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Abstract

Given multiple perspective photographs, point cor-

respondences form the “joint image”, effectively a

replica of three-dimensional space distributed across its

two-dimensional projections. This set can be characterized

by multilinear equations over image coordinates, such as

epipolar and trifocal constraints. We revisit in this paper

the geometric and algebraic properties of the joint image,

and address fundamental questions such as how many and

which multilinearities are necessary and/or sufficient to de-

termine camera geometry and/or image correspondences.

The new theoretical results in this paper answer these ques-

tions in a very general setting and, in turn, are intended to

serve as a “handbook” reference about multilinearities for

practitioners.

1. Introduction

Point correspondences in multiple images can be char-

acterized using conditions that are “multilinear” in homo-

geneous image coordinates (e.g., epipolar and trifocal con-

straints [5, 13, 16, 17, 21]). These constraints are at the core

of any structure-from-motion (SfM) system, where they are

mainly used in two tasks: selecting matching points in dif-

ferent pictures, and estimating the camera parameters from

these correspondences. Yet, after 35 years of study, dat-

ing back to Longuet-Higgins’ seminal work on the essen-

tial matrix [13] (and at least to the sixties in photogramme-

try [19]), practicioners and specialists alike would still be

hard pressed today to answer many simple questions such

as how many multilinear relations (and which ones) are nec-

essary and/or sufficient to characterize correspondences, or

to determine the corresponding camera parameters.

Partial results are available, but scattered in the litera-

ture, and they sometimes contradict each other [4, 6, 14].

The aim of this presentation is to give new and definite an-

swers to this type of elementary but fundamental questions

in a very general setting: our hope is to provide a prac-

tical “handbook” reference for useful results and facts on

multilinearities. Our results are obtained by using elemen-

tary tools from algebraic geometry to characterize the joint

image, introduced by Triggs in [20]: this set is formed by

the n-tuples of matching points, and is in fact in a formal
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sense an (almost) exact replica of 3D-space “distributed”

across multiple images. An advantage of this geometric

viewpoint is that it does not require the analytic tools that

have been exploited in the past for deriving multi-view con-

straints (such as Grassman-Cayley algebras [4], tensor cal-

culus [20], Plücker coordinates and line geometry [14]).

Moreover, the joint image simultaneously describes point

correspondences and camera geometry independently of the

choice of coordinates in space, and this natural setting may

be useful for revisiting many existing algorithms (cf. the

discussion in Section 4). All of our results apply to ordinary

(affine or Euclidean) pinhole cameras with known intrinsic

parameters as well as projective, uncalibrated ones. We thus

believe that they are highly relevant in practice.

Closely related to our work is that of Heyden and Åström

in [11], who also study the algebraic properties of multi-

view constraints. For example, these authors show that

for cameras in general position, the epipolar (bilinear) con-

straints are sufficient for characterizing correspondences for

n ≥ 4 views; they also observe that for n ≥ 5, “some”

conditions can be dropped. We extend these results, charac-

terizing the extent to which trilinear relations are required

in the case of degenerate camera configurations (Proposi-

tion 5), and giving useful bounds on the number of neces-

sary conditions for generic configurations (Proposition 6).

Heyden and Åström also discuss in [11] an interesting prop-

erty of the epipolar constraints for three cameras in general

position: these conditions uniquely determine (up to projec-

tive ambiguity) the associated camera matrices; however,

the trilinear conditions do not follow algebraically from the

bilinear ones and, in fact, bilinear constraints are not suf-

ficient for characterizing point correspondences in general.

We discuss in Section 3 this somewhat paradoxical behavior

in a more general setting, defining the notions of weak and

strong characterizations of the joint image, that respectively

determine camera parameters and point correspondences.

For example, we will show that (perhaps suprisingly) the

nine trilinearities encoded in the trifocal tensor are not suf-

ficient to completely ensure correspondence among three

views (Proposition 9), although they can be used to recover

the corresponding projection matrices. On the other hand,

for n views in general position, camera matrices can always

be determined using 2n − 3 epipolar relations, assuming

these relate appropriate pairs of cameras (Proposition 7).
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Main contributions:

• We discuss in full generality the difference between the

constraints that determine camera geometry, and those that

characterize correspondences. The distinction is related to

the geometry (i.e., the decomposition in irreducible compo-

nents) of the set of n-tuplets that satisfy the different con-

straints (Section 3).

• We give a series of results that provide explicit conditions

for characterizing correspondences as well as camera geom-

etry. In particular, we clarify in full generality the relation-

ship between bilinear, trilinear and quadrilinear constraints

(Proposition 5), and discuss the problem of finding minimal

sets of necessary and sufficient conditions (Propositions 6,

7), improving on results from [11].

