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Abstract

In this work we present a method to estimate a 3D face

shape from a single image. Our method is based on a cas-

cade regression framework that directly estimates face land-

marks locations in 3D. We include the knowledge that a face

is a 3D object into the learning pipeline and show how this

information decreases localization errors while keeping the

computational time low. We predict the actual positions of

the landmarks even if they are occluded due to face rotation.

To support the ability of our method to reliably reconstruct

3D shapes, we introduce a simple method for head pose es-

timation using a single image that reaches higher accuracy

than the state of the art. Comparison of 3D face landmarks

localization with the available state of the art further sup-

ports the feasibility of a single-step face shape estimation.

The code, trained models and our 3D annotations will be

made available to the research community.

1. Introduction

Over the last several years 2D face alignment has

reached maturity making it possible to detect landmarks in

the wild at very high frame rates [12, 20, 13, 5, 21]. The

mainstream direction is based on learning a sequence of re-

gressors in a cascade fashion starting from the mean shape,

and consequently refining the shape prediction at the later

stages of the cascade [8, 2]. Previous works for face align-

ment used Active Appearance Models (AAM) [6, 18, 9] and

Constrained Local Models (CLM) [7, 25, 22]. Cascaded re-

gressor methods are advantageous over the AAM and CLM

based approaches in several respects: (i) running a sequence

of regressors is faster than solving an optimization problem

for every image, (ii) the offline training stage allows cas-

caded approaches to take advantage of the large available

sets of training images, (iii) shape-invariant feature sam-

pling makes these methods robust to rotations.

As a natural extension of 2D face alignment methods, 3D

face analysis from a 2D image also experiences significant

breakthrough [12, 5] reaching comparable results to depth-

based methods [27, 26, 16, 24]. These methods first detect

Figure 1: Selected examples of images from the HELEN

database [15] processed by our method. Top: the projec-

tions of the landmarks to the image plane. Arrows represent

the face bases used to find the head pose. Bottom: estimated

faces shapes in the world coordinate system.

2D landmarks and as a second step fit a previously learned

high resolution 3-dimensional face model to estimate a face

shape. However, in many applications this high precision

face shape estimation is not always required, while frame

rates and low hardware requirements often become more

critical [11, 30].

In this work, we present a novel cascaded regressor-

based method to estimate a 3D shape of a face from a single

2D image. Motivated by the recent success of sequential ap-

proaches for 2D face alignment, we extend the framework

to naturally detect 3D landmarks positions from a single im-

age at state-of-the-art accuracy and processing speed. In

contrast to existing two-step systems that first detect land-

marks and only then recover a 3D shape, our method pro-

vides a reliable estimate of a face shape in one step. To

support the applicability of our method to real-world prob-

lems we report the results on a large set of face images.

Moreover, since our method outputs a 3D shape, we show

how this shape can be used to accurately estimate the head

pose of a face improving state-of-the-art accuracy. Selected

examples of face landmarks estimated by our method are
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given in Figure 1.

The contribution of our work is threefold:

1. Single-step 3D face shape estimation. Previous two-

step face shape recovery methods first detected 2D face

landmarks. Shape estimation was then done by fitting

a 3D model to the estimated landmarks. We use 3D

information in the learning pipeline and propose 3D

shape invariant feature indexing. To the best of our

knowledge, we are the first to estimate 3D face land-

marks in a single step fashion.

2. Localization of actual facial landmarks. Prior works

focused on either removing the occluded landmarks

from the pipeline or using the nearest visible points in-

stead. Our method estimates the actual 3D positions of

the landmarks even if some points of the shape are not

visible due to self-occlusions of the face. This helps us

preserve the face shape during training and testing and

accurately estimate head pose orientation.

3. Data and the code. We release our 2D and 3D anno-

tations of the BU-4DFE [31] database as well as the

code for our system to the research community.

The paper is structured as follows: in Section 2 we re-

view relevant works. Section 3 describes the proposed

method, starting with the description of the framework of

cascade regressors (Section 3.1). In Section 3.2 we describe

the shapes learned by our method. Section 3.3 proposes

three ways of indexing features in 3D. The head pose esti-

mation method is given in Section 3.4. We report our exper-

imental results in Section 4 and conclude in Section 5.

