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Figure 1: Cluster-based point set saliency on a range scan. From left to right: normal map, adaptive fuzzy clustering, cluster

uniqueness, cluster spatial distribution, cluster saliency, and point saliency.

Abstract

We propose a cluster-based approach to point set

saliency detection, a challenge since point sets lack topo-

logical information. A point set is first decomposed into

small clusters, using fuzzy clustering. We evaluate clus-

ter uniqueness and spatial distribution of each cluster and

combine these values into a cluster saliency function. Fi-

nally, the probabilities of points belonging to each cluster

are used to assign a saliency to each point. Our approach

detects fine-scale salient features and uninteresting regions

consistently have lower saliency values. We evaluate the

proposed saliency model by testing our saliency-based key-

point detection against a 3D interest point detection bench-

mark. The evaluation shows that our method achieves a

good balance between false positive and false negative er-

ror rates, without using any topological information.

1. Introduction

Mesh saliency, a measure of importance of points or re-

gions on a 3D surface, has become a useful tool for several

shape analysis tasks such as keypoint detection [2], shape

similarity [9], mesh simplification [19], and viewpoint se-

lection [20]. The human perceptual system is able to con-

sistently and quickly estimate saliency for known and new

shapes. But designing computational models that simulate

this process remains a problem [15]. Perceptual research

shows that contrast is an important factor in low-level vi-

sual saliency [7]. Thus research in both image and surface

saliency is focused on finding better definitions of contrast.

So far, surface-based methods have focused on contrast be-

tween vertices [19, 20, 27], whereas a new trend in image

saliency detection uses region-based contrast [5, 25, 4] to

produce significantly better results than local contrast. In-

spired by these cluster-based approaches on images, we pro-

pose a new approach to point set saliency.

Due to the fact that most shape processing tasks have

been aimed at polygonal meshes in the past, surface

saliency has been mostly studied on such surface repre-

sentation. These mesh-based methods depend on Gaussian

smoothing, spectral properties [29], or shape descriptors

[20], which all rely on topological information and cannot

be trivially extended to point sets. Point sets are noisy, con-

tain occlusions, and are often sampled at different densities

depending on the position of the depth camera. This makes
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mesh-based methods more difficult to extend. Furthermore,

3D reconstruction without prior knowledge is still an ac-

tive area of research. Few papers handle saliency of point

sets [24, 21, 27]. Considering the recent increase in cheap

depth camera availability and thus the proliferation of 3D

point clouds, it is now becoming ever more important to

process such point clouds. Our proposed saliency algorithm

does not use topological information, and thus supports a

wider range of 3D surface representations, including poly-

gon soups and 3D range scans. We show that even though

we do not use topological data, our saliency detection still

performs better compared to mesh-based methods.

Our work is inspired by recent methods in image

saliency detection [25, 4]. These methods cluster pixels into

perceptually homogeneous regions, compute a per-region

contrast from cluster uniqueness and spatial distribution,

and use this to assign a saliency value to each cluster and

then each pixel.

Our main contributions are:

1. An adaptive fuzzy clustering algorithm that not only

assigns points to clusters but also computes the probability

that a point belongs to a specific cluster (Section 4).

2. A novel method for computing cluster and point

saliency from a set of fuzzy clusters (Section 5).

3. Application of our proposed saliency detection to key-

point extraction (Section 7).

2. Related work

Saliency attempts to emulate the bottom-up attentional

mechanism in human vision [8]. Howlett et al. [14] show

that mesh saliency exists and can be useful in mesh simpli-

fication. Their study uses eye fixations to simplify a set of

meshes. Their results demonstrate that mesh simplification

using both quadric error metrics [10] and eye fixation data

produces meshes that are perceived as better representatives

of the original, compared to only using quadric error met-

rics.

Mesh saliency methods are typically based on contrast-

based saliency techniques for images [19, 20, 34, 29]. For

example, multi-scale image saliency [16] has inspired sev-

eral 3D saliency methods based on the Difference of Gaus-

sian scale space [24, 19, 17, 21, 2].

