 0.6 98.3 ± 0.3 66.0 ± 0.5 95.9 ± 0.6 82.17

Ours: dom confusion+soft labels 82.7 ± 0.8 86.1 ± 1.2 65.0 ± 0.5 97.6 ± 0.2 66.2 ± 0.3 95.7 ± 0.5 82.22

Table 1. Multi-class accuracy evaluation on the standard supervised adaptation setting with the Office dataset. We evaluate on all 31 categories

using the standard experimental protocol from [28]. Here, we compare against three state-of-the-art domain adaptation methods as well as a

CNN trained using only source data, only target data, or both source and target data together.

A → W A → D W → A W → D D → A D → W Average

MMDT [18] – 44.6 ± 0.3 – 58.3 ± 0.5 – – –

Source CNN 54.2 ± 0.6 63.2 ± 0.4 34.7 ± 0.1 94.5 ± 0.2 36.4 ± 0.1 89.3 ± 0.5 62.0

Ours: dom confusion only 55.2 ± 0.6 63.7 ± 0.9 41.1 ± 0.0 96.5 ± 0.1 41.2 ± 0.1 91.3 ± 0.4 64.8

Ours: soft labels only 56.8 ± 0.4 65.2 ± 0.9 38.8 ± 0.4 96.5 ± 0.2 41.7 ± 0.3 89.6 ± 0.1 64.8

Ours: dom confusion+soft labels 59.3 ± 0.6 68.0 ± 0.5 40.5 ± 0.2 97.5 ± 0.1 43.1 ± 0.2 90.0 ± 0.2 66.4

Table 2. Multi-class accuracy evaluation on the standard semi-supervised adaptation setting with the Office dataset. We evaluate on 16

held-out categories for which we have no access to target labeled data. We show results on these unsupervised categories for the source only

model, our model trained using only soft labels for the 15 auxiliary categories, and finally using domain confusion together with soft labels

on the 15 auxiliary categories.

with the dataset [28]. In addition to a variety of baselines, we

report numbers for both soft label fine-tuning alone as well

as soft labels with domain confusion in Table 1. Because the

Office dataset is imbalanced, we report multi-class accura-

cies, which are obtained by computing per-class accuracies

independently, then averaging over all 31 categories.

We see that fine-tuning with soft labels or domain con-

fusion provides a consistent improvement over hard label

training in 5 of 6 shifts. Combining soft labels with do-

main confusion produces marginally higher performance on

average. This result follows the intuitive notion that when

enough target labeled examples are present, directly opti-

mizing for the joint source and target classification objective

(Source+Target CNN) is a strong baseline and so using ei-

ther of our new losses adds enough regularization to improve

performance.

Next, we experiment with the semi-supervised adaptation

setting. We consider the case in which training data and

labels are available for some, but not all of the categories in

the target domain. We are interested in seeing whether we

can transfer information learned from the labeled classes to

the unlabeled classes.

To do this, we consider having 10 target labeled exam-

ples per category from only 15 of the 31 total categories,

following the standard protocol introduced with the Office

dataset [28]. We then evaluate our classification performance

on the remaining 16 categories for which no data was avail-

able at training time.

In Table 2 we present multi-class accuracies over the 16

held-out categories and compare our method to a previous

domain adaptation method [18] as well as a source-only

trained CNN. Note that, since the performance here is com-

puted over only a subset of the categories in the dataset, the

numbers in this table should not be directly compared to the

supervised setting in Table 1.

We find that all variations of our method (only soft label

loss, only domain confusion, and both together) outperform

the baselines. Contrary to the fully supervised case, here we

note that both domain confusion and soft labels contribute

significantly to the overall performance improvement of our

method. This stems from the fact that we are now evaluat-

ing on categories which lack labeled target data, and thus

the network can not implicitly enforce domain invariance

through the classification objective alone. Separately, the

fact that we get improvement from the soft label training on

related tasks indicates that information is being effectively

transferred between tasks.

In Figure 5, we show examples for the

Amazon→Webcam shift where our method correctly

classifies images from held out object categories and the

baseline does not. We find that our method is able to

consistently overcome error cases, such as the notebooks
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Figure 5. Examples from the Amazon→Webcam shift in the

semi-supervised adaptation setting, where our method (the bot-

tom turquoise label) correctly classifies images while the baseline

(the top purple label) does not.

that were previously confused with letter trays, or the black

mugs that were confused with black computer mice.

4.2. Adaptation between diverse domains

For an evaluation with larger, more distinct domains, we

test on the recent testbed for cross-dataset analysis [30],

which collects images from classes shared in common among

computer vision datasets. We use the dense version of this

testbed, which consists of 40 categories shared between

the ImageNet, Caltech-256, SUN, and Bing datasets, and

evaluate specifically with ImageNet as source and Caltech-

256 as target.

We follow the protocol outlined in [30] and generate 5

splits by selecting 5534 images from ImageNet and 4366

images from Caltech-256 across the 40 shared categories.

Each split is then equally divided into a train and test set.

However, since we are most interested in evaluating in the

setting with limited target data, we further subsample the

target training set into smaller sets with only 1, 3, and 5

labeled examples per category.

