
Realtime edge-based visual odometry for a monocular camera

Juan José Tarrio, Sol Pedre

Instituto Balseiro - CNEA

Bustillo 9500, Bariloche, Rio Negro, Argentina

juan.tarrio@gmail.com, sol.pedre@cab.cnea.gov.ar

Abstract

In this work we present a novel algorithm for realtime

visual odometry for a monocular camera. The main idea is

to develop an approach between classical feature-based vi-

sual odometry systems and modern direct dense/semi-dense

methods, trying to benefit from the best attributes of both.

Similar to feature-based systems, we extract information

from the images, instead of working with raw image inten-

sities as direct methods. In particular, the information ex-

tracted are the edges present in the image, while the rest

of the algorithm is designed to take advantage of the struc-

tural information provided when pixels are treated as edges.

Edge extraction is an efficient and higly parallelizable op-

eration. The edge depth information extracted is dense

enough to allow acceptable surface fitting, similar to mod-

ern semi-dense methods. This is a valuable attribute that

feature-based odometry lacks. Experimental results show

that the proposed method has similar drift than state of the

art feature-based and direct methods, and is a simple algo-

rithm that runs at realtime and can be parallelized. Finally,

we have also developed an inertial aided version that suc-

cessfully stabilizes an unmanned air vehicle in complex in-

door environments using only a frontal camera, while run-

ning the complete solution in the embedded hardware on

board the vehicle.

1. Introduction

Monocular Visual Odometry (VO) and visual SLAM

have received a great deal of attention from the vision com-

munity in recent years, mainly because of its application

to robot navigation, virtual reality and 3D reconstruction.

Classical SLAM algorithms have relied on feature extrac-

tion and matching techniques [21] [9], creating sparse maps

that are useful for trajectory tracking but no that much for

world interaction. In recent years, as the growth of com-

putational power has allowed it, direct dense methods have

been developed. These algorithms operate directly on all

pixels of the image, without doing any kind of data selection

Figure 1. Edge reconstruction for the fr2/desk scene. Top left pic-

ture shows the scene with edge detection and uncertainty coded

in colour. Top right picture shows the edge map depth. Bottom

pictures shows simple surface fitting over the edge-maps for in

camera and off camera view.

through feature extraction. The main advantage of these al-

gorithms is that they generate full maps that are more useful

for robot navigation and other applications. Other advan-

tages include robustness to camera blurring and fast move-

ment. Even though some of these algorithms are able to run

in real time in modern cpu+gpu equipment [19] [18] their

computational cost is still too high for embedded solutions,

in which the processing power is limited by weight (in the

case of light aerial vehicles), power consumption or sim-

ply by commercial price when thinking of a solution for the

massive market. This led to semidense methods [6] [7] that,

while applying similar techniques as fully dense, do pixel

importance selection in order to reduce computational cost.

In our work we tried to find a middle point between these

two approaches, mainly looking for a fast and simple algo-

rithm to work on embedded control of Unmanned Air Ve-

hicles, but that can also be applied to other areas of com-

puter vision such as augmented reality and a wider branch

of robotics navigation. A key idea is to give importance

to the structural information provided by feature extraction,

edges in particular. Edge recognition is known to be a part

1702

human vision [17] [15], while artificial edge detectors can

extract structural information in complex images [20] [1],

like ultrasonic or highly blurred. From the navigation point

of view, edges create similar maps as the one generated by

modern semi-dense methods, as can been in Figure 1. The

figure also shows how a surface can be easily fitted to the

edge-map.

1.1. Related Work

Dense and Semi-Dense Visual Odometry: Robust

odometry estimation for RGBD cameras has been reported

by Kerl et al. [8], this work deals mainly with the problem

of image alignment when operating directly on image inten-

sities, using robust statistical approach for the optimization

problem. Engel et al. [6] extend this work to semi-dense

monocular visual odometry, adding depthmap estimation

for selected pixels. Depth is estimated using variable base-

line stereo comparisons and propagated over time using a

probabilistic Bayesian model. This method has been used

as the core to develop a full SLAM system reported in [5].