To achieve stable saliency models, robust to noise, sev-

eral techniques use local shape descriptors to compute con-

trast. Gelfand et al. [11] compute the Integral Volume De-

scriptor for each point on a mesh, and saliency of a point

is based on the uniqueness of its associated descriptor. Gal

and Cohen-Or [9] approximate a mesh by a sparse set of

local patches represented by descriptors. Saliency regions

are grown around the local patches by incrementally adding

neighbouring patches that maximize a saliency grade. The

mesh saliency model of Leifman et al. [20] is inspired by

context-aware saliency detection in images [13]. Salient re-

gions are those that are distinct both locally and globally,

and close to foci of attention. Shtrom et al. [27] extend this

to point clouds. Song et al. [29] propose a spectral-based

saliency model that produces results comparable to saliency

probabilistic models [3]. Saliency is computed based on

properties of the log-Laplacian spectrum of a mesh.

Relatively few saliency models support point clouds

[24, 21, 32, 27]. The approach of Shtrom et al. [27] is the

most robust point set saliency detection. However, it com-

putes each point’s distinctiveness by comparing the point’s

local descriptor to all other descriptors close enough in the

descriptor space. This is an expensive process. Region-

based approaches in images have become increasingly pop-

ular due to their efficiency and abstraction of unnecessary

details [5, 25, 4]. They typically perform 3 steps: an over-

segmentation of the image, a per-cluster saliency detection,

and a propagation of the cluster saliency to obtain per-pixel

saliency. Inspired by global contrast-based saliency in im-

ages [5], Wu et al. [34] use a multi-scale descriptor based

on Zernike coefficients to compute patch-based local con-

trast and global point rarity on a mesh. Tao et al. [31]

use the same descriptor to generate a set of uninteresting

patches. Using these patches as queries, patch saliency is

obtained by ranking all patches based on their relevance to

the queries while respecting the manifold structure of the

descriptor space of patches. Both of these methods [34, 31]

produce stable saliency maps but they only support meshes

and the descriptor computation is inefficient. Our work is

inspired by such cluster-based methods and we investigate

whether similar ideas can be applied to point sets.

3. Overview of our method

We propose a method for computing point set saliency

that does not require any topological information. Our

method is inspired by cluster-based saliency detection in

images [25, 4]. We first cluster a given point set into sim-

ilar regions, compute a saliency value per cluster, and then

propagate these saliency values to points (Figure 1).

Adaptive fuzzy clustering (Section 4) Our fuzzy clus-

tering consists of two steps: hard adaptive clustering (Sec-

tion 4.1) and computation of point-cluster probabilities

(Section 4.2). The second step ensures that in the saliency

propagation stage, the saliency of a point p is most influ-

enced by those clusters p most likely belongs to.

In the hard adaptive clustering step, we assign each point

to a cluster based on the point’s closeness to other points

both in the Euclidean space and a descriptor space. Two

points or cluster centres are close spatially if their Euclidean

distance is small, relative to that of other pairs. Similarly,

two points are geometrically close if their distance in the

descriptor space is small. This is formalized in Section 4.
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Clustering Uniqueness Distribution Cluster saliency Point saliency

Figure 2: An overview of our saliency model. The Bird partial scan contains holes and has variable point density. The

saliency results show that our method is robust enough to detect salient regions such as the eyes, mouth, feet and wings.

Both Euclidean and descriptor spaces are used in the sec-

ond step for computing probabilities that a point p belongs

a cluster, by assuming each cluster is a combination of two

Gaussian kernels defined over the Euclidean and descrip-

tor spaces. In practice, computing these probabilities for all

points and clusters will be inefficient. Instead, we construct

an adjacency graph of clusters, where spatially closed re-

gions are connected by an edge. This helps optimize our

solution, since for any given point p allocated to a cluster

Cp, we only need to consider clusters within a certain range

of Cp for its probability distribution.

Our adaptive fuzzy clustering approach to saliency de-

tection is in contrast to other saliency models [34, 31] that

oversegment a shape into mutually exclusive clusters based

on spatial proximity.