• We focus more closely on the case of three views (Propo-

sitions 8, 9, 10), clarifying several properties of the space

of trilinear constraints, such as the fact that it is always a

vector space of dimension 10. More generally, we give the

number dn of linearly independent multilinear constraints

for any n cameras (Proposition 3), a result that is consistent

with a more technical theorem given in [1].

• We present a general discussion of the basic geometric

properties of the joint image (such as its singular locus, cf.

Proposition 4), and argue that its (weak or strong) charac-

terizations can be useful in practical tasks (Section 4).

Mathematical background. Our analysis makes use of

some elementary aspects of algebraic geometry. For the

convenience of the reader, we have included a brief intro-

duction to these topics in the supplementary material; for

more details we refer for example to [2]. Technical proofs

are deferred to the supplementary material (we provide intu-

itive proof sketches whenever possible), however the state-

ments of our main results (Propositions 5, 6, 7, 9, 10) do not

require any technical prerequisites.

Notation. We assume a fixed coordinate frame for P3, and

identify points with their homogeneous coordinate vectors.

A camera in P
3 will be described by a matrix M ∈ R

3×4

of full rank, defined up to scale: such a matrix describes a

linear projection from P
3 \{c} to P

2, where c ∈ P
3 is given

by the nullspace of M and represents the optical center,

or pinhole, of the camera [6]. Cameras and the associated

projection matrices will be identified. Points in P
3 or P

2

will be represented by bold letters, while coordinates will

be in normal font, with superscripts to indicate indices (e.g.,

p = [p1; p2; p3; p4] ∈ P
3). The action of a camera M in

R
3×4 will be written as Mp ∼ u, for p in P

3 and u in P
2,

where ∼ expresses equality up to non-zero scalars between

the coordinate vectors representing projective points.

2. The joint image

This section presents Triggs’ joint image [20] (also

known as the multi-view variety [1]), that will be the cen-

tral object of our analysis throughout the paper. After giv-

ing some formal definitions, we derive the basic multilinear

algebraic constraints that can be used to characterize cor-

respondences. We then analyze the (closure of the) joint

image as an algebraic variety, pointing out some of its geo-

metric properties.

2.1. Defintions

Let M1, . . . ,Mn be n projective cameras with distinct

centers c1, . . . , cn.

Definition 1. An n-tuple of image points (u1, . . . ,un) is a

correspondence if there exists p in P
3 \ {c1, . . . , cn} such

that Mip ∼ ui for all i = 1, . . . , n.

The joint image In(M1, . . . ,Mn) [20], is the subset of

(P2)n formed by image correspondences.

Although the joint image depends on the camera matri-

ces M1, . . . ,Mn, we will often denote it simply with In
when no confusion can arise.

It was noted in [11] that the joint image In (which Hey-

den and Åström refer to as the “natural descriptor”) is not

an algebraic set, in other words it cannot be described as the

zero-set of a family of polynomial equations.

Definition 2. The joint image variety In(M1, . . . ,Mn) is

the Zariski closure of the joint image.

In the Zariski topology, closed sets coincide with alge-

braic sets so, in practice, In is simply the smallest set con-

taining In which can be described by polynomial equations.

As illustrated by the following example, the distinction be-

tween In and In is well understood for simple cases.

Example 1. Given two cameras M1 and M2, any corre-

spondence (u1,u2) in I2 satisfies the algebraic relation

uT
1 Fu2 = 0 (the epipolar constraint), where F ∈ R

3×3

is the fundamental matrix associated with M1 and M2 [6].

However, the set I2 of pairs of points satisfying this bilinear

constraint is strictly larger than I2. Indeed, if e1 is the first

epipole (given by the left null-space of F ), then (e1,u2)
will be in I2 for all u2 ∈ P

2. However, a pair (e1,u2)
is an actual correspondence only when u2 coincides with

the second epipole e2. The joint image is in fact given by

I2 = I2 \ C2, where

C2 = ({e1} × P
2) ∪ (P2 × {e2}) \ {(e1, e2)}. (1)

Note that C2 is a distinguished set that can be computed

directly from the fundamental matrix F .

More generally, there is always a non-empty set Cn =
In \ In containing n-tuples of points that are not actual
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correspondences, but that will satisfy any set of algebraic

equations that are also satisfied by correspondences. This

set is described explicitly in the following proposition.

Proposition 1. Given n ≥ 3 cameras with non-collinear

(distinct) pinholes, one has In = In \ Cn, where

Cn =

n
⋃

i=1

(ei1 × . . .× P
2
(i) × . . .× ein). (2)

Here P
2
(i) indicates P

2 at position i in the product, and

eij denotes the epipole in image j relative to image i. If

n = 2, or more generally if the cameras have collinear pin-

holes, then one must remove from Cn the n-tuple of epipoles

(e1, . . . , en) (in this case there is only one epipole in each

image).

