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Abstract

Recent advances in pedestrian detection are attained by

transferring the learned features of Convolutional Neural

Network (ConvNet) to pedestrians. This ConvNet is typ-

ically pre-trained with massive general object categories

(e.g. ImageNet). Although these features are able to han-

dle variations such as poses, viewpoints, and lightings, they

may fail when pedestrian images with complex occlusions

are present. Occlusion handling is one of the most impor-

tant problem in pedestrian detection. Unlike previous deep

models that directly learned a single detector for pedestrian

detection, we propose DeepParts, which consists of exten-

sive part detectors. DeepParts has several appealing prop-

erties. First, DeepParts can be trained on weakly labeled

data, i.e. only pedestrian bounding boxes without part an-

notations are provided. Second, DeepParts is able to han-

dle low IoU positive proposals that shift away from ground

truth. Third, each part detector in DeepParts is a strong de-

tector that can detect pedestrian by observing only a part

of a proposal. Extensive experiments in Caltech dataset

demonstrate the effectiveness of DeepParts, which yields a

new state-of-the-art miss rate of 11.89%, outperforming the

second best method by 10%.

1. Introduction

Pedestrian detection has been studied extensively in re-

cent years [4, 7, 6, 1, 2, 29, 42] and has many applications

such as video surveillance and robotics. While pedestrian

detection has achieved steady improvements over the last

decade, complex occlusion is still one of the obstacles. Re-

ferring to a recent survey [8], around 70% of the pedestrians

captured in street scenes are occluded in at least one video

frame. For example, the current best-performing detector

SpatialPooling+ [27] attained 75% reduction of the average

miss rate over the VJ detector [34] on Caltech [8] test set

without occlusion. When heavy occlusions are present, it

Figure 1. Pedestrian detection results on Reasonable ∪
HeavyOcclusion subsets, where pedestrians are larger than 49

pixels in height and have at least 20% body part visible. Green,

red, and blue represent true positives, false positives, and missing

positives, respectively.

only attained 21% improvement over VJ 1.

Current pedestrian detectors for occlusion handling can

be generally grouped into two categories, 1) training spe-

cific detectors for different occlusion types [36, 18] and 2)

modeling part visibility as latent variables [10, 26, 22, 23,

9]. In the first category, constructing specific detector re-

quires the prior knowledge of the occlusion types. For ex-

ample, according to the statistics of the occlusion patterns

in traffic scenes, [18] trained a series of biased classifiers for

bottom-up and right-left occlusions. In the second category,

[23, 22] divided pedestrian into several parts and inferred

their visibility with latent variables. Although these meth-

ods achieved promising results, manually selecting parts

may not be the optimal solution and may fail when han-

dling pedestrian detection in other scenarios beyond traf-

fic scenes, such as crowded scenes and market surveillance,

where occlusion types change.

Inspired by [18], we introduce the idea of constructing

a part pool that covers all the scales of different body parts

1http://www.vision.caltech.edu/Image_Datasets/

CaltechPedestrians/rocs/UsaTestRocs.pdf
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Figure 2. Complementary parts on Caltech pedestrian dataset and

their normalized weights (i.e. importance).

and automatically choose important parts for occlusion han-

dling. At the training stage, each part detector is learned by

fine-tuning ConvNet features, which are pre-trained on Im-

ageNet. At the testing stage, we design a shifting handling

method within a ConvNet. This method handles the prob-

lem that positive proposal windows usually shift away from

their corresponding ground truth bounding boxes. More-

over, the part selection is determined by data and the effec-

tiveness of the part pool can be fully explored. Fig. 2 shows

6 body parts which are significant in the Caltech pedestrian

dataset. They function complementarily to handle complex

occlusions.

DeepParts has four main contributions. (1) We con-

struct an extensive part pool where different complemen-

tary parts can be automatically selected in a data driven

manner. The selected parts can be adopted to different sce-

narios or different datasets. (2) To our knowledge, we are

the first to extensively explore how single part detector and

their ensemble based on ConvNets contribute to pedestrian

detection. In experiments, single part detector can achieve

state-of-the-art performance while only observing a part of

the proposal window, showing the robustness of DeepParts

against occlusions. (3) We propose a novel method to han-

dling proposal shifting problem. (4) We show that with

complementary part selection, a new state-of-the-art miss

rate of 11.89% can be achieved on the Caltech reasonable

set.