2. Related work

Three-dimensional face shape estimation from a single

RGB image is not a new topic in computer vision. Many

works are done in the context of pose-invariant face recog-

nition [19, 1, 23, 30]. The classical work of Blanz and Vet-

ter [1] uses manual initialization as a first step, followed by

a 3D model fitting. They achieve very accurate face models

at a cost of low processing speed.

In [30] a low resolution model is fit to 2D landmarks

for determining feature sampling points. Although fitting

the final model is far from being perfect, the authors report

improvement in face recognition results, while getting rea-

sonable processing speed.

The problem of estimating a face shape is tackled from a

different perspective in [11]. The author shows a SIFTFlow-

based [17] method to warp a depth-RGB image pair of a

reference person to a single RGB image of a query person.

Consequently, the method is rather slow and can estimate

depth only for visible parts of the face. Again, the first step

is performed by the 2D face alignment system presented

in [32].

Several commercial systems have appeared. Vizago1 and

FaceGen2 both require careful manual initialization, and

therefore are two-step systems.

Cao et al. [3] tackles the problem of automated avatar

animation. They propose to jointly estimate a parametric

3D face model together with 2D landmarks from a video of

a human performer. The method uses the landmarks esti-

mated for the previous frame to simultaneously regress the

3D and 2D shapes for the current frame. However, when ap-

plied to a single image, the previously estimated landmarks

are not available, and the method requires 2D landmarks

estimated using [4] as an initialization, which makes it a

two-step method according to our classification.

A very recent work of Jeni et al. [12] while still belong-

ing to the two-step group, reaches significant frame rate in-

crease. The authors use a cascade regressor framework sim-

ilar to the one presented in [29] to estimate a dense grid of

2D landmarks and fit a 3D part-based model to this grid as

a second step.

The major difference of our work with respect to the de-

scribed two-step systems [19, 1, 23, 30, 11, 3, 12] is that our

method is single-step and requires only a single image. A

key advantage of our single-step method is that it is much

faster, since it does not require computationally expensive

3D model fitting, while providing highly accurate shape es-

timates. We detect 3D landmarks from a single image by

using a framework of cascade regressors. We evaluate our

method on a large corpus of faces annotated in 3D and show

that the estimated shapes can be used for head pose esti-

mation with higher accuracy than methods previously pre-

sented in the literature.

3. Method

Although our work extends [13], we introduce several

major novelties as compared to the original paper: (i) our

shape estimates are 3D, (ii) we propose and compare three

methods for 3D shape invariant feature indexing, and (iii)

we show a 3D shape-based head pose estimation method

that improves state-of-the-art accuracy while being compu-

tationally simple.

3.1. A Framework of Cascade Regressors

A general cascade regression approach produces an esti-

mate Ŝ of a shape S for an image of a face I by producing

several shape increments ∆St (t = 1, ..., N ) at every level

t of the cascade in the following fashion:

∆St = rt(Ht(I, Ŝt−1)), (1)

Ŝt = Ŝt−1 +∆St, (2)

1http://www.vizago.ch
2http://www.facegen.com/
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where Ht is a feature extraction function, rt is a regressor

function learned at the tth-level of the cascade and N is the

total number of levels in the cascade. A shape vector S =
[x1,x2, ...,xn]

T represents a set of facial landmarks. We

denote Ŝ = r(I, S̄) as the final shape estimate made by the

cascade of regressors r(·, ·) for an image I and the initial

average shape S̄.

In previous works, every point xi of the face shape vec-

tor was represented either by x, y-coordinates in the image,

or was augmented by an additional label mi that represents

a flag indicating whether a point is visible or occluded:

xi = [xi, yi,mi]
T . Hereinafter we drop the index i and

write x to denote a point of a shape to simplify the notation.

Instead of adding an extra flag for every point we augment

the usual x, y-coordinates of a point in the plane with the z-

coordinate of the landmarks in the 3D space. Having a third

dimension in the training set at every step of the cascade we

learn the 3D shape increment ∆St ∈ R
3×n.