The proof of this result follows easily from the charac-

terization of In that we will discuss in Section 2.2, see the

supplemental material for details. Note that the set Cn is al-

ways a distinguishable set, i.e., it contains special n-tuples

of points that can easily be detected as spurious solutions

(as for the case for n = 2 discussed in Example 1). This

means that, in practice, we do not lose any actual infor-

mation by replacing In by its closure In. In our study,

we will talk about equations that “characterize correspon-

dences”, referring to polynomial constraints that actually

describe the joint image variety In.

2.2. Algebraic properties of the joint image

Multilinear conditions. Following [1, 7, 10, 11], given
an n-tuple of image points (u1, . . . ,un) , we can define the
3n× (n+ 4) matrix

U(u1, . . . ,un) =











M1 u1 0 . . . 0

M2 0 u2 . . . 0

...
...

...
. . .

...

Mn 0 0 . . . un











. (3)

A necessary condition for (u1, . . . ,un) to form a corre-
spondence is clearly that U(u1, . . . ,un) be rank deficient
(since there would not exist a nonzero vector [p;λ1; . . . ;λn]
in the nullspace of the matrix otherwise). Hence, the max-
imal minors of (3) are polynomial conditions in image co-
ordinates that all correspondences must satisfy. In fact, one

can show that they are also sufficient to define In [1]:

In = {(u1, . . . ,un) ∈ (P2)n | U(u1, . . . ,un) is not full rank}.

The constraints given by the maximal minors of (3) are eas-

ily seen to be multilinear, in other words, they are polyno-

mials in R[x1, y1, z1, . . . , xn, yn, zn] that are linear in each

triplet of variables xi, yi, zi (i = 1, . . . , n) associated with

an image.1

1It will be useful to define more generally a k-linear polynomial in
R[x1, y1, z1, . . . , xn, yn, zn] (for k ≤ n) as a polynomial which in-
volves only k triplets of variables and is linear in each triplet that appears
(so a multilinear polynomial is the same as an n-linear polynomial). In
particular, k-linear polynomials for k = 2, 3, 4 will also be described as
“bilinear”, “trilinear”, and “quadrilinear”, respectively.

Of course, many other polynomial constraints can be ob-

tained by considering the minors of (3) based on k ≤ n

of the original camera matrices. This yields families of k-

linear relations for 2 ≤ k ≤ n, which we will refer to as

the k-linearities. In practice, it is easy to see that only k-

linearities with k ≤ 4 need to be considered: this is closely

related to the fact the multi-view tensors do not exist for

more than four views [10].

Proposition 2. Every n-linearity is of the form mP where

m is a monomial factor and P is a k-linearity with k ≤ 4.

This implies that bilinearities, trilinearities and quadrilin-

earities are sufficient to characterize In.

Proof. The result follows from the fact that a non-vanishing

minor of U(u1, . . . ,un) requires choosing n+4 rows, with

at least one row associated with each camera: this distin-

guishes k cameras with 2 ≤ k ≤ 4 for which more than one

row is chosen. The monomial factors can be removed from

the constraints since each k-linearity is multiplied by sets of

monomials that cannot vanish simultaneously.

One can show that the k-linearities for 2 ≤ k ≤ 4 are

sufficient to generate the largest ideal associated to In [1]:

in practice this means that all multi-view constraints can

always be deduced algebraically from these basic relations

(even if derived using other approaches e.g., the trilineari-

ties in [14], obtained using line geometry). However, the

complete description of the joint image based on all the

bilinear, trilinear and quadrilinear constraints is generally

very redundant. We will see in Section 3 that the quadrilin-

ear constraints are always completely unnecessary (a well

known fact [4]), and, more importantly, much fewer bilin-

ear and trilinear conditions can actually be used.

Vector spaces of multilinearities. The multilinear rela-

tions that vanish on In (i.e., the k-linearities for k = n)

form a vector space, the dimension of which is given by the

following proposition. The result can also be deduced from

Theorem 3.6 in [1], although expressed in more technical

terms (the authors provide the “multigraded Hilbert func-

tion” for the ideal associated to In).

Proposition 3. Given n cameras M1, . . . ,Mn, the multi-

linear polynomials that vanish on In form a vector space

of dimension dn = 3n −

(

n+ 3
3

)

+ n.

Proof sketch. It is sufficient to compute the dimension

of the vector space generated by the initial terms associated

to the multilinear constraints. Since the maximal minors

of U(u1, . . . ,un) defined in (3) form a Gröbner basis, the

result follows from a counting argument involving the asso-

ciated initial monomials.