1.1. Related Work

We review related works in three aspects.

Part-Based Pedestrian Detectors One stream of part-

based approaches [20, 19, 9, 37] firstly trained part detec-

tors in a fully supervised manner and then combined their

outputs to fit a geometric model. For example, [20, 19] re-

quired part labels and were restricted to a limited number

of manually-designed parts. Enzweiler et al. [9] utilized the

depth and motion information to determine the occlusion

boundaries. Wu et al. [37] assumed that the head of a pedes-

trian is visible and required a complex Bayesian framework

to combine different components. In contrast, our method

does not need part annotations and can automatically select

complementary parts (components of human body) from

a large part pool.Another stream of part-based models fo-

cused on unsupervised part mining, which does not require

part labels. Felzenszwalb et al. [10] proposed Deformable

Part Model (DPM), which learned a mixture of local tem-

plates for each body part to handle pose variations. Lin et

al. [16] proposed a promising and effective framework by

incorporating DPM into And-Or graph. Recently, Girshick

et al. [13] reformulated DPM as ConvNet. DPM needs to

handle complex configurations while our method is much

simpler.

Occlusion Handling Some recent works [18, 31, 24] fo-

cused on handling specific types of pedestrian occlusion.

For example, the Franken-classifiers [18] learned a small

set of classifiers, where each one accounts for a specific

type of occlusion. In this work, we extend this idea by con-

structing an extensive part pool. Unlike [18] that the parts

were pre-defined, our complementary parts are automati-

cally determined by data and may vary in different scenar-

ios or datasets. In [31, 24], occlusions caused by overlaps

between two pedestrians were handled. Specifically, Tang

et al. [31] proposed a pedestrian detector tailored to vari-

ous occlusion levels, while Ouyang et al. [24] employed a

probabilistic framework to model the relationship between

the configurations estimated by single- and multi-pedestrian

detectors. With the large part pool, our method can cover

more occlusion patterns.

Deep Models Deep learning methods can learn high

level features to aid pedestrian detection. For instance,

Ouyang et al. [23, 22] introduced a part deformation layer

into deep models to infer part visibility. By introducing

switchable layers to learn both low-level features and high-

level semantic parts, SDN [17] achieved further improve-

ment. Because the receptive field of higher layers in Con-

vNet is large (sometimes covers most of the input patch),

modeling part visibility in a single ConvNet as these meth-

ods can not explicitly learn visual patterns for each part and

may suffer from part co-adaption. Tian et al. [32] mod-

eled detection task together with attribute prediction tasks

within a single deep model. Finally, Hosang et al. [14]

demonstrated the effectiveness of the R-CNN pipeline [12]

in pedestrian detection and achieved top performance on

Caltech [8] and KITTI[11]. We follow this framework to

train our strong part detectors. Moreover, unlike Part-Based

R-CNN [41], our DeepParts does not need part annotations

in training.

Another series of methods [7, 6, 21, 42, 43] focusing on

Channel Features and feature selection also achieved state-

of-the-art performance for pedestrian detection, but they are

not specially designed for occlusion handling.

2. Training Part Detectors

We take several steps to build our part-based pedestrian

detector. Firstly, we construct a part pool, where the parts

cover the full body of pedestrian at different positions and

scales. We then learn a detector for each of the part. A
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(a) part (1,1,2,2,1) (b) part (1,5,3,2,35)

Figure 3. Part prototype examples, (x, y, w, h, i) is defined in

Eqn.(2) (a) head-left-shoulder part with 2 grids in height and

width; (b) leg part with 2 grids in height and 3 grids in width.

method is further designed to handle shifting problem of

proposal windows. Finally, we infer the full body score over

complementary part detectors.

2.1. Part Pool

Occlusions may present at different body parts and have

various patterns. For instance, the left- or right-half body

may be occluded by a tree, and the lower-half body may

be occluded by a car. Thus, we construct an extensive part

pool, containing various semantic body parts.

We consider pedestrian as a rigid object and define a hu-

man body grid of 2m × m, where 2m and m indicate the

numbers of cells in horizontal and vertical direction, respec-

tively. Each cell is a square and has equal size. Furthermore,

we ensure each part to be a rectangle. The scales for parts

are defined as

S = {(w, h)|Wmin ≤ w ≤ m,Hmin ≤ h ≤ 2m,

w, h ∈ N
+},

(1)

where w and h indicate the width and height of a part re-

spectively, in terms of the number of cells they contain.