The feature extraction function Ht(I, Ŝt−1) in eq. 1 de-

pends not only on image I but also on the previous shape

estimate Ŝt−1, this allows the cascade to extract shape in-

dependent features. We propose to extend a face shape with

the third dimension so that ∆ St, Ŝt, S ∈ R
3×n. Several

models can be used as a regressor; we train a number of re-

gression trees at each level of the cascade, since they have

shown remarkable results in the literature [20, 13].

3.2. From World Coordinates to 3D Landmarks

To learn a face shape predictor one has to decide upon the

landmarking scheme and perform annotation of the avail-

able training data. In our case, such annotation is hardly

possible even for a human annotator due to the difficulty to

estimate a z-coordinate by observing just a single 2D image.

However, we propose the solution based on performing the

2D annotation as usual, and then augmenting the annotation

of the z-coordinate estimated in a different way. To do so we

use the available 2D+3D database BU-4DFE [31]. Manual

annotation is performed on a frontal set of images provided

in the database. Since 2D-3D correspondences are known,

we map 2D coordinates of the point in a frontal RGB image

to the corresponding 3D point on the mesh.

To generate various head poses for training and testing

purposes we render meshes under tilt and yaw rotations uni-

formly distributed in the range of [−50, 50] degrees. Since

the rendering parameters are known, we can get the loca-

tions of the points by using the pinhole camera model:

λxc = ARx
w + t, (3)

where xw = [xw, yw, zw]T is the point in the world coor-

dinate system, xc = [xc, yc, 1]T is the point in the camera

coordinates, λ is the homogeneous scaling factor, A is the

matrix of intrinsic parameters or the camera matrix, R and

Figure 2: An example of the actual landmark positions. Left

image shows an annotated mesh with several landmarks oc-

cluded. Central image shows the landmarks on the frontal

face. Right image shows the projections of the actual land-

marks onto the image plane.

t are the rotation matrix and the translation vector corre-

spondingly. We note here that the z-coordinate is still avail-

able after the transformation. We augment the point in the

camera coordinates with this z-coordinate to form x̃c =
[xc, yc, λ]. In this way every training example is formed

by {I(yaw, tilt), S̃c}, where S̃c = [x̃c
1
, x̃c

2
, ..., x̃c

n]
T . Al-

though S̃c is a 3D shape, its points are distorted by the cam-

era matrix and therefore, proportions no longer correspond

to the normal face proportions. This needs to be compen-

sated. To this end we define a point xwR = Rxw and

a corresponding shape SwR which is rotated according to

the extrinsic rotation matrix, while being represented in the

world coordinates. During testing a cascade of regressors

produces a shape estimate Ŝc = r(I, S̄c), where the shape

Ŝc is given by augmented points: Ŝc = [x̂c
1
, x̂c

2
, ..., x̂c

n]
T .

Then, if the camera matrix A is known, we can rewrite eq. 3

to get x̂wR:

x̂
wR = A

−1(λx̂c − t). (4)

However, at testing time the matrix A is unknown, and

therefore needs to be estimated. To get the estimate Â we

perform camera calibration using S̄ ∈ R
3×n as the coordi-

nates in the world coordinate system and only x, y-values

of the points in Ŝc as the coordinates in the image plane.

Finally, we substitute Â into eq. 4 to get x̂wR.

We train and test our model on the actual landmarks po-

sitions even if they are invisible because of face rotations.

Figure 2 shows an example of this. In other works, the clos-

est visible pixels to the invisible landmarks are usually used

instead. For example, the boundary of the face is often con-

sidered as a jawline when the actual jawline is not visible.

However, this operation changes the natural proportions of

the estimated shape, which is acceptable for two-step sys-

tems, where the shape is regularized during the second step.

Our experiments show that it is possible to estimate the

actual 3D positions of the invisible points. Moreover, since
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a recovered shape is unchanged and is represented in the

world coordinates we can accurately determine the head

pose (see Sections 4.1 and 4.2).

3.3. 3D Invariant Features

At every level of the cascade, we build tree-based regres-

sors to produce a shape increment. The decision function of

a tree uses simple intensity difference features extracted at

the points u and v indexed with respect to a mean shape.

The points u and v are randomly generated during training.