Forster et al. [7] reported a mixed method that combines

direct image alignment with keypoints to achieve high ac-

curacy and high framerate, intended for downward camera

navigation of Micro Aerial Vehicle.

Feature Edge Based VO: Edge based SLAM has been

reported by Eade and Drummond [4] and Klein and Murray

[10]. The main difference with this work is that these are

full SLAM systems that cluster the edge-pixels as edgels.

The edgels are parametrized and treated as features, in-

serted into the map similar to keypoints. The main chal-

lenge of treating edges as regular features is that they are

hard to match, yielding a complex data association prob-

lem, and they provide motion information only in one di-

rection (perpendicular to the edge tangent). In our approach

edges are processed densely, i.e. on an unclustered pixel ba-

sis. This way, our method resembles more a semi-dense

visual odometry, but taking into account structural charac-

teristics of edges.

Edge Detection: The proposed algorithm benefits from

the fact that edge extraction is a highly robust, highly par-

allelizable and vastly researched process. To summarize,

probably the most familiar edge detector is the Canny Edge

Detector [2] which is based on maxima search of the gradi-

ent. Marr and Hildreth [17] proposed LoG and DoG based

detectors inspired in biological vision, Lindeberg [15] fol-

lowed proposing a multiscale approach. Phase congruency

based detectors were proposed by Kovesi [12] [11], this

method presents an adimensional measure of edge strength

and is robust to changes in illumination and contrast.

1.2. Method Outline

The method has 3 main steps, which are common to most

classical visual odometry/SLAM systems. The first step is

to process the image to extract some information, in this

case structural information in the form of edge extraction.

The main output of this process is an edge-map, that is, a list

of edge-belonging points together with a local measure of

edge direction and an estimation of the point’s depth. This

edge-map is the only information that is processed in the

following steps. The second step is tracking. The edge-map

produced from the previous frame is globally fitted into the

edge-map of the new frame using an energy minimization

criterion. The output of this step is a SE(3) transformation,

which is represented as translation and a rotation vector. In

the last step, mapping, each point in the new edge-map is

matched to its corresponding point in the previous frame

using the rototranslation obtained from the tracking step.

Once this matching is done, a regularization step is applied

on the edges. Finally, depth is updated in the new edge

map using an Extended Kalman Filter (EKF) scheme. No-

tice that only information from the last two frames is used

throughout the complete process.

2. Method Description

2.1. Edge Extraction

As expected, the choice of a particular edge detector has

an impact in the final performance of the algorithm. In this

particular system, robustness in terms of repetitivity is im-

portant for tracking the same edge in consecutive frames.

Precise location is also important for final accuracy in ve-

locity, position and depth estimation. Finally, low running

time is another desirable quality to achieve a real time sys-

tem.

A zero crossing of the DoG based detector [17] was cho-

sen because it provides a good compromise between repet-

itivity and location. The first is common to DoG feature

detectors (such as SIFT [16] for example), while the second

is achieved by limiting the maximum value of the smooth-

ing sigma used.

The input of the algorithm is a grayscale image which

is Gaussian smoothed using two different sigmas for DoG

calculation. This smoothing is efficiently performed by ap-

proximating the Gaussian with three consecutive box filters,

which are calculated using integral images as suggested by

[13]. The DoG is simply the difference of the smoothed

images, the gradient is also calculated on the lowest sigma

image.

The pixels are first thresholded using the norm of the

gradient. This helps to eliminate false edges that appear on

third derivative based detectors, and also discards most of

the image.

For each of the remaining pixels, a third directional

703

derivative and subpixel position is obtained by fitting a

plane to the DoG (usually using a neighbourhood of 3x3

pixels). The pixels are then thresholded using the norm of

the third derivative, obtained from the coefficients of the fit-

ted plane equation.

Also, from the plane equation, subpixel position is ob-

tained by finding the point belonging to the line of the zero

crossing of the plane that is closest to the center of the pixel.

Finally, edge thinning is obtained by discarding those pix-

els whose subpixel position lies more than half pixel away

from the center of the pixel.