Wmin and Hmin are used to avoid subtle part since we fo-

cus on middle-level semantic part. Then, for each (w, h) ∈
S, we slide a h×w window over the human body grid with

step size s, to generate parts at different positions. The en-

tire part pool could be expressed as follows

P = {(x, y, w, h, i)|x, y ∈ N
+, (w, h) ∈ S, i ∈ I}, (2)

where x and y are the coordinates of the top-left cell in the

part and i is a unique id. Specifically, the part representing

the full body is defined as (1, 1,m, 2m, ifull).

Large m results in a large part pool, which may cause

more computations in the training and testing stages. Also,

small values of Wmin and Hmin result in subtle parts, such

as Wmin = 0.1 × m. To avoid the above issues, we have

m = 3, Wmin = 2, Hmin = 2, and s = 1 in our imple-

mentation, resulting in a part pool with 45 prototypes. Two

examples regarding the parts of head-left-shoulder and leg

are shown in Fig.3.

Neg

Head‐Shoulder 
Template

Visible
Map

GT
box

Neg
Proposal

Training
Patch

Head‐Shoulder Part 
Detector (ConvNet)

Part
Score

Pos

Figure 4. Using head-shoulder part prototype as an illustration for

training part detectors. (1) data: we extract corresponding regions

within negative proposals as negative training samples; we com-

pute the visible map of each ground truth box, and extract the cor-

responding region as a positive sample only if the part template is

fully covered by the visible map. (2) ConvNet: a part detector can

be any deep models, such as AlexNet, Clarifai and GoogLeNet.

2.2. Training

For each part, we train an independent ConvNet clas-

sifier. This leads to totally |P | models, where | · | is the

counting operator.

Training Data The size of training dataset is crucial

for ConvNets. In our experiments, we use Caltech dataset

[8], which is the largest pedestrian benchmark that consists

of ∼250k labeled frames and ∼350k annotated bounding

boxes. Instead of following the typical Reasonable setting,

which uses every 30th image in the video and has ∼1.7k

pedestrians for training, we utilize every frame and em-

ploy ∼50k pedestrian bounding boxes as positive training

patches. Proposals are obtained by LDCF [21]. Negative

patches are the proposed windows that have IoU < 0.5 with

the ground truth bounding boxes.

Part Specific Patch Generation As shown in Fig.4, we

take the head-shoulder detector as an example, to illustrate

how to generate the training data. (1) Given the definition of

a part, we consider the corresponding region within a neg-

ative proposal (i.e. patches containing objects/backgrounds

other than pedestrians) as the negative sample. (2) Each

pedestrian is annotated with two bounding boxes (BBs),

which denote the visible part Bvis (in green) and full body

Bfull, respectively. We divide the full body Bfull into

2m × m cells and compute the visible ratio of each cell.

Then we obtain the visible map by thresholding on the vis-

ible ratio. If the visible cells of a ground truth can cover

the cells of a part, we extract the corresponding region of

this part as a positive sample. In our implementation, the

threshold for computing the visible map is 0.4.
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Pre-training It has been demonstrated in R-CNN [12]

that fine-tuning a pre-trained ConvNet on ImageNet classi-

fication task on object detection and segmentation data can

significantly improve the performance. Particularly, the pa-

rameters learned at the pre-training phase are directly used

as initial values for the fine-tuning stage. Similar strategy

can be directly adopted to fine-tune the generic ConvNet

image classification models for part recognition. The main

disparity between the pre-training and fine-tuning tasks is

the type of input data. Image classification task employs the

full image or the entire object as input, which contains rich

context information while part recognition task can only ob-

serve a middle-level patch of a part.

To understand how to narrow the above disparity, we in-

vestigate three popular deep models and three pre-training

strategies as below. Three deep models are AlexNet [15],

Clarifai [39], and GoogLeNet [30], which are the best-

performing models of the ImageNet [5] classification chal-

lenge in the past several years. AlexNet and Clarifai have

∼60 million parameters and share similar structures, while

GoogLeNet uses 12× fewer parameters but is much deeper

than the first two models. Our framework is flexible to in-

corporate other generic deep models.