Cluster-based saliency (Section 5) From the set of clus-

ters described above, we compute cluster uniqueness and

distribution. Cluster uniqueness is a measure of how dis-

tinctive a cluster is, computed by comparing a cluster de-

scriptor to every other cluster. Uniqueness is heavily influ-

enced by nearby clusters, so that a region is more distinctive

if it is different from its surroundings. On the other hand,

cluster spatial distribution computes the spatial variance of

geometrically similar clusters. This means that a cluster is

widely distributed if similar clusters are spread across the

point set. Salient regions are those that are most unique,

with a small spatial distribution. Based on this premise,

uniqueness and spatial distribution are integrated into a sin-

gle saliency value per cluster.

Point-level saliency Each point p is finally assigned a

saliency value which is a linear combination of saliency

from all clusters, weighted by the probability that p belongs

to a cluster. Figures 1 and 2 illustrate the results of clus-

tering, uniqueness, spatial distribution, cluster saliency, and

point saliency on point sets.

4. Adaptive fuzzy clustering

We discuss the local feature descriptor used to character-

ize points and present our adaptive clustering algorithm.

Having considered several alternatives, we chose to use

the modified version [27] of Fast Point Feature Histogram

(FPFH) as our local shape descriptor. It is a fast and robust

local shape descriptor introduced by Rusu et al. [26]. The

FPFH of a point p describes the angles between normals

in the k-neighbourhood of p. This means that we need to

have captured or calculated normals for each point. FPFHs

computation complexity is O(kN), where N is the size of

the point cloud, which makes FPFH one of the fastest local

shape descriptors. Shtrom et al. [27] propose an adaptation

of FPFH that is invariant to reflections. To compute FPFH

distances, we use the Chi-square distance χ2.

4.1. Adaptive clustering

To decompose a point cloud into mutually exclu-

sive clusters, we propose a 3D adaptation of Adaptive-

SLIC (Simple Linear Iterative Clustering) superpixels [1].

Adaptive-SLIC is an efficient K-means clustering algorithm

that clusters pixels both in the Euclidean and colour space,

generating compact, nearly uniform superpixels. It takes

as parameters the number of clusters and adaptively up-

dates a compactness parameter in each iteration of the K-

means clustering. Adaptive-SLIC has linear complexity.

Our 3D adaptation runs K-means in both the Euclidean and

the FPFH descriptor space. The combined space F is a 36
dimensional space, whose points are represented by

f = [x, y, z, h1, ..., h33], (1)

where (x, y, z) is the position and (h1, ..., h33) the FPFH

descriptor of f . In the rest of the paper, X(f) refers to the

spatial position of f and H(f) refers to its descriptor.

Given a set of points in the combined space, the adaptive

clustering is computed as follows:
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Cluster mean initialization Following the method of Pa-

pon et al. [23], we create a 3D voxel grid over the input

points using an octree. For each non-empty voxel, we add

the mean of all the points within it to a list of initial cluster

means. The voxel grid generation is based on seed reso-

lution parameter R that we derive from a given number of

desired clusters K̂. R is the average diameter of spheres

containing N/K̂ points, where N is the number of points.

This definition of R produces voxels that have N/K̂ points

on average. Note that due to variable sampling in point sets,

the number of initial clusters K generated from the voxel

grid often differs from the parameter K̂.

K-means clustering Given a list of initial cluster means,

each iteration of K-means assigns every point to its nearest

cluster and then updates cluster means based on the new as-

signments. The key idea behind the linear time complexity

of SLIC is that for any point, we only check its distance to

cluster means that are within Euclidean distance 2R. To find

the nearest cluster to a point, we use the following distance

function:

D(f, g) =
kX(f)−X(g)k2

MX

+
Dχ2

(

H(f), H(g)
)

MH

, (2)

where f, g 2 F , MX is the maximum spatial distance

within a cluster, and MH is the maximum descriptor dis-

tance within a cluster in the previous iteration.

To speed up the adaptive clustering, we simplify the

point set prior to the K-means initialization and clustering

described above. We follow a similar approach to Papon et

al. [23] by first partitioning the 3D space into small voxels.