The goal of feature indexing is to have a way to compute u

and v for every face geometrically close to their true loca-

tions, taking into account scaling, rotation and translation.

Indexing starts by defining an offset from u to the near-

est point xku
in the mean shape (we follow the notation

in [13]):

δxu = u− x̄ku
, (5)

where δxu is selected during training. To determine u′, a

point geometrically corresponding to the point u, we first

find the scaling and rotation transformations between the

mean shape S̄ and the current shape estimate Ŝt:

{s,R, t} = argmin
s,R,t

n
∑

i=1

‖x̄i − (sRxi + t)‖2, (6)

where s,R, t represent scaling, rotation and translation cor-

respondingly. Then u′ is determined in the following way:

u
′ = xku

+
1

s
R

T δxu. (7)

If one considers the case when S ∈ R
2×n, then the ro-

tation matrix R ∈ R
2×2, which accounts for in-plane rota-

tions, such as roll angle.

To address head rotation from a 3D perspective, for the

current cascade level t we define a face basis Ft. The ba-

sis is spanned by the normal �nt, the vector connecting the

centers of the eyes �e1,t and �e2,t = �nt × �e1,t, where × is a

cross product operation. The vector �nt is determined as the

eigenvector with the smallest eigenvalue of the following

covariance matrix:

Ct =
1

n

n
∑

i=1

(xi,t−1 − x̄t−1)(xi,t−1 − x̄t−1)
T , (8)

where xi,t−1 ∈ Ŝt−1, Ct ∈ R
3×3. Since the direction of

the normal vector �nt can vary from iteration to iteration,

depending on the face rotation, to obtain the normal consis-

tently oriented with the observer direction �no, we need to

satisfy the following equation:

�nt · �no > 0, (9)

where · is a dot product operation. We assume that �no is

perpendicular to the image plane and directed to the ob-

server. Having the basis Ft and the estimated scaling s we

rewrite eq. 7 in the following way:

ũ
′ = xku

+
1

s
F

T
t δx̃u, (10)

where δx̃u = [δxu|0], the operation of vector concatena-

tion [·|·] adds the third dimension, so that δx̃u, ũ
′ ∈ R

3.

After the transformation, this third dimension is truncated.

In this way we find the coordinates of the offset vector in

the face basis Ft. Now we define three ways of indexing

features:

• Baseline indexing is based on directly using eq. 7. In

this case the only difference with the original method

[13] is that the learned shape is 3-dimensional.

• 3D transform indexing. The difference with the base-

line method is that minimization in eq. 6 is performed

in a 3D space, resulting in rotation matrix R ∈ R
3×3.

• Basis transform indexing determines pixel sampling

points by first estimating a basis Ft and then comput-

ing ũ′ with eq. 10.

The same analysis can be applied to get v′. We report

the comparison results of these methods in the experimental

section.

3.4. Head Pose Analysis

All the shapes throughout our analysis are 3D. This is

the advantage of our single-step approach that allows us to

use a simple yet reliable method to estimate the head pose

of a face. In the previous section we defined a face basis

Ft that is associated with the direction of the face. Clearly,

the directions of the basis vectors of Ft can reveal the head

pose of the analyzed face. We exploit this fact to determine

the head direction.

The final shape estimate Ŝc = r(I, S̄c) is represented in

the camera coordinates. Although it is three-dimensional,

its proportions no longer correspond to the actual face pro-

portions, and therefore the estimated basis will not accu-

rately correspond to the face direction. To address this we

apply the analysis detailed in Section 3.2. By using eq. 4

and estimating the camera matrix A we transform every

point of Ŝc to the world coordinate system and obtain ŜwR,

for which the face proportions are preserved. We then de-

termine the angles that the normal to ŜwR forms with xz

and yz planes to get the tilt and yaw angles correspond-

ingly. This simple method outperforms the state-of-the-art

systems as shown in Section 4.2. Examples of bases esti-

mated using Ŝc and ŜwR are given in Figure 3.
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Figure 3: Examples of face bases estimated using ŜwR

(green) and Ŝc (pink). Note that the bases estimated us-

ing shapes in the world coordinate system (green) are more

consistent with the head rotation. The detected points are

plotted in green. The background was removed for visual-

ization purposes after detection.