Three pre-training strategies include (1) no pre-training,

i.e. randomly initializing model parameters with Gaussian

distribution (strategy 1), (2) pre-training the deep models

by using the ImageNet training data with image-level anno-

tations of 1000 classes, i.e. taking the full images as input,

such as [14] (strategy 2), and (3) pre-training the deep mod-

els by using ImageNet training data with object-level anno-

tations of 1000 classes [25], i.e. taking the cropped object

patches as input (strategy 3).

Fine-tuning For each part prototype, we use the part

specific patches to fine-tune our part detectors. We replace

the last d×n classification layer with d×2 randomly initial-

ized part classifier (d and n indicate the feature dimension

and the number of pre-training classes, respectively). In our

implementation, we uniformly sample 16 positive and 48

negative windows to construct a mini-batch. Experiments

show that fine-tuning for 10000 iterations with a learning

rate of 0.001 is sufficient to converge.

2.3. Handle Shifting in Deep Model

In pedestrian detection, the localization qualities (i.e.

whether the window is tight or not) of the proposals are im-

portant for the recognition stage. Pedestrian detectors usu-

ally suffer from poor localization quality of the proposals.

As reported in [14], the best proposal method SpatialPool-

ing+ [27] recalls 93% pedestrians with 0.5 IoU threshold

while only recalls 10% with 0.9 IoU threshold. Shifting is

one of the major reasons that cause low IoU. As shown in

Fig 5(a), shifting a ground truth bounding box by 10% on

horizontal or vertical direction leads to 0.9 IoU, which is

type filter/stride
output map size

no extension

227× 227
extended by 32n

(227 + 32n)× (227 + 32n)

conv1 11× 11/4 55× 55 (55 + 8n)× (55 + 8n)
pool1 3× 3/2 27× 27 (27 + 4n)× (27 + 4n)
conv2 5× 5/1 27× 27 (27 + 4n)× (27 + 4n)
pool2 3× 3/2 13× 13 (13 + 2n)× (13 + 2n)
conv3 3× 3/1 13× 13 (13 + 2n)× (13 + 2n)
conv4 3× 3/1 13× 13 (13 + 2n)× (13 + 2n)
conv5 3× 3/1 13× 13 (13 + 2n)× (13 + 2n)
pool5 3× 3/2 6× 6 (6 + n)× (6 + n)
conv6 6× 6/1 1× 1 (1 + n)× (1 + n)
conv7 1× 1/1 1× 1 (1 + n)× (1 + n)
conv8 1× 1/1 1× 1 (1 + n)× (1 + n)

Table 1. Fully convolutional structure of AlexNet. We turn the

original fully connected layer fc6(4096), fc7(4096) and fc8(2)
into conv6(1×1×4096), conv7(1×1×4096),conv8(1×1×2).

still a proposal of high quality. However, shifting on both

directions leads to 0.68 IoU, such that critical parts are miss-

ing, hindering the stages of feature extraction and classifica-

tion. Except the full body shifting, each body part may also

shift and different parts of the same pedestrian may shift

towards different directions. In our framework, the posi-

tive training samples for each part detector are well aligned

while the testing proposals may shift at all directions. Thus,

handling shifting for both the full body and each part is nec-

essary.

A straight forward way to handle this problem is that we

crop multiple patches around each proposal with jitter, then

feed the cropped patches into the deep model and choose

the highest or averaged score with penalty as the detection

score. However, this method would increase the testing time

by k times, where k is the number of cropped patches for

each proposal.

To reduce the testing computation, we firstly reformu-

late the generic ConvNet models with fully connected layer

as fully convolutional neural networks, which does not re-

quire fixed input size and can process multiple neighboring

patches via only one forward pass. In this case, the input

size of the fully convolutional ConvNet can be changed.

We take the AlexNet as an example, the original input

size of which is 227 × 227. As illustrated in Table 1, af-

ter reformulating fc6, fc7, fc8 as conv6(1 × 1 × 4096),
conv7(1 × 1 × 4096), conv8(1 × 1 × 2), the fully convo-

lutional AlexNet is able to receive an expanded input size

because the convolution and pooling operations are unre-

lated to the input size. Since the step size of receptive field

for the classification layer is 32, the expanded input should

be (227+ 32n)× (227+ 32n) in order to keep the forward

procedure applicable, where n indicates expanded step size

and is a non-negative integer.