Even though edge belonging pixels are not clustered into

lines or any kind of group, after the edge extraction, each

point on an edge is connected with the point next to it, by

doing a simple search on the 8 pixels that surround each

point. This joining is important for the regularization step.

To summarize, the output of the detection algorithm is

a list of edge belonging points, henceforth called keylines.

Notice that this keylines are 1-pixel long, so the fact that

differentiates them from a keypoint is they can provide loca-

tion information only in the direction of the gradient. Each

keyline is parametrized as follows:

• q̄: subpixel position in the image.

• m̄: third derivative vector extracted from plane fitting

on the DoG. This vector encodes the edge’s local per-

pendicular direction.

• ρ: estimated inverse depth, initialized at some initial

value [3].

• σρ: estimated ρ uncertainty, initialized at some big

value.

• nid, pid: references to the next keylines in both direc-

tions of the tangent.

2.2. Tracking

The goal of the tracking stage is to find a SE(3) trans-

formation that maps the previous edge-map into the new

one. It is a minimization problem in which the depth of the

previous edge-map and its uncertainty are taken as given

parameters.

A warping function τ(q̄, ρ, x̄) : R2 × R × R6 → R2

is defined, taking as parameters keyline position q̄, its esti-

mated depth ρ, and a transformation defined by the vector x̄;

and returning the projected position of q̄ according to x̄ in

the new image. The transformation is defined as x̄ = [v̄|ω̄],
where v̄ represents a translation and ω̄ a rotation, whose

rotation matrix is obtained with its corresponding exponen-

tiation in SO(3) as follows:

R(ω̄) = exp(ω̄) (1)

Notation Hint: Image coordinate points will be noted

with letter q, and 3D points with letter p. Subindex o for

“old” will be used for points in the old frame and subindex

n for points in the new frame; subindex t for “transformed”

will be used for points after a warping function has been

applied.

Hence, the transformation for a point p̄o in space R3 is

defined as:

p̄t = R(ω)p̄o + v̄ (2)

A projection function π(p̄) : R3 → R2 × R that maps

3D space into image coordinates and inverse depth is also

defined:

π(p̄) =

((

zfpx

pz
,
zfpy

pz

)

,
1

pz

)

(3)

π−1(q̄, ρ) =
1

ρ

(

qx

zf
,
qy

zf
, 1

)

(4)

Where p̄ and q̄ are keyline’s position in 3D and image coor-

dinates respectively, and zf is camera focal length in pixels.

The warping function then takes the form:

τ(q̄, ρ, x̄) = π(R(ω̄)π−1(q̄, ρ) + v̄) (5)

In order to fit the edge-maps an error measure has to be de-

fined. In most direct methods this error takes the form of a

positive definite function of the local difference of intensi-

ties. This formulation, also used in optical flow estimation,

leads to an optimization problem that has to be solved pyra-

midally to avoid falling on local minima. Nevertheless a

number of well proven methods exists for solving this prob-

lem, having the advantage that since they operate directly

on image intensity the don’t require the feature extraction

step. On the other hand, classical methods rely on feature

matching in order to determine the distance between two

coincident features and minimize this distance, the repro-

jection error.

In our case, point edges are not classical features, in

the sense that they cannot be matched accurately and they

only provide location information in the perpendicular di-

rection m̄; but they are neither image intensities because

some structural information is present. Hence, our criteria

takes a middle point between this two approaches, trying

to minimize the distance to the closest edge found after the

reprojection, in the direction of the gradient m̄. This is il-

lustrated in Figure 2. Points from the previous edge-map

(q̄o, ρo) are projected into the points (q̄t, ρt) by using the

warping function τ . A search for the closest edge in the

new image is then performed in the perpendicular direction

m̄n, up to a distance of maxd pixels. For the closest edge

found, weak matching is performed by comparing the two

gradients m̄o and m̄n. If the difference is above a certain

704

Figure 2. Edge proximity search in the tracking stage. Rotation is

omitted for the sake of simplicity. Green Vectors represent edge

point warping, blue vectors the search in the perpendicular direc-

tion m̄n, red dashed lines the true transformation.

threshold then no match is found and a maximum error dis-

tance maxd is assigned to the point (i.e. the algorithm does

not keep on searching). Otherwise, the distance error is cal-

culated as follows:

dm = (q̄t − q̄n) • m̄n (6)

Notice that the scalar product against m̄n is the projection

of the distance in that direction, explicitly factoring into the

error that location information is only present in this direc-

tion. The estimated variance of depth σ2

ρ is used as a confi-

dence parameter to weigh the error dm, an extra weighting

term w may be used also, as explained in section 2.2.1.