3.5. Learning

Our learning framework is similar to one presented in

Kazemi et al. [13]. We train N levels of the cascade, where

each level contains K regression trees. A node split is per-

formed with the following split function:

h(I, Ŝt,θ) =

{

1 I(u′)− I(v′) > τ

0 otherwise,
(11)

where θ = (u′,v′, τ), u′ are v′ are obtained by using eq. 7

or 10 depending on the indexing strategy. The split parame-

ters in θ are randomly generated at each split node and a tree

is trained with a gradient boosting algorithm that minimizes

the sum of squared error.

4. Experiments

Since most of the works for face alignment estimate only

2D landmarks from an RGB image and invisible landmarks

are either skipped from the estimation or their nearest vis-

ible neighbors are predicted, direct comparison is not pos-

sible. Another difficulty is that the datasets for face align-

ment used by the community have only 2D annotations. To

overcome these difficulties we generate a large set of train-

ing and testing images and perform manual annotation of

this set. For comparison purposes we train the method pre-

sented in [13] on x, y-coordinates of our 3D annotations,

keeping their default parameters unchanged. We use the

open-source implementation of [13] made available by [14].

Database. We build our training and testing set by us-

ing the BU-4DFE [31] database. This database contains 2D

and 3D videos for six posed prototypical facial expressions

(anger, disgust, fear, happy, sad, surprise) for 101 ethnically

diverse subjects (58 female and 43 male). The database con-

tains more than 60K 2D-3D pairs. Since BU-4DFE does not

contain facial landmarks annotations, we performed manual

annotation. We followed the widely accepted MultiPIE [10]

68-landmarks scheme. The 60K samples of the database

were uniformly sampled to obtain 3000 face images with

the corresponding 3D meshes. Manual annotation was per-

formed on these 2D images, and the annotations were aug-

mented with the third coordinate by finding the reference

points on the mesh. As a result, we have 3000 images of

faces annotated with the 3D landmarks positions. To gen-

erate images of faces with various head poses we rendered

the meshes under uniformly distributed face rotations taken

from the range [−50, 50] degrees for yaw and tilt angles.

In total we have 120K images. To add variability to this

generated set we used images from the SUN database [28]

as backgrounds, removing images annotated as containing

a person. The selected BU-4DFE recordings ids as well as

the 3D annotations will be made available to the research

community.

Running time analysis. At every stage of the cascade

t = 1, ..., N we need to propagate the trees O(KF ) and

compute a face basis O(n2p+ p3), where K is the number

of weak regressors, F is the number of trees, n - the number

of landmarks and p - the dimensionality of each landmark.

Therefore, for a single image the running time complexity

of our algorithm is constant O(N(KF + n2p + p3)). For

a case {N = 10,K = 500, F = 5, n = 68, p = 3} the

method takes on average 9 ms to process an image on an

Intel Core i7-4702HQ processor

4.1. 3D Landmarks Localization

To test the accuracy of our method we randomly split

the rendered images into folds and perform 6-fold cross-

validation. We report the averaged results for all the folds.

We use the commonly accepted metric that measures the

distance from a landmark to its ground truth position nor-

malized by dividing it by the interocular distance for each

image. Table 1 shows the results. We perform a separate

comparison for 2D and 3D. For 2D only the first two coor-

dinates (x, y) were used.

Table 1 shows that learning a 3D shape improves the ac-

curacy even if we are only interested in 2D points in the im-

age plane. Basis transform indexing shows a slightly better

performance for 3D case than the other methods (not statis-

tically significant). The intuition for this effect is that a face

is inherently a 3D object, and therefore three-dimensional

indexing is able to more reliably estimate the correspond-

ing sampling points.

The values in Table 1 are close to those reported in the

literature for 2D face alignment. This fact proves the dif-

ficulty of our testing set compared to the commonly used

benchmarks such as [15].
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Method 2D 3D

Kazemi et al. [13] 0.0522 -

Baseline indexing 0.0515 0.0610

3D Transform 0.0515 0.0607

Basis Transform 0.0518 0.0592

Table 1: Landmark localization errors. The numbers rep-

resent the average distance from an estimated landmark to

its ground truth location normalized by the interocular dis-

tance.
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Figure 4: Cumulative error distribution rates for head pose

estimation for yaw and tilt angles. We do not report re-

sults of [32] for tilt since the method provides only yaw

estimates. To initialize our method we used the face detec-

tor in [14]. The benchmark systems use their internal face

detectors to find faces.