For example, let us point out that d2 = 1 (the epipo-

lar constraint is the only bilinear relation for two views),
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Figure 1. Example of a birational equivalence: the projective plane

P
2 and its so-called blow-up at a point are identical, apart from a

single point of P2, which is “expanded” into a line [9]. The rela-

tionship between P
3 and In is analogous: in fact, we show in the

supplemental material that the joint image variety (assuming non-

collinear pinholes) is given by this same construction (the blow-

up) applied to P
3 at all of the camera pinholes.

d3 = 10 (there are always 10 linearly independent trilinear-

ities, cf. Section 3.4), and d4 = 50; these facts can also be

verified computationally using Gröbner bases.

2.3. Geometric properties of the joint image

By definition, In is the closure of the image of the “joint-

projection” map

P
3 \ {c1, . . . , cn} −→ P

2 × . . .× P
2

p 7−→ M1p× . . .×Mnp.
(4)

This map is usually injective, the only exception being

when all of the cameras have collinear pinholes (in partic-

ular, when there are only two views), in which case two

points lying on the baseline will have the same images. The

inverse function, where it is well-defined, is (exact) trian-

gulation, that is, the operation of recovering spatial coordi-

nates from corresponding image points. Note that this is a

rational map, i.e., it can be described using polynomial ex-

pressions (because it amounts to computing the intersection

of visual rays). The existence of rational maps that are the

inverse of each other for “generic” points is expressed in

the language of algebraic geometry by saying that In and

P
3 are birationally equivalent (Figure 1). Intuitively, this

says In is a model of P3 embedded in P
2× . . .×P

2, which

immediately implies that the joint image is irreducible (it is

not the union of proper subvarieties) and has dimension 3.

Since P2× . . .×P
2 has dimension 2n, one could hope to

be able to describe In using 2n − 3 constraints. However,

typically one cannot represent an algebraic set of codimen-

sion m as the intersection of m hypersurfaces (when this is

possible, the set is called a “complete intersection”). It is

true, however, that at least this many conditions are nec-

essary and one can always use this minimum number of

constraints for local characterizations of the joint image (at

least away from singularities, see below).

Example 2. Consider three cameras M1,M2,M3 with

non-collinear pinholes. Let Bij be the epipolar constraint

between views i and j, and T be any trilinear constraint

that does not vanish on the product of the “trifocal lines”

(i.e., the projections of the plane containing the pinholes).

Consider the following sets of constraints

S1 : {B12, B23, B13}, S2 : {B12, B13, T}. (5)

Both S1 and S2 give minimal and local descriptions of the

joint image variety I3: for example, if (u1,u2,u3) does

not lie on the trifocal lines, then S1 is sufficient for estab-

lishing whether they form a correspondence [14]. The same

holds for S2 if one excludes a more complicated set of spu-

rious solutions (see the supplemental material). However, in

order to obtain a global description of I3, one has to con-

sider all four equations in S1 ∪S2, even though this charac-

terization will be locally redundant.

The following proposition deals with the singularities of

In. The proof is technical, and deferred to the supplemental

material.

Proposition 4 (Singularities of the joint image variety).

When the camera pinholes are not collinear, In is smooth.

When they are collinear (in particular, for n = 2 views),

then In has a unique singular point given by the n-tuple of

epipoles (e1, . . . , en).

The joint image and camera matrices. It is clear that

the association between camera matrices and In does not

depend on the reference frame in P
3, in other words

In(M1, . . . ,Mn) = In(M1T, . . . ,MnT ) for all T in

GL4(R). Note also that for any S1, . . . , Sn in GL3(R),
In(M1, . . . ,Mn) and In(S1M1, . . . , SnMn) are com-

pletely equivalent, since they are identical up to linear

changes of variables. Conversely, it is important to empha-

size that the joint image completely characterizes the set of

cameras, up to changes of coordinates in P
3: indeed, all

SFM methods are based on the property that camera pa-

rameters can be recovered given a sufficient number of cor-

respondences across multiple views (at least 7 correspon-

dences for n = 2 and at least 6 for n ≥ 3), and the joint

image describes all matches between the views.