The voxel resolution used here is equal to the average Eu-

clidean distance between a point and its k neighbours. This

creates a new point set consisting of means of non-empty

voxel cells. This simplified point set is the input to the K-

means clustering described above. The cluster assigned to a

point p is equal to the cluster of its voxel centre.

Our adaptation of Adaptive-SLIC to 3D produces clus-

ters of points that are spatially and geometrically similar. It

produces less variation in the point descriptors within each

cluster and thus the average descriptor of a cluster, used

throughout our algorithm, is a better representative of the

points in it. Our saliency detection is therefore more stable

and better captures interesting regions, compared to a sim-

ple voxel-based spatial clustering, especially with small K̂.

This is illustrated in Figure 3.

4.2. Point-cluster probability

First, we introduce the notion of cluster adjacency. This

is used to speed up the computation of point-cluster proba-

bility. We construct a cluster adjacency graph where nodes

are clusters and edges connect any two clusters with neigh-

bouring points. More precisely, two clusters are neighbours

Figure 3: Compare saliency results based on a voxel-based

spatial clustering (top) and our adaptive clustering (bottom).

The number of desired clusters K̂ = 100.

if there exists one point from each such that the Euclidean

distance between the two points is within 1% of the point

set bounding sphere radius. Each cluster is represented as a

point in our combined space F by the mean of all the points

within that cluster.

Point-cluster probability is represented by a sparse ma-

trix P such that the probability that a point pi belongs to

cluster cj is Pi,j . P is computed with the help of another

sparse matrix W of the same size N ⇥K with elements

Wi,j =

8

<

:

exp

(

−wX
i,j−λHwH

i,j

)

σXσH
pi 2 Nj ;

0 otherwise,
(3)

with

wX
i,j = kX(pi)−X(cj)k2,

wH
i,j = Dχ2

(

H(pi), H(cj)
)

,

where Nj is the set of points in clusters within a 3-ring

neighbourhood of cj in the adjacency graph, σX is the aver-

age Euclidean distance to the spatial mean of the point set,

σH is the average χ2 distance to the global descriptor mean,

and λH is a parameter that determines the importance of ge-

ometric distance over spatial distance. For all results shown

in this paper, we used λH = 5.

Next, columns of W , each representing a cluster, are nor-

malized:

W 0

i,j =
Wi,j

PN

k=1 Wk,j

.

Finally, each row is normalized to produce the point-

cluster probability matrix given by

Pi,j =
W 0

i,j
PK

k=1 W
0

i,k

. (4)
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5. Saliency detection

This section describes the computation of cluster unique-

ness and spatial distribution. Both cues can be seen as

weighted sums of descriptor distances and Euclidean dis-

tances, respectively. The weight of a cluster is

wj =

PN

i=1 Wi,j
PK

k=1

PN

i=1 Wi,k

. (5)

Uniqueness This measures the local distinctiveness of a

point. It is based on the same premise used in almost all

saliency models, i.e., regions that differ from their surround-

ings are more interesting. Shtrom et al. [27] compute the

low-level distinctiveness Di of a point pi as

Di = 1− exp

 

−
1

N

N
X

k=1

Dχ2

(

H(pk), H(pi)
)

1 + kX(pk)−X(pi)k2

!

. (6)

In our case, we are computing cluster-level uniqueness

instead, and thus the variability in clusters should be taken

into account. This is achieved by adding cluster weight and

a normalization term to Equation 6. Thus, the uniqueness

Uj of a cluster cj is a weighted sum of descriptor distances

to every cluster defined as

Uj = 1− exp

 

−
1

Zj

K
X

k=1

wkdk,jDχ2

(

H(ck), H(cj)
)

!

with the same weight based on spatial distance

dk,j = 1/
(

1 + kX(ck)−X(cj)k2
)

and the normalizer Zj =
PK

k=1 dk,j .