Putting it all together, the total error or energy to mini-

mize takes the form:

E =
∑

i

wi

σ2
ρi

[M ((τ(q̄oi , ρoi , x̄)− q̄ni
) • m̄ni

)]
2

(7)

x̄ = argmin
x

E (8)

The function M(•) takes the distance residual as a parame-

ter and is defined to take into account edge matching. It re-

turns the argument if matching is passed or maxd distance

otherwise.

2.2.1 Energy Minimization

The distance error from equation 8 varies almost linearly

with the parameter vector x̄, so the problem is straight for-

ward to minimize using few iterations of classical Leven-

berg Marquardt and no reweighing, with satisfactory re-

sults. Nevertheless some enhancements were added to in-

crease the agility of the system, the accuracy and the resis-

tance to outliers.

Double Initialization: In order to help the algorithm con-

verge in large roto-translations, the initial condition of the

optimization can be set to the estimated transformation vec-

tor in the last frame, instead of zero. The problem of this

setting is that an estimation error in one frame influences

negatively the convergence of the next frame. That is why

a double initialization is proposed. Two iterations of op-

timization are performed using as initial condition the last

vector and zero, separately, keeping the one with the final

minimum energy.

Iterative ReWeighting: After double initialization, itera-

tive reweighing is applied to the rest of the iterations using

the square of the Hubber norm as weighing function:

wi(ri) =

{

1 if ri < k
k2

r2i
otherwise

(9)

where ri is the distance residual and the tuning constant k

is set normally at a distance of 2 pixels.

This optimization increases accuracy and also resistance

to outliers. In practice, outliers are also rejected by the map-

ping step, so they don’t get to have low variance in order to

influence the solution (as explained in section 2.3).

2.2.2 Implementation details

From the point of view of computational cost, the most

tricky part of minimizing equation 8 is finding the clos-

est edge from the warped keyline. In order to accomplish

this task efficiently, an auxiliary image is generated as fol-

lows: each point q̄n in the incoming edge map is propagated

±maxd pixels in the auxiliary image along the perpendic-

ular direction m̄n, storing only the keyline id and distance

to the original edge (in integer precision). If two or more

keylines are propagated to the same point in the auxiliary

image, only the closest one is stored. This image is gener-

ated only once at the beginning of the optimization, and it

is very fast process because it only requires an integer com-

parison and storing the corresponding id and distance.

Finding the closest edge at a given warped point qt is

then trivial: the id for the closest edge is located in the cor-

responding pixel in the auxiliary image. Usual values for

maxd are 10 pixels for 320x240 images and 20 for 640x480

images.

2.3. Mapping

Since this is an odometry system, not a full SLAM one,

a global map is not generated. The only map stored is the

latest edge-map. Matching is done from the new edge-map

to the last, followed by a regularization step which mainly

improves visualization output. Finally, depth is reestimated

using standard filtering techniques.

705

2.3.1 Matching

In this step, the keylines in the new edge-map are matched

against the ones in the last edge-map. In this manner, the

chances that every point in the new edge-map has a match

are increased, regardless of the possibility that two or more

may point to the same keyline in the old edge-map. As sug-

gested in [6], the warping transformation τ is known from

the tracking stage, a stereo line is defined for each point

in the image, so a more accurate matching process can be

done.