3. Main results

We now resume our study of the different sets of mul-

tilinear constraints that can be used to describe the joint

image. First, however, we make the important observation

that it may be possible to recover the joint image (and cam-

era parameters) from sets of constraints that do not actually

guarantee correspondence globally. This leads us to study,

in Section 3.2, the relationship between the bilinear, trilin-

ear, and quadrilinear constraints. We analyze in Section 3.3

some practical sets of epipolar constraints that can be used

for generic configurations. Finally, we discuss in Section

3.4 the important case of three views.
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3.1. Characterizations of the joint image

Let us assume that we are given multilinear polynomials

P1, . . . , Ps that are annihilated by all elements of In, and

denote with W ⊇ In the algebraic set defined by these

polynomials. Interestingly, W may completely determine

camera geometry even when it is strictly larger than In and

thus does not characterize correspondences. The following

example illustrates this behavior (see also [11]):

Example 3. Consider three cameras M1,M2,M3 with

non-collinear pinholes. We have already observed that the

three epipolar constraints do not yield a global description

of I3, and in fact:

W = {B12 = B13 = B23 = 0} = I3 ∪ Vt, (6)

where Vt is the product of the trifocal lines [11]. However,

it has also been observed that the epipolar constraints (or

the fundamental matrices) are sufficient to recover the cam-

era matrices [4, 6]. From (6), we see that I3 appears as an

irreducible component of the larger set W (see the exam-

ple in Figure 2). In practice, polynomial equations for irre-

ducible components can be computed by means of primary

decomposition (see [2] or Section A of the supplementary

material): this means that all constraints defining I3 (e.g.,

trilinearities) can be recovered indirectly, even if they are

not algebraic combinations of the epipolar conditions. This

gives an algebraic justification for how the epipolar con-

straints determine camera geometry.

Generalizing the previous example, we give the follow-

ing definition:

Definition 3. A set of multilinear constraints P1, . . . , Ps is

referred to as a weak characterization of the joint image (or

of correspondences) when it uniquely determines camera

geometry. A strong characterization is a set of conditions

that describe the joint image variety in the usual sense, i.e.,

In = {P1 = . . . = Ps = 0}, so they directly give condi-

tions for correspondence.

As the terminology suggests, a “strong” characterization

of the joint image is also “weak”, since we know that the

joint image uniquely determines camera geometry (cf. Sec-

tion 2.2).

In practice, multilinearities provide a weak characteriza-

tion of the joint image whenever the associated variety W
contains In as an irreducible component, as in Example 3.

Note that once camera projections are recovered, correspon-

dences can subsequently be correctly characterized (in other

words, it is always possible to verify whether a candidate

correspondence is actually an extraneous solution). Weak

characterizations have the advantage of usually being sim-

pler and, in many cases, they can be used in place of strong

ones, since they provide sufficient conditions for correspon-

dence away from spurious components (i.e., they are local

characterizations, see Example 2). As we will see in our

Figure 2. An algebraic surface p(x, y, z) = 0 with two irreducible

components, that can be recovered by factoring p(x, y, z). In gen-

eral, when considering more than a single constraint, irreducible

components can still be recovered, but factorization has to be re-

placed with primary decomposition of ideals [2].

discussion of the “trifocal” trilinearities in Section 3.4, it

is actually likely that sets of weakly sufficient conditions

are sometimes used unknowingly, because correspondences

can be assumed general enough not to lie on a spurious com-

ponent (e.g., generic image points are not epipoles, etc.).

3.2. Dependencies among multi­view constraints

We have observed in Section 2.2 that it is possible to de-

scribe the joint image using constraints that involve at most

four views, that is, using k-linearities for k ≤ 4 (Proposi-

tion 2). However, Heyden and Åström [11] point out that for

n ≥ 4, assuming all the pinholes to be in general position,

the bilinear constraints are already sufficient to generate the

trilinear and quadrilinear ones. We now extend this result,

clarifying the role of the different families of constraints for

all possible camera configurations. The proof of the follow-

ing proposition amounts to reducing it to the case n = 4
and verifying all the relations computationally: we refer the

reader to the supplemental material for details.

Proposition 5. Assume n cameras are given.

1. Bilinearities and trilinearities always strongly character-

ize In, independently of the camera configurations.

2. Bilinear constraints alone strongly characterize In, if

and only if the pinholes are not all coplanar.

3. Bilinear constraints alone weakly characterize In if and

only if the pinholes are not all collinear.

We should observe that the first point of Proposition 5 is

well known (see for example [4]), and indeed reconstruc-

tion methods are generally only based on epipolar and trifo-

cal constraints. The second point can be deduced from the

analysis for four points in general position in [11], although

the authors do not point out this general fact. The last sub-

tle point is, to the best of our knowledge, new, at least

Non coplanar Coplanar Collinear

Bil. Strong Weak Not sufficient

Bil.+Tril. Strong Strong Strong

Table 1. Summary of the results of Proposition 5.
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with such a general formulation: it clearly shows that tri-

linear relations are essential only if all of the cameras have

collinear pinholes, since otherwise the epipolar relations are

sufficient to completely capture the geometry among all the

views. See Table 1.