Spatial distribution The local uniqueness of a cluster is

often not sufficient to emulate the human low-level visual

attention. Regions that are similar but spread over a large

area are less salient than similar regions that are more com-

pact. Uninteresting points tend to be widely distributed,

with a high spatial variance, whereas more interesting re-

gions are more compact. For a given cluster with index j,

we first compute the spatial mean

µj =
1

Z 0

j

K
X

k=1

d0k,jX(ck)

of geometrically similar regions with a weight based on ge-

ometric distance

d0k,j = exp

 

−
Dχ2

(

H(ck), H(cj)
)

σH

!

and the normalizer Z 0

j =
PK

k=1 d
0

k,j with σH as above.

Figure 4: Comparison of point set saliency. Top: Our

method. Bottom: Shtrom et al.’s method [27]. On the

Max Planck model, our saliency is concentrated around fa-

cial features, with values close to zero elsewhere, in contrast

with Shtrom et al. result where only a small area at the top

of the head has low saliency. We also note on the Dragon

model that our saliency result is less noisy and emphasizes

fine-scale features such as the outline of the dragon mouth.

The cluster spatial distribution is then the weighted sum

of Euclidean distances to the mean µ, defined as

Vj = exp

 

−
1

Z 0

j

K
X

k=1

wkd
0

k,jkX(ck)− µjk2

!

.

Cluster saliency We combine the saliency map obtained

from the two cues above to construct a cluster saliency map

Sj = Uj+λVj , where λ is a parameter between 0 and 1 that

determines the relative importance of spatial distribution. In

this paper, we used λ = 1.0 for all our examples.

Point-level saliency Finally, the saliency of a point with

index i is given by si =
PK

j=1 Pi,jSj .

6. Results

We now compare our method against previous point-

based and mesh-based saliency methods, followed by a dis-

cussion on the influence of the parameter K̂.

Comparison with point-based saliency method In Fig-

ure 4, we compare results generated by our algorithm

against state-of-the-art in point set saliency [27]. Note how

our saliency is concentrated in interesting regions such as

the eyes on the Max Planck model. We are also able to de-

tect fine-scale salient features on the head of the Dragon.

167



Figure 5: From the top row down: Comparison of our method with Tao et al. [31], Song et al. [29], and ground-truth [4]. Tao

et al. [31] fail to capture salient regions on the human and glasses models, and in general, do not match high saliency regions

in the ground-truth. Song et al. [29] saliency model tends to assign different saliency values to similar regions such as the

bodies of the vases and arms of the teddy shape. Only our method succeeds in capturing the salient ends of the tentacles on

the octopus model. Overall, our saliency values closely match ground-truth, especially on the glasses model.

Comparison with mesh-based saliency method In Fig-

ure 5, we compare against the mesh-based methods by Song

et al. [29], Tao et al. [31], as well as the ground truth data

gathered by Chen et al. [3]. The only mesh-based method

that consistently produces correct saliency maps is spectral

mesh saliency [29]; it detects salient regions correctly but

similar unsalient regions, like the main bodies of the vases,

often have different saliency values. Note that our method

may assign high saliency to a flat region (e.g. the hand palm)

when another region is close to it as these regions may be

clustered together. This is because we use Euclidean space

for clustering, which may in such cases substantially change

the cluster descriptor from that of a flat surface.

Influence of the number of clusters Figure 6 shows how

the number of desired clusters K̂ affects saliency detection.

Our method is robust enough to detect salient regions with

very small K̂ (as small as K̂ = 10). A larger K̂ increases

the quality of the saliency. After a certain point, increasing

the number of desired clusters, and thus the number of gen-

erated clusters K, does not noticeably change the saliency.

The smallest value of K beyond which more clusters do not

improve the saliency depends on the input point cloud.

K̂ = 10 K̂ = 500 K̂ = 1000

Figure 6: Influence of the number of desired clusters.

Computational cost With N the size of the point cloud,

FPFH’s computation complexity is O(mN), where m is the

number of neighbours per point. Adaptive fuzzy cluster-

ing has complexity O((N + K) logN), where K is the

number of clusters. Saliency computation has complexity

O(N + K2). All the results in this paper, unless specified

otherwise, were generated with K ⇡ 500, by setting the

number of desired clusters K̂ = 500. Table 1 presents the

computation times for some results presented in this paper.