Each point qi in the new edge-map is first prerotated us-

ing RT (ω̄) (back-rotation) to obtain the transformed image

points qri :

r̄i = RT
(

qix , qiy , zf
)T

(10)

q̄ri =

(

zf
rix
riz

, zf
riy

riz

)

(11)

Given the linear translation v̄r = RT v̄ the point q̄ri is re-

lated with the corresponding keyline in the last edge-map as

follows:

qoix = qrix − ρoi(zfvrx − qrix vrz) (12)

qoiy = qriy − ρoi(zfvry − qriy vrz) (13)

As ρoi is initially only known to be positive, this defines

a stereo half-line to search for the match. A maximum of

maxd pixels are searched in this direction in the last edge-

map image mask. When a possible match is found, gradient

vectors mn and mo are compared to test for compatibility

as done in the tracking stage. Because this is a weak test, ρo
and σρo

are used then to test for motion consistency, using

the following inequality:
∣

∣

∣

∣

∣

||q̄oi − q̄ri ||2
||(zfvrx − qrix vrz , zfvry − qriy vrz)||2

− ρoi

∣

∣

∣

∣

∣

< σρoi

(14)

If this last test is passed, the match is accepted and depth

and uncertainty are propagated. Keylines that don’t pass

this test belong to objects that are mismatched or that are

not moving at the same speed as the rest, i.e. outliers. The

depth estimation of these keylines is resetted, and hence

they loose their influence in the next tracking step. This

provides some extra outlier motion rejection. Also, this test

improves matching when the direction of the movement is

very close to the edge’s tangent direction, giving a number

of possible matches. In this manner, only the matches that

convalidate the model are kept.

2.3.2 Regularization

One regularization step is applied to the edge-map before

depth reestimation. A weighted mean of the depths of the

two neighbours of each keyline and the keyline itself is per-

formed, using the pid and nid obtained from the edge ex-

tractor (explained in section 2.1). Only keylines that have

neighbours on both sides are regularized, excluding the end-

points of edges.

The underlying idea in this regularization step is that

close points in an image are likely to be close in space. This

assumption is not general of course: many times the edge

extractor finds two consecutive joined keylines that do not

belong to the same edge in space. In order to add some re-

silience to this systematic error, neighbouring keylines are

double tested before performing regularization. The first

test is probabilistic and involves the inverse depth and its

uncertainty:

|ρp − ρn| < σρp
+ σρn

(15)

The second test is morphological and uses gradient direc-

tion vector m̄. A similarity function α(m̄p, m̄n) is defined

as the cosine of the angle between the two vectors:

α(m̄p, m̄n) =

(

m̄p • m̄n

||m̄p||2||m̄n||2
− cosβ

)

(1− cosβ)−1

(16)

where β is an angle threshold which is usually set to 45
degrees. Regularization is only performed if α > 0.

This function is used together with depth uncertainty to

weigh the regularization. Having a keyline with depth and

uncertainty (ρ, σρ) and its neighbours p and n, the following

equations are defined:

w =
1

σρ

, wn =
α(m̄p, m̄n)

σρn

, wp =
α(m̄p, m̄n)

σρp

(17)

The regularized depth and uncertainty for the keyline is then

calculated as the weighted mean:

ρreg =
wnρn + wρ+ wpρp

wn + w + wp

(18)

σρreg
=

wnσρn
+ wσρ + wpσρp

wn + w + wp

(19)

(20)

This step mainly improves visualization output, but it also

helps filling some gaps when matching fails. This explains

why the mean is σ-weighted.

2.3.3 Depth estimation

Inverse depth ρ is estimated using standard EKF filtering in

its multiplicative noise formulation. The prediction equa-

tion is extracted from the rototranslation calculated in the

tracking stage:

ρp =
ρo

[

R(ω̄)
(

qox
zf

,
qoy
zf

, 1
)]

z
+ ρovz

(21)

706

The correction equation is similar to equations 12 and 13

but rearranged for a forward rotation and, most importantly,

scalar multiplied by the vector m̄, the only direction in

which the edge provides motion information:

[

qnx
− qrx

qny
− qry

]

• m̄n = ρp

([

zfvx − qrxvz
zfvy − qryvz

]

• m̄n

)

(22)

where qr is the image point that results from rotating qo by

R(ω̄).