3.3. Subsets of epipolar constraints

We have considered so far complete families of bilinear

and trilinear constraints. These sets of conditions are redun-

dant in general: for example, it has been observed in [11]

that for five cameras in general position, correspondences

can be (strongly) characterized using 9 bilinear constraints

instead of the complete set of 10. Although it is difficult to

make general statements on minimal sets of necessary con-

straints, we can make some useful remarks.

Proposition 6. Assume that we are given n ≥ 4 cameras

with pinholes c1, . . . , cn (the case n = 3 is treated in more

detail in Section 3.2). See Figure 3.

(A) If the pinholes (say) c1, c2, c3 are not coplanar

with any other ci for i ≥ 4, then {B12, B13, B23} ∪
{B1i, B2i, B3i}i=4,...,n are 3n−6 bilinearities that strongly

characterize the joint image.

(B) If the pinholes (say) c1, c2 are not collinear with any

other ci for i ≥ 3, then B12∪{B1i, B2i}i=3,...,n are 2n−3
bilinearities that weakly characterize the joint image.

With slightly modified hypotheses, similar results

hold for the sets {Bi,i+1, Bi,i+2, Bi,i+3}i=1,...,n−3 and

{Bi,i+1, Bi,i+2}i=1,...,n−2, that are still respectively strong

and weak characterizations of the joint image based on

3n− 6 and 2n− 3 constraints.

Proof. If (u1, . . . ,un) is an n-tuple of image points that

satisfy all of the constraints given in (A), then Propo-

sition 5 guarantees that the visual rays associated to

(u1,u2,u3,ui) converge for all i = 4, . . . , n. Since

c1, c2, c3 are necessarily not collinear, this implies that all

the visual rays intersect, so that (u1, . . . ,un) is in fact a

correspondence.

Similarly, the set of constraints given in (B) allow one

to determine a consistent set of camera parameters: it is

enough to note that B12, B1i, B2i are weakly sufficient for

views (1, 2, i), so that after having fixed M1,M2 compati-

ble with B12, one can uniquely recover all of the remaining

cameras.

Remark. The 2n − 3 weakly sufficient bilinearities given

in Proposition 6 (B) define an algebraic set W of dimen-

sion 3: this can be shown by induction, observing that every

new view contributes two more independent constraints. In

particular, W must contain In as a component of maximal

dimension. This relates to our discussion in the beginning

of Section 3, and confirms Conjecture 6.2 in [11].

Figure 3. Graphs representing epipolar conditions between cam-

eras in general position: the first two graphs consider n = 8 cam-

eras and describe, respectively, a strong characterization based on

3n − 6 = 18 constraints, and a weak one based on 2n − 3 = 13
constraints, both according to Proposition 6. The third graph is a

minimal configuration for n = 6 nodes that satisfies the property

(P ) given in Proposition 7, and thus describes a weak characteri-

zations using 2n − 3 = 9 conditions. The fourth graph is a con-

figuration of 2n− 3 = 9 conditions that does not satisfy (P ), and

in fact, one easily shows that the corresponding constraints are not

weakly sufficient.

When the pinholes of n cameras are in general position

(i.e., no four of them are coplanar), 2n − 3 bilinearities

can be used to recover camera geometry, however not all

choices of this many constraints will work. The following

practical result gives conditions for 2n−3 epipolar relations

to be sufficient for characterizing camera projections.

Proposition 7. Consider n ≥ 3 cameras with pinholes in

general position, and let G be a graph with n nodes corre-

sponding to the cameras, and edges representing epipolar

relations between them. Assume G has the following prop-

erty:

(P) G can be constructed from a 3-cycle by adding ver-

tices of degree two, one at the time.

Then the epipolar conditions associated with the edges

of G weakly characterize the joint image, and thus they

uniquely determine camera geometry. Note that the mini-

mum number of edges for a graph satisfying (P) is 2n − 3.

See Figure 3.

Proof. The proof is by induction on n. For n = 3, the graph

G is a cycle, and we know that the epipolar constraints

between three views are weakly sufficient. Property (P)

clearly allows the use of the inductive hypothesis. Having

recovered a consistent set of cameras M1, . . . ,Mn−1 (that

will be unique up to homographies in P
3), we can then use

two epipolar constraints involving the n-th view to uniquely

recover Mn.

Interestingly, graphs considered by Proposition 7 form

a subset of the family of Laman graphs [12], which char-

acterize minimally rigid systems of rods and joints in the

plane.