Given a proposed part patch (xmin, ymin, w, h) and n,

the expanded cropping patch is (x′
min, y

′
min, w

′, h′), where

1907



Figure 5. Best viewed in color. (a) shows how rapidly IoU will decrease with little shifting on horizontal and vertical orientation. (b)

shows how to handle shifting problem in AlexNet. A true positive proposal which shifts 14.1%, namely 32/227, on both horizontal and

vertical side is scored as 3.52 while the corresponding ground truth is scored as 6.81. With the neighboring search and penalization, our

detector adjusts the score value to 5.40.

x′
min = xmin −

16n

227
× w, y′min = ymin −

16n

227
× h,

w′ = (1 +
32n

227
)× w, h′ = (1 +

32n

227
)× h.

(3)

Then we resize the patch to (227 + 32n) × (227 + 32n)
and feed it into the fully convolutional AlexNet. As a re-

sult, (1 + n)× (1 + n) neighboring 227× 227 patches are

evaluated simultaneously while the expanded scale keeps

the same as the proposal scale. The final output of conv8
can be viewed as a (1+n)× (1+n) score map S and each

score corresponds to a 227× 227 region. The final score of

the part patch is defined as

s = max
1≤i,j≤n+1

{Si,j − Pi,j} (4)

where Pi,j is a penalty term with respect to relative shifting

distance from the proposed part box and is defined as

Pi,j = a× (|i−
n+ 2

2
|+ |j −

n+ 2

2
|)×

32

227

+ b× (|i−
n+ 2

2
|2 + |j −

n+ 2

2
|2)× (

32

227
)2

(5)

where a is the single orientation shifting penalty weight (we

give the same weight on both horizontal and vertical orien-

tations), and b is a geometrical distance penalty weight.

In our implementation, we have n = 2 for all parts and

search the values of a, b for each part by a 6-fold cross val-

idation on training set. Fig.5 (b) shows an example of the

full body part detector with 9 neighboring patches evalu-

ated, where a = 2 and b = 10. Shifting handling is a

kind of context modeling which keeps scale invariant, while

simply cropping larger region with padding and resizing to

227×227 bring a scale gap between the training and testing

stages.

3. Parts Complementarity

For each part, we directly use the output of its Con-

vNet detector as the visible score instead of stacking a lin-

ear SVM on the top as the R-CNN framework [12]. We

find that appending a SVM detector for mining hard nega-

tives does not show significant improvement over directly

using the ConvNet output, especially for GoogLeNet. This

may due to the fact that the training proposals generated by

LDCF[21] are already hard negatives. Thus, we safely re-

move the SVM training stage to save computation time.

Then we employ a linear SVM to learn complementar-

ity over the 45 part detector scores. To alleviate the test-

ing computation cost, we simply select 6 parts with high-

est value of the SVM weight, yielding approximate perfor-

mance. Experiments show that the performance improve-

ment mainly benefits from the part complementarity.

4. Experiments

DeepParts is evaluated on the Caltech dataset [8], using

subsets set00-set05 for training and set06-set10 for testing.

We strictly follow the evaluation protocol of [8], measur-

ing the log average miss rate over nine points ranging from

10−2 to 100 False-Positive-Per-Image. Three subsets are

considered for testing evaluation (Reasonable, Partial oc-

clusion and Heavy occlusion).
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Figure 6. Part prototypes of upper, left and full body.

Fine-tuning data upper left full

Every 30th image 41.19 46.96 33.01

Every 10th image 38.25 46.36 30.45

Every 5th image 36.63 41.59 23.83

Every 3rd image 34.60 39.69 23.18

Every image 34.11 37.83 21.19

Table 2. Log-average miss rate (%) on Caltech-Test of upper, left

and full body parts with respect to data volume. All results are

obtained by fine-tuning from AlexNet which adopted image-level

pre-training strategy (i.e. strat.2).

• Reasonable subset. Pedestrians are larger than 49 pix-

els in height and have at least 65 percent visible body parts.

Reasonable subset is considered as a more representative

evaluation than overall performance on all pedestrians and

is the most frequent evaluation setting. Without special il-

lustration, we use Reasonable as our default setting to com-

pare performance.

• Partial and heavy occlusion subsets where pedestrians

are larger than 49 pixels in height and have 1− 35 and 36−
80 percent occluded body parts, respectively.

Because of page limit, we choose three representative

parts for illustration. The selected parts are upper, left, and

full body respectively, and are shown in Fig.6. For each

part, we directly use the part detector output (without SVM

training) as the whole patch score to evaluate the perfor-

mance of single part detector. The complete results are in-

cluded in the supplementary material.