For small K, the main bottleneck of our algorithm is the

adaptive clustering. However, our saliency detection is ro-

bust enough that our adaptation of SLIC can be replaced

with a faster clustering algorithm such as voxelization, with

an expected small quality loss.
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Model Size FPFHs Clustering Total

Bird scan 12K 0.20s 0.13s 0.84s

Max Planck 49K 1s 2s 4s

Buddha scan 78K 1s 2s 4s

Lion 183K 3s 7s 11s

Dragon 437K 2s 11s 13s

Table 1: Computation times of a single-threaded implemen-

tation of our saliency detection, on an Intel Core i7 CPU

with 2.5 Ghz and 16GB RAM. Computing cluster and point

saliency took less than 1 second (included in the total time)

for all the models listed.

Compared to the state-of-the-art in point set saliency, our

method is faster. Shtrom et al. [27] saliency time complexity

is O(kN logN), where k is the neighbourhood size used.

In their results, k is proportional to 10% of the maximum

descriptor distance, and thus can grow very quickly for large

point clouds. They detect saliency on the Igea model (134K
points) in 2 minutes. Our method took less than 15 seconds

for each model illustrated in this paper. An example of our

saliency detection on a scan of the Bremen city centre (12M

points) is available in the supplementary material.

7. Evaluation of our keypoint detection

We evaluate our method by testing our saliency-based

keypoint detection against a 3D interest point detection

benchmark [6]. The benchmark consists of human-marked

interest points on a total of 43 triangular meshes. Dutagaci

et al. [6] evaluate six keypoint detection algorithms against

this data: local maxima computed from Mesh Saliency [19],

salient points based on a combination of mesh saliency with

statistical descriptors [2], scale-dependent corners [22], 3D-

SIFT [12], 3D-Harris [28], and a multi-scale detector based

on the Heat Kernel Signature (HKS) [30]. The results

of their evaluation show that overall, the Mesh Saliency

method has lower false negative error rates than all other

methods, but has high false positive rates (these rates are

defined below). On the other hand, HKS-based keypoint de-

tection finds very few keypoints, most of which are correct,

and thus has a very low false positive error rate compared

to others, with high false negative error rates. Shtrom et

al. [27] also tested their point set saliency detection model

against this benchmark by selecting local maxima above a

certain saliency threshold as keypoints. Their results show

that they achieve slightly lower false negative error rates

than the competing methods, with false positive rates com-

parable to other methods except HKS.

Following Dutagaci et al. [6] and Shtrom et al. [27], our

keypoints are local maxima over a saliency threshold given

by the average saliency over all local maxima. Figure 7

illustrates a comparison of keypoint detection.

Ground truth [6] Our saliency Our keypoints

Mesh Saliency [19] Salient points [2] HKS [30]

Figure 7: Interest point detection: keypoints detected by

our algorithm compared to other methods. The ground truth

displayed is based on σ = 0.03, n = 2.

Error rate computation Given a parameter σ represent-

ing the radius of an interest region and dM the diameter

of a model M , interest points whose geodesic distance to

each other is less than 2σdM are grouped together. Ground

truth is determined by σ and an additional parameter n rep-

resenting the minimum number of human participants. The

set of ground truth points GM (n, σ) of a mesh M consists

of all interest points agreed upon by at least n distinct users.

Given a point p 2 G, its geodesic neighbourhood Cr is

Cr(p) = {q 2 M | dg(p, q)  r},

where dg(p, q) is the geodesic distance between p and q, and

r represents the radius tolerance factor. Let D be the set of

keypoints detected by an algorithm. A point p 2 GM (n, σ)
is correctly detected if there exists a 2 D \ Cr(p) which is

not closer to any other ground truth point. The False Neg-

ative Error rate is computed as EFN (r) = 1 − NC/NG,

where NG is the number of ground truth points and NC is

the number of correctly detected ground truth points.

All points in D that do not have a corresponding ground

truth point are false positives. The False Positive Error rate

is computed as EFP (r) = 1 − NC/ND, where ND is the

number of keypoints detected by the evaluated algorithm.