3.4. The case of three views

The study of three-view geometry is traditionally based

on trifocal tensors [5]. It is well known that such ten-

sors also encode 9 trilinear conditions for point correspon-

dences: assuming that T distinguishes the first view, these
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can be expressed as

ui
1u

j
2u

k
3(ǫjprǫkqsT

pq
i ) = 0rs, (7)

where we use Einstein summation notation (all indices run-

ning from 1 to 3), and denote by ǫijk the Levi-Civita per-

mutation symbol. These trilinear constraints correspond to

maximal minors of the matrix U(u1,u2,u3) defined in (3),

more precisely to the nine minors arising by considering all

rows associated to one fixed camera, and two rows from

each of the other two.

Let us now clarify some issues related to the necessity or

sufficiency of the conditions (7) (all of the results in this sec-

tion are shown by direct computation using Gröbner bases,

after fixing triplets of cameras for both non-collinear as well

as the collinear case; see Section B5 of the supplemental

material for details).

The first point to address is linear independence. It is

frequently reported that only four of the nine conditions are

independent [5, 6]: this fact is true if one interprets the equa-

tions in (7) as conditions for recovering coefficients of the

trifocal tensor T , using a known triplet of points. This is

not the same as the independence of the constraints as poly-

nomials in the point coordinates, and we believe the two

notions may have been confused (although some references

clearly say “independent in the tensor components” [10]).

Regarding the independence as trilinear conditions, we have

the following new result. We recall that all of the trilineari-

ties form a vector space of dimension 10 (Proposition 3).

Proposition 8. The nine trilinearities encoded in a trifocal

tensor (Eq. (7)) span a vector space of dimension 8.

Interestingly, assuming non-collinear pinholes, the trilin-

earities defined by Eq.(7) are not (strongly) sufficient for

guaranteeing point correspondence, i.e., they describe a set

that is strictly larger than the joint image variety I3. We

believe that this fact has not been pointed out in previous

literature (although it is closely related to the known degen-

eracies of transfer based on the trifocal tensor [6, Section

15.3.2], see our discussion in the supplemental material).

Proposition 9. If the pinholes M1,M2,M3 are not

collinear, then the constraints (7) (assuming that T distin-

guishes the first view) describe a set W = I3 ∪ S12 ∪ S13,

where

S12 = {e12 × e21 × u3 ∈ (P2)3 |u3 ∈ P
2},

S13 = {e13 × u2 × e31 ∈ (P2)3 |u2 ∈ P
2},

(8)

and eij is the epipole in image i relative to the camera j.

A geometric justification for this result is given by Fig-

ure 4. In practice, the set of spurious correspondences

(8) described by all nine trilinearities is very limited, since

two of the three image points are always constrained to be

epipoles. However, it is interesting to observe that the tri-

linearities expressed by the trifocal tensor are in some sense

Figure 4. Geometrical explanation for Proposition 9: the points u1

and u3 are epipoles for M1 and M3; for any choice of u2 ∈ P
2

in the second image (shown in white), all lines through u2 and u3

will give rise to a point-line-line correspondence with u1.

not “complete”: indeed, according to Proposition 8, they al-

ways span a space of dimension 8, strictly included in the

vector space of dimension 10 spanned by all trilinearities.2

Based on our discussion in Section 3.1, the trilinearities (7)

are only “weakly sufficient”, i.e., they define a larger set

than I3 but still uniquely characterize camera matrices (in-

deed, the trifocal tensor encodes camera geometry).

By considering any subset of the nine trilinearities (7),

the set of spurious correspondences will obviously be larger

than the one described by Proposition 9.

Example 4. Consider the camera matrices





1 0 0 1
0 1 0 0
0 0 1 0



 ,





1 0 0 0
0 1 0 1
0 0 1 0



 ,





1 0 0 0
0 1 0 0
0 0 1 1



 , (9)

and the trilinearities T47, T58, T69, T48, where Tij denotes

the trilinear condition associated with the minor of (3) ob-

tained by “excluding” rows i, j [11]. One can verify that

these constraints describe a set W containing I3 together

with eight other (spurious) irreducible components. See

Section B7 of supplemental material for details.

We conclude this section with the following proposition,

that extends some results given in [14]. The proof is com-

putational, and given in the supplementary material.

Proposition 10. Consider three cameras.

• If the pinholes are non-collinear:

1. For any trilinearity T that does not vanish on the prod-

uct of the trifocal lines, {B12, B13, B23, T} gives a

strong characterization of the joint image.

2. The epipolar constraints {B12, B13, B23} uniquely de-

termine camera geometry, i.e., they give a weak char-

acterization of the joint image.

2The fact that a set of trilinear constraints does not linearly generate the
whole space of trilinearities is not by itself sufficient to conclude that the
conditions do not describe I3: in fact, in the case of collinear pinholes, the
trifocal trilinearities do characterize I3. See the supplemental material for
a discussion on this subtle point.
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• If the cameras have collinear pinholes:

1. A strong characterization of the joint image is given

by {B12, B13, B23, T1, T2} where T1 and T2 are (suf-

ficiently general) trilinear constraints.