Error Estimation: Uncertainty is estimated in the EKF

by a first-order approximation around the filter operating

point. In this stage, velocity and rotation appear as pa-

rameters. But, as they are estimated quantities, they have

some uncertainty that is taken into account in the filter for-

mulation. This error term is extracted from the Levenberg-

Marquardt minimization performed at the tracking stage. In

this manner, uncertainty is modelled as the sum of the co-

variance matrix extracted from the last iteration of the algo-

rithm ((JT
n Jn)

−1) plus a relative error term ε derived from

the confidence interval: ε = ||hn||
||x|| , being hn the parame-

ter increment in the last iteration and x̄ = [ω̄|v̄]. Hence,

the modelled uncertainty in the transformation parameters

takes the form:

Rx̄ = (JT
n Jn)

−1 + diag(x̄ε)2 (23)

Modelling this uncertainty introduces the insight that veloc-

ity and rotation are not accurate at the beginning because the

reconstruction is still uninitialized. After the system is ini-

tialized, the main source of uncertainty is the localization

error, usually taken to be 1 pixel.

This two uncertainty sources are combined using the

standard filter equations. Uncertainty in the state propaga-

tion is also added with a constant term, designed to keep

the estimation active and avoid that some keylines may get

fixed at wrong positions at the beginning of the estimation.

Global scale correction: Scale drift is a known problem

of visual odometry systems that has an impact on the final

accuracy of the trajectory. One of the causes of scale drift

in this system is the presence of a multiplicative noise term

in the EKF, which appears because of the velocity term that

multiplies ρ in equations 22. This introduces only a small

bias in the estimation of ρ, because the variance of the ve-

locity is much less than the variance of the keyline’s dis-

placement measurement. Nevertheless, explicit bias correc-

tion is hard to apply because the involved variances need to

be known with precision.

Taking as an advantage the great number of points that

are processed in each frame, a “shrinking factor” can be es-

timated by comparing the predicted EKF inverse depth ρp

with the final depth after measurement incorporation, glob-

ally:

k =

∑

i

1

σ2
ρi

ρ2ni

∑

i

1

σ2
ρi

ρ2pi

(24)

This factor is used to expand the system back, by divid-

ing each depth by this factor.

The presented correction step is not required for the sys-

tem to work, it is just a simple correction to gain accuracy.

3. Inertial Aided Formulation

Aside from the pure vision algorithm presented so far,

we have also developed an inertial aided system that com-

bines the vision process with inertial measurements (gyro-

scope plus accelerometer) to effectively stabilize and nav-

igate a Vertical Take Off and Landing UAV. Although the

vision system could be enough for this task, the reasons to

include inertial information for this application are several.

For one, the rotation information given by the gyroscope

is fundamental for fast low-level rotation control of this kind

of vehicle. Although visual rotation control could be fea-

sible, it’s complexity is not justified by the low cost of this

kind of sensors. Moreover, adding gyroscope information to

the visual system increases its robustness in terms of con-

vergence and motion range while lowering computational

cost. Finally, the pure monocular system is unable to es-

timate the world scale. Although this information can be

retrieved with an initialization step, it can also be derived

from accelerometer measures, with no initialization or ex-

ternal information needed.

Inertial information is added to the visual estimation by

first estimating a measured rotation matrix Rm(ω̄m) from

the angular velocity output of the gyroscope. This rota-

tion matrix is used to prerotate the old edge-map before the

tracking stage. The estimated rotation is mixed with the

measured one as two consecutive rotations: R = ReRm.

After mixing the algorithm continues as normal.

A rotation prior can be added to the energy minimization

in the form of a time regularization term:

E = Eo + λ(ω̄t − ω̄t−1) (25)

In this equation λ is a regularization factor. Choosing a big

λ converts rotation estimation into a gyroscope bias estima-

tor.

In the most minimalistic setup, the energy function is

only minimized with respect to translation, while rotation

is extracted from the Gyro. This last configuration is faster

to compute than the complete version and provides satisfac-

tory results for a well-calibrated sensor (as shown in section

4.3).