To take into account the popularity of individual ground

truth points, the Weighted Miss Error is defined as

EWM (r) = 1−
1

PNG

i=1 ni

NG
X

i=1

niδi (7)

with

δi =

(

1 if gi is detected;

0 otherwise,
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Figure 8: Performance on two datasets. Left triple: Dataset A (24 models, 23 Subjects), σ = 0.03, n = 11. Right triple:

Dataset B (43 models, 16 Subjects), σ = 0.03, n = 8.

where gi are ground truth points and ni the number of sub-

jects that selected an interest point in Cr(gi).

Benchmark results The benchmark collected data is split

into two sets A and B [6]. Dataset A contains interest points

on 24 meshes marked by 23 subjects. Dataset B consists of

interest points on all 43 models that have been marked by

at least 16 participants. Figure 8 shows the behaviour of the

error rates EFN , EFP , and EWM of our algorithm as the

radius of tolerance r increases, compared to other methods.

The results show that our method has consistently lower

EFP rates compared against all other methods, except HKS.

This is at the expense of EFN and EWM rates that are

higher than most other methods but still comparable with

3D-SIFT and considerably better than HKS. If we com-

pare our method against Mesh Saliency, ours has a higher

EFP rate, and against HKS that detects few points and thus

has a high EFN rate, our method seems to strike a reason-

able balance between false positives and false negatives. A

good balance is particularly relevant in applications such as

feature-based shape retrieval [18]. In feature-based shape

retrieval, shapes are typically compared based on keypoints

detected on these shapes, thus it is important to extract in-

teresting keypoints able to differentiate between classes.

To quantify this balance between false positive and false

negative rates, we compute for each detection method

Fβ = (1 + β2)
PR

β2P +R
,

where P = 1−EFP is precision and R = 1−EFN is recall.

Fβ is interpreted as a measure of effectiveness to a user who

attaches β times as much importance to recall as precision

[33]. Table 2 shows that our method achieves the best Fβ

score when recall is weighted twice as much as precision,

and is second best after HKS otherwise. This means that our

algorithm performs best when emphasis is put on detecting

as many ground-truth points as possible, at the expense of

detecting uninteresting points. This emphasis is helpful in

applications like shape retrieval, where uninteresting points

occur more often than interesting features and thus are given

less weight when computing similarities.

Dataset A Dataset B
F0.5 F1 F2 F0.5 F1 F2

Ours 0.27 0.32 0.42 0.20 0.26 0.37

Salient Points 0.16 0.23 0.37 0.16 0.22 0.36

3D-Harris 0.14 0.21 0.37 0.14 0.20 0.35

HKS 0.54 0.43 0.35 0.45 0.38 0.33

MeshSaliency 0.10 0.15 0.29 0.09 0.13 0.27

3D-SIFT 0.10 0.13 0.21 0.07 0.10 0.17

SD-corners 0.07 0.11 0.21 0.05 0.08 0.17

Table 2: Fβ scores of keypoint detection for β = 0.5, 1, 2.

We used σ = 0.03 and tolerance radius r = 0.03 to com-

pute precision and recall.

Our algorithm is able to achieve the above competi-

tive results without using any mesh connectivity informa-

tion during saliency detection or key point extraction. This

makes our algorithm more robust to topological inconsis-

tencies and more flexible than mesh-based methods.

8. Conclusion

Our novel cluster-based method for detecting point set

saliency does not use topology information and thus sup-

ports a wide range of 3D shape representations, including

polygon soups and range scan data. Our qualitative re-

sults show that our saliency model detects fine-scale salient

features better than other state-of-the-art point-based and

mesh-based methods. We show that region-based contrast

[5, 25, 4] can be successfully applied to point clouds, giv-

ing results (Figure 4) comparable with other point cloud

saliency methods. We apply our saliency model to keypoint

detection and show that it has significantly lower false pos-

itive error rates than previous work, with the exception of

keypoints based on the Heat Kernel Signature, which, on

the other hand, has the highest false negative error rates.

We also show that our keypoint detection has the best effec-

tiveness score Fβ when β is in the high recall range.
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