2. Two epipolar constraints together with one (suffi-

ciently general) trilinearity {B12, B13, T} uniquely

determine camera geometry, i.e., they give a weak

characterization of the joint image.

4. The joint image in practice

We argue in in this section that that our theoretical de-

scription of the joint image and the associated multilineari-

ties may be quite useful in practical settings.

4.1. Projective vs. euclidean cameras

One could object to the practicality of our analysis the

fact that physical cameras are always euclidean, often with

known internal parameters, thanks to Exif tags in JPEG im-

ages. However, the projective framework used in our pre-

sentation is simply more general and can easily be adapted

to more practical and constrained settings. For example,

in order to deal with actual pictures, one can introduce the

affine joint image Jn(M1, . . . ,Mn) for perspective cam-

eras as the subset of (R2)n formed by n-tuples of affine

correspondences (ũ1, . . . , ũn). Since algebraic character-

izations of (the closure of) Jn are effectively the same as

for In, up to dehomogeneization (that is, setting zi = 1 for

all i), one realizes that all the results discussed in Section

3 also remain valid in the affine case. The only point to

note is that, in special cases, weak descriptions of In may

specialize to strong ones for the affine joint image (namely

when the spurious components do not appear in the affine

charts). We also observe that the affine constraints are in

general not multilinear but instead “multiaffine”. Finally,

using known intrinsic parameters basically amounts to con-

sidering only cameras the form Mi = (R, t), where R is

a 3 × 3 rotation matrix (assuming normalized image coor-

dinates), while all of our results clearly hold for any choice

of 3 × 4 matrices of full rank. Restricting ourselves to cal-

ibrated cameras, the multilinear relations that characterize

correspondences will simply automatically yield more con-

strained expressions (e.g., a fundamental matrix will also

satisfy the conditions for being an essential matrix [6]).

4.2. The distance to the joint image

Let us now illustrate a (potential) practical use of our

analysis with one example. If we assume that we have mea-

sured a set of (noisy) image points matched across mul-

tiple images, and that we know an estimate of the cam-

era parameters, then the reprojection error measures the

mean-squared distance between the detected points and op-

timally reprojected points using the given cameras [6]. It

is easy to realize that the computation of the reprojection

error is equivalent to measuring the distance to the joint im-

age in (R2)n of the given noisy correspondences [3]: this

can be expressed as a constrained minimization problem in

(R2)n, where the contribution of a single n-tuple of mea-

sured affine points c ∈ (R2)n is given by

min
c̄∈Jn

||c− c̄||2. (10)

An exact optimization of (10) is expensive, and gener-

ally requires parameterizing the joint image using auxiliary

variables associated with points in R
3, then applying gradi-

ent descent-type methods.3 For this reason, approximations

of the reprojection error have been considered, for exam-

ple the so-called Sampson error [15]. Essentially, this is a

measure of the distance to a local linear approximation of

the variety J n. We refer to [6, Chapter 4.2.6] for details.

However, a limitation of the Sampson error for n ≥ 3 views

is that it critically depends on the choice of equations for

describing J n, and using too many conditions will result in

a higher computational cost. According to our discussion

in Section 3, weak characterizations of the joint image may

prove useful in this setting, since they provide good local

approximations of the joint image but involve much fewer

equations: it would be interesting to verify experimentally

whether simple “weak” versions of the Sampson error (per-

haps based on 2n − 3 bilinear constraints) can actually be

used to efficiently recover camera parameters for generic

configurations.

5. Conclusions

The goal of this paper was to provide a clear and gen-

eral overview on the geometry of the joint image and the

different sets of algebraic conditions that can be used to

characterize it. In summary, we have shown that for n ≥ 4
generic views, only epipolar conditions are required: 3n−6
constraints are sufficient for a complete description of cor-

respondences (i.e., a strong characterization), while 2n− 3
are enough to recover camera geometry (a weak character-

ization). In the case of n = 3 views, bilinearities must be

used with at least one trilinearity for strong characteriza-

tions, while all of the nine relations encoded in the trifocal

tensor (or any subset of them) will generally yield some ex-

traneous solutions.

In our opinion, a pleasant aspect of the joint image is

that it allows revisiting most practical tasks in multi-view

geometry (if not all!) in a natural setting that completely

avoids the introduction of a three-dimensional coordinate

frame (that would necessarily suffer projective ambiguity).

We expect its role in computer vision algorithms to become

increasingly important in the future.
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3Direct approaches that algebraically solve conditions for stationarity
have also been proposed, however these are actually feasible only for two
or three views, see [3, 8, 18].
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