4.2. Head pose estimation

We compare our method with the available state-of-the-

art methods of Zhu and Ramanan [32] and Intraface3 by

Xiong and De la Torre [29]. For comparison, we use a sub-

set of 1300 images of faces from our rendered set. The head

pose is uniformly distributed within [−50, 50] degrees. The

images were taken from the testing folds of the trained mod-

els. The advantage of such generated dataset is that it uni-

formly covers all head poses in a range, and, more impor-

tantly, requires no manual annotation, because head poses

are known exactly. If the competing systems were not able

to detect the face in an image, we removed the image from

the testing set. In total 1123 images were left. We report the

results of our model that uses basis transform as the index-

ing method.

Table 2 shows the fraction of correctly classified images

within the ±15◦ error tolerance, which is the commonly

accepted metric in head pose analysis literature (also used

in [32]). The table shows that our method based on analyz-

ing the normal vector to ŜwR scores the best. The method

based on Ŝc still shows reasonable performance for tilt, but

3http://www.humansensing.cs.cmu.edu/intraface/

Yaw Tilt

Ours Ŝc 0.52 0.54

Zhu and Ramanan [32] 0.76 -

Intraface 0.80 0.51

Ours ŜwR 0.81 0.85

Table 2: Head pose estimation results. The numbers show

the fraction of faces correctly labeled within ±15◦ error tol-

erance.
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Figure 5: The distribution of the fraction of correctly rec-

ognized images within ±15◦ error tolerance over the yaw

angle.

these results prove that 3D information contained in Ŝc is

not sufficient for head pose estimation, while the analysis in

Section 3.2 is a tool to restore the shape of the face. In Fig-

ure 4 we plot the dependency of the fraction of the correctly

labeled testing faces on the error tolerance value. In addi-

tion we report the fraction of correctly classified images as

a function of the yaw angle for error smaller than 15◦ of our

best method versus [32] and Intraface [29].

We note that our method has several additional advan-

tages over [32]: (i) our method predicts continuous output

for both angles (yaw and tilt), while the method in [32] rec-

ognizes only yaw angle and only for a fixed number of al-

lowed head poses in a range of [−90, 90] with a step of 15◦

and (ii) the computational performance of our method is su-

perior: the whole pipeline on average took 9 ms per image

as compared to 40-100 seconds of [32]. Qualitative results

for head pose estimation are given in Figure 6.

4.3. Qualitative results

Qualitative results are given in Figure 7. The subjects in

Figure 7a are taken from the testing set of the trained model.

Figure 7b shows the results of our method applied to the

HELEN database [15]. The bases on the both figures are

estimated using ŜwR. Some dots in the odd rows may look

misleading, since the actual positions of the landmarks are

plotted regardless of the visibility of the points. Note that

the points in the world coordinate system reveal the face

orientation that is often difficult to understand from a single
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[32]

[32] [32]

[32]

[32]

[32]

Figure 6: Selected examples of estimated head poses from

the testing set. Yaw angles are reported. The green points

show the estimated landmarks by our best model.

2D image, when a face looks frontal, while having a slight

inclination. In some cases the y-direction (the green arrow)

of the face basis can be estimated incorrectly. However,

this makes no influence on the face normal vector (the blue

arrow) that is used in head pose estimation.

5. Conclusions

We have presented a novel, accurate and fast single-step

method for estimating a 3D face shape from a single 2D im-

age. We have shown that when treating a face as a 3D ob-

ject, the overall recognition error decreases even when con-

sidering only 2D landmarks. Including additional knowl-

edge about the face yields substantial improvement, and

allows a simple head pose estimation method to show re-

sults superior to available systems. Since 2D face align-

ment has reached impressive results in speed and accuracy,

we believe, that 3D shape regression is a promising area that

should be explored further.
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