707

Pos. Drift [cm/s] Ang. Drift [deg/s]

Dataset REBVO [6] [8] [9] REBVO [6] [8] [9]

fr2/xyz 0.8 0.6 0.6 8.2 0.40 0.33 0.34 3.27

fr2/desk 2.8 2.1 2.0 - 1.07 0.65 0.70 -

Table 1. Drift comparison against state of the art methods.

4. Results

The algorithm was tested using the TUM RGBD public

dataset [22] and datasets generated by the authors, using the

WHYCON system [14] for position ground truth.

4.1. Experimental Setup

The tests were conducted using two platforms: a regular

desktop featuring an Intel I7 core and an embedded plat-

form consisting of an Odroid U3 development board fea-

turing an Exinos 4460 SoC (Cortex-A9 Quad). The Odroid

U3 has an inertial measurement unit plugged in and a Play

Station 3 Eye camera. This equipment is mounted on top of

a quadrotor, and is the one used to create the second set of

measurements.

Initialization is a critical part for monocular systems. In

all the experiments we left the system auto-initialize, start-

ing all the keylines with a fixed constant depth, this way the

edge-map takes a few seconds (2-5) to converge. Because

absolute scale is unknown in monocular systems, this was

adjusted offline by comparing against ground truth.

4.2. Tests on the TUM RGBD Dataset

To facilitate comparison with other visual odometry sys-

tems, the algorithm was tested in a public dataset. Two se-

quences were used: fr2/xyz and fr2/desk, both have been

used in related work to quantitatively asses the performance

of VO algorithms. The first one contains very slow trans-

lational motions around a regular office desk. The second

one is a complete loop around this desk with faster motions.

These datasets use the camera from a Kinect sensor and a

ground truth positioning system. The algorithm was initial-

ized using the first depth map taken by the Kinect.

Table 1 shows drift information compared against state

of the art visual odometry systems. As can be seen, the

proposed algorithm presents similar positional and angular

drift. Note that only [9] and [6] are monocular systems. For

these experiments, the first one requires stereo alignment

for initialization and the former used the depth image from

the first frame, provided by the RGBD dataset, for the same

purpose. Our system auto-initializes.

Reconstruction for the last frame of the dataset is shown

in Figure 1.

Figure 3. Edge reconstruction in a typical hallway with low

amount of distinguishable features. From left to right: edge de-

tection, edge depth and off-camera surface fitting.

4.3. Tests on generated datasets

Even though testing using public datasets is important

for comparison with other methods, it is also important to

test the algorithm in the intended environment and platform

for at least one of its applications (small UAV stabilization

and navigation). Figure 3 shows the output of the algorithm

for a typical office corridor and its respective coloured edge-

map, it also shows surface fitting over the edge map. Fig-

ure 4 shows position tracking of the vehicle in a 40s trial on

this environment. It also shows the performance of the algo-

rithm when the rotation is extracted from the gyroscope and

the algorithm is only used to estimate translational velocity

(no estimation of rotation bias). As expected, this estima-

tion has more position drift, but runtime is far lower as can

been in section 4.4, yielding a tradeoff between speed and

accuracy which is common in embedded systems.

Velocity estimation is plotted in Figure 5 (for the pure

visual estimator), and angular velocity is plotted in Figure 6

against gyroscope measurements (which is an excellent sen-

sor for angular velocity). These graphics are mainly plotted

to show the lack of noise (in terms of smoothing) in the ve-

locity estimations and the precision of the system. A

Figure 4. Position estimation versus WHYCON ground truth for

the hallway dataset. An initialization time of 5 seconds is taken as

the initial position point in the plots.

typical office reconstruction is shown in Figure 7, note how

the algorithm is able to track the line of trees and this way

708

Figure 5. Velocity estimation versus WHYCON ground truth for

the hallway dataset.

Figure 6. Angular velocity estimation versus on-board gyroscope

measurements for the hallway dataset.

Figure 7. Edge reconstruction in a typical office. From left to right:

edge detection, edge depth and off-camera surface fitting.

identify the window.