4.1. Evaluation of data volume

To investigate how data volume influences the fine-

tuning performance of part detectors, we compare the per-

formance obtained by fine-tuning AlexNet with five differ-

ent sets of data. Here, AlexNet is pre-trained on ImageNet

image-level data (i.e. strat.2). We present results in Table 2.

The average miss rate of each part detector shows a decreas-

ing pattern when incorporating more image frames. For ex-

ample, the upper, left, and full body detector achieve 7.08%,

9.13% and 11.82% improvements, respectively, when the

data volume is increased by 30×. The three models are still

unsaturated though all training frames have been utilized.

Body Part no SH SH SVM

Upper 26.02 23.93 25.11

Left 29.21 27.43 27.74

Full 16.43 15.41 16.17

Table 3. Effectiveness of shifting handling via a comparison with

no shifting handling and appending SVM on the top. We achieve

the best value for SVM by greedily search the value of C and

overlap thresholds for positive and negative samples.

4.2. Evaluation of models and pre­training

We evaluate the single detector performance of upper,

left, and full body parts with different contemporary deep

architectures. All the deep models are pre-trained with three

strategies, including (1) random initialization (strat.1), (2)

image-level pre-training (strat.2), and (3) object-level pre-

training (strat.3). As shown in Fig.7, GoogLeNet outper-

forms AlexNet and Clarifai over all the three body parts

with ImageNet pre-training. Fine-tuning an object-level

pre-trained GoogLeNet solely on the upper body part can

yields 26.02% miss rate, which is already close to the strong

LDCF proposals. When the full body is utilized, the miss

rate surprisingly reduces to 16.43%, which is the best result

that ever reported on Caltech reasonable subset. Besides,

it is noticeable that GoogLeNet is inferior to AlexNet and

Clarifai with random initialization. We believe it is because

of the model structure, where GoogLeNet are much deeper

and needs more iterations to converge when training from

scratch.

For all three models, random initialization (strat.1)

of network parameters leads to the worst performance.

For full body part, object-level pre-training (strat.3) strat-

egy shows around 1.2% superiority over image-level pre-

training (strat.2) strategy. However, as for upper part and

left part, this gap increases to around 4% for AlexNet and

Clarifai, and 2.5% for GoogLeNet. This may reveal the fact

that pre-training on object-level data are more capable to

model mid-level part variations than on image-level data.

4.3. Evaluation of handling shifting

To understand the effectiveness of shifting handling

(SH), we compare the results of shifting handling with that

of directly utilizing the single patch score given by the last

classification layer (no SH) and that of appending a SVM

on top to mine hard negatives (SVM). The results are col-

lected in Table 3, which shows that Shifting Handling con-

sistently achieves the lowest miss rate over upper, left, and

full body parts. Besides, SVM improves 1.47% over net-

work output for the left part but only improves 0.26% for

full body part, while the improvement of shifting handling

shows a much slower fading pattern as with lower miss

rate. Experiments also reveals that handling shifting pro-
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Figure 7. Log-average miss rate (%) on Caltech-Test reasonable subset. The AlexNet, Clarifai and GoogLeNet are represented by blue,

red and green, respectively. Strategy 1, 2, 3 indicate random initialization, image-level pre-training and object-level pre-training, respec-

tively.(a) upper body part. (b) left body part. (c) full body part.

vides more benefits for smaller parts, i.e. the average im-

provement for 2 × 2 parts is 4.3% but it drops to 2.1% for

3×3 parts. This is consistent with the fact that smaller parts

are more flexible to shift.

4.4. Overall evaluation

We report the final results on Caltech-Test in two aspects.

In the first aspect, we investigate the overall pipeline

by adding each component step-by-step, which is summa-

rized in Table 4. The strong LDCF [21] has 24.80% miss

rate. Single full body part detector improves 3.61% by

fine-tuning AlexNet, which is pre-trained on image-level

data. Pre-training GoogLeNet rather than Alex-Net im-

proves miss rate by 3.67%. Changing the pre-training strat-

egy from image-level annotation to bounding box level an-

notation also improves 1.09%. Combining all parts detector

(i.e. 45 in our implementation. All of them are fine-tuned

on GoogLeNet which employed bounding box data for pre-

training.) further reduces the miss rate by 3.31%. By adding

shifting handling for each part detector, the final average

miss rate on the reasonable subset is 11.89%.