Results from this evaluation are shown in Figure 6. We

compare our method to both CNNs fine-tuned using only

source data using source and target labeled data. Contrary to

the previous supervised adaptation experiment, our method

significantly outperforms both baselines. We see that our

full architecture, combining domain confusion with the soft

label loss, performs the best overall and is able to operate

in the regime of no labeled examples in the target (corre-

sponding to the red line at point 0 on the x-axis). We find

that the most benefit of our method arises when there are

few labeled training examples per category in the target do-

main. As we increase the number of labeled examples in

the target, the standard fine-tuning strategy begins to ap-
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Figure 6. ImageNet→Caltech supervised adaptation from the Cross-

dataset [30] testbed with varying numbers of labeled target exam-

ples per category. We find that our method using soft label loss

(with and without domain confusion) outperforms the baselines

of training on source data alone or using a standard fine-tuning

strategy to train with the source and target data. Best viewed in

color.

proach the performance of the adaptation approach. This

indicates that direct joint source and target fine-tuning is

a viable adaptation approach when you have a reasonable

number of training examples per category. In comparison,

fine-tuning on the target examples alone yields accuracies

of 36.6± 0.6, 60.9± 0.5, and 67.7± 0.5 for the cases of 1,

3, and 5 labeled examples per category, respectively. All of

these numbers underperform the source only model, indicat-

ing that adaptation is crucial in the setting of limited training

data.

Finally, we note that our results are significantly higher

than the 24.8% result reported in [30], despite the use of

much less training data. This difference is explained by their

use of SURF BoW features, indicating that CNN features

are a much stronger feature for use in adaptation tasks.

5. Analysis

Our experimental results demonstrate that our method

improves classification performance in a variety of domain

adaptation settings. We now perform additional analysis on

our method by confirming our claims that it exhibits domain

invariance and transfers information across tasks.

5.1. Domain confusion enforces domain invariance

We begin by evaluating the effectiveness of domain con-

fusion at learning a domain invariant representation. As

previously explained, we consider a representation to be

domain invariant if an optimal classifier has difficulty pre-

dicting which domain an image originates from. Thus, for

our representation learned with a domain confusion loss, we

expect a trained domain classifier to perform poorly.

We train two support vector machines (SVMs) to clas-

sify images into domains: one using the baseline CaffeNet
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Figure 7. We compare the baseline CaffeNet representation to

our representation learned with domain confusion by training a

support vector machine to predict the domains of Amazon and

Webcam images. For each representation, we plot a histogram of

the classifier decision scores of the test images. In the baseline

representation, the classifier is able to separate the two domains

with 99% accuracy. In contrast, the representation learned with

domain confusion is domain invariant, and the classifier can do no

better than 56%.

fc7 representation, and the other using our fc7 learned with

domain confusion. These SVMs are trained using 160 im-

ages, 80 from Amazon and 80 from Webcam, then tested

on the remaining images from those domains. We plot the

classifier scores for each test image in Figure 7. It is obvious

that the domain confusion representation is domain invariant,

making it much harder to separate the two domains—the

test accuracy on the domain confusion representation is only

56%, not much better than random. In contrast, on the base-

line CaffeNet representation, the domain classifier achieves

99% test accuracy.

5.2. Soft labels for task transfer

We now examine the effect of soft labels in transfer-

ring information between categories. We consider the

Amazon→Webcam shift from the semi-supervised adapta-

tion experiment in the previous section. Recall that in this

setting, we have access to target labeled data for only half

of our categories. We use soft label information from the

source domain to provide information about the held-out

categories which lack labeled target examples. Figure 8

examines one target example from the held-out category

monitor. No labeled target monitors were available during

training; however, as shown in the upper right corner of Fig-

ure 8, the soft labels for laptop computer was present during

training and assigns a relatively high weight to the monitor

class. Soft label fine-tuning thus allows us to exploit the fact

that these categories are similar. We see that the baseline

model misclassifies this image as a ring binder, while our

soft label model correctly assigns the monitor label.

6. Conclusion

We have presented a CNN architecture that effectively

adapts to a new domain with limited or no labeled data per

target category. We accomplish this through a novel CNN
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Figure 8. Our method (bottom turquoise label) correctly predicts

the category of this image, whereas the baseline (top purple label)

does not. The source per-category soft labels for the 15 categories

with labeled target data are shown in the upper right corner, where

the x-axis of the plot represents the 31 categories and the y-axis is

the output probability. We highlight the index corresponding to the

monitor category in red. As no labeled target data is available for

the correct category, monitor, we find that in our method the related

category of laptop computer (outlined with yellow box) transfers

information to the monitor category. As a result, after training, our

method places the highest weight on the correct category. Probabil-

ity score per category for the baseline and our method are shown

in the bottom left and right, respectively, training categories are

opaque and correct test category is shown in red.

architecture which simultaneously optimizes for domain in-

variance, to facilitate domain transfer, while transferring

task information between domains in the form of a cross

entropy soft label loss. We demonstrate the ability of our

architecture to improve adaptation performance in the super-

vised and semi-supervised settings by experimenting with

two standard domain adaptation benchmark datasets. In the

semi-supervised adaptation setting, we see an average rela-

tive improvement of 13% over the baselines on the four most

challenging shifts in the Office dataset. Overall, our method

can be easily implemented as an alternative fine-tuning strat-

egy when limited or no labeled data is available per category

in the target domain.
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