In order to reduce testing time, we picked 6 part detec-

tors from the entire part pool, decided by the top 6 weights

of the ensemble SVM. As illustrated in Table 4, the ensem-

ble of the 6 part detectors reaches 12.31%, which shows

that the selected models offer the major improvement of

the whole part pool. To understand whether the improve-

ment comes from model ensemble itself or learning part

complementarity, we construct another two experiments, 1)

by combining 6 best independent parts and 2) by combin-

ing 6 full body detectors which are fine-tuned on AlexNet,

Clarifai, and GoogLeNet with image and bounding box pre-

training strategies, respectively. The weights for combina-

tion are learned by SVM. As shown in Table 4, simply com-

bining the 6 best-performing part detectors reduces the per-

formance, i.e. the miss rate increases 2.97%. Besides, en-

Figure 8. Average miss rate on reasonable subset.

semble of AlexNet, Clarifai, and GoogLeNet only achieves

15.5% miss rate. This reveals that the part complementar-

ity is the major reason for ensemble improvement. The 6

selected parts are given in Fig.2.

In the second aspect, we compare the overall result of

DeepParts with existing best-performing methods , includ-

ing VJ [33], HOG [4], MT-DPM [38], MT-DPM+Context

[38], JointDeep [23], SDN [17], ACF+SDT [28], Informed-

Haar [42], ACF-Caltech+ [21], SpatialPooling [27], LDCF

[21], AlexNet+ImageNet [14], Katamari [3], SpatialPool-

ing+ [27]. Besides, we also compare the DeepParts with all

existing deep models on reasonable subset, including Con-

vNet [29], DBN-Isol [22], DBN-Mut [26] and MultiSDP

[40].

Fig.8, Fig.9, and Fig.10 report the results on reason-

able, partial occlusion, and heavy occlusion subsets, re-

spectively. DeepParts outperforms the second best method

(SpatialPooling+ [27]) by 10 percent on the reasonable sub-

set, which is a large margin. Besides, DeepParts improves

the average miss rate on partial and heavy occlusion sub-

sets by 19.32% and 14.23%, showing its potential to handle

occlusion at different levels.

Deep Models Fig.11 shows that DeepParts achieves the
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detection pipeline LDCF AlexNet AlexNet image parts shifting 6 parts top 6 A,C,G

to GoogLeNet to box ensemble handling parts ensemble

miss rate (%) 24.80 21.19 17.52 16.43 13.12 11.89 12.31 15.28 15.50

improvement (%) +3.61 +3.67 +1.09 +3.31 +1.23

Table 4. Ablation study of our pipeline.

Figure 9. Average miss rate on Partial Occlusion subset.

Figure 10. Average miss rate on Heavy Occlusion subset.

Figure 11. Comparison between deep models.

lowest miss rate among all deep models. For example, it

outperforms DBN-Isol, DBN-Mut and JointDeep, which

are also based on part modeling, by 41, 36 and 26 percent.

In addition, DeepParts reduces the miss rate by 11 percent

over AlexNet-ImageNet, which is also fine-tuned on the

ImageNet pre-trained model. However, AlexNet-ImageNet

fails to model the part visibility and thus is hard to handle

occlusion.
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Figure 12. Results on KITTI with moderate subset.

4.5. KITTI

To test the generalization ability and verify whether the

6 complementary parts can be transferred to other street

pedestrian detection dataset, we test our DeepParts on

KITTI [11]. We do not use the training data of KITTI and

all components are trained on Caltech. DeepParts achieves

promising results, i.e., 70.49%, 58.67% and 52.78% AP on

easy, moderate, and hard subsets respectively. Fig.[11] rep-

resents the results on moderate subset (pedestrians are no

less than 25 pixels in height). The best detector Regionlets

[35] classified both the cyclists and pedestrians. The addi-

tional supervision improved its performance of pedestrian

detection. It outperforms DeepParts by 2.48%. Without cy-

clists as supervision, DeepParts is the best-performing de-

tector based on ConvNet, and surpasses R-CNN by 8.54%.

5. Conclusion

In this paper, we proposed DeepParts to improve the

performance of pedestrian detection by handling occlusion

with an extensive part pool, showing significant superior-

ity over previous best-performing models. The DeepParts

can also be treated as a cascade stack over other pedestrian

detectors to further improve performance. Future work lies

towards model compression, such as incorporating all part

detectors into one ConvNet.
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