4.4. Running Time

Running time is of key importance for a realtime system

designed to work in a control loop. One of the attractive

things of this algorithm is that the running time for both

mapping and tracking scales linearly with the number of

edge-points processed, as can be seen in Figure 8. Therefore

it can be accurately controlled actuating on the thresholds of

Runtime [ms]

Odroid U3 I7

REBVO 55 8

REBVO+GIRO 26 4

Table 2. Average running time for different platforms and config-

urations.

the edge detector. Average running times for the algorithm

are shown in Table 2 for 4500 edge-points. The gyroscope

version runs faster because the algorithm only estimates ve-

locity, this simplifies the optimization and requires fewer

iterations to converge.

Figure 8. Runtime as a function of edge-points on a Cortex-A9

5. Conclusion

In this paper, a novel visual odometry algorithm that

takes an approach between classical feature-based visual

odometry and novel semi-dense direct methods has been

presented. While mainly aiming for simplicity and ef-

ficiency on embedded platforms, the proposed algorithm

achieves similar accuracy than modern state of the art vi-

sual odometry systems. In terms of running time, the algo-

rithm in its minimalistic version using gyroscope is able to

run at 30FPS on a standard Cortex-A9 without mayor opti-

mizations to the code (like the use of explicit vectorization,

which can be easily applied in the future).The full version

runs at 18FPS on a Cortex A9 and 120 FPS in a modern

CPU. Another important characteristic is that the runtime

can be pitched by thresholding the number of edge points,

following a simple linear relation. The depth output could

also be used with a system similar to the proposed in [5] to

achieve a full SLAM system.

709

References

[1] A. Belaid, D. Boukerroui, Y. Maingourd, and J.-F. Leral-

lut. Phase-based level set segmentation of ultrasound images.

Information Technology in Biomedicine, IEEE Transactions

on, 15(1):138–147, 2011. 2

[2] J. Canny. A computational approach to edge detection. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

1986. 2

[3] J. Civera, A. J. Davison, and J. Montiel. Inverse depth

parametrization for monocular slam. Robotics, IEEE Trans-

actions on, 24(5):932–945, 2008. 3

[4] E. Eade and T. Drummond. Edge landmarks in monocular

slam. In BMVC, pages 7–16, 2006. 2

[5] J. Engel, T. Schöps, and D. Cremers. Lsd-slam: Large-scale

direct monocular slam. In Computer Vision–ECCV 2014,

pages 834–849. Springer, 2014. 2, 8

[6] J. Engel, J. Sturm, and D. Cremers. Semi-dense visual odom-

etry for a monocular camera. In Computer Vision (ICCV),

2013 IEEE International Conference on, pages 1449–1456.

IEEE, 2013. 1, 2, 5, 7

[7] C. Forster, M. Pizzoli, and D. Scaramuzza. Svo: Fast semi-

direct monocular visual odometry. In Robotics and Automa-

tion (ICRA), 2014 IEEE International Conference on, pages

15–22. IEEE, 2014. 1, 2

[8] C. Kerl, J. Sturm, and D. Cremers. Robust odometry estima-

tion for rgb-d cameras. In Robotics and Automation (ICRA),

2013 IEEE International Conference on, pages 3748–3754.

IEEE, 2013. 2, 7

[9] G. Klein and D. Murray. Parallel tracking and mapping for

small ar workspaces. In Mixed and Augmented Reality, 2007.

ISMAR 2007. 6th IEEE and ACM International Symposium

on, pages 225–234. IEEE, 2007. 1, 7

[10] G. Klein and D. Murray. Improving the agility of keyframe-

based slam. In Computer Vision–ECCV 2008, pages 802–

815. Springer, 2008. 2

[11] P. Kovesi. Image features from phase congruency. Videre:

Journal of computer vision research, 1(3):1–26, 1999. 2

[12] P. Kovesi. Edges are not just steps. In In: Proceedings of the

Fifth Asian Conference on Computer Vision. (2002) 822827,

pages 822–827, 2002. 2

[13] P. Kovesi. Fast almost-gaussian filtering. In Digital Image

Computing: Techniques and Applications (DICTA), 2010 In-

ternational Conference on, pages 121–125. IEEE, 2010. 2

[14] T. Krajnk, M. Nitsche, J. Faigl, P. Vank, M. Saska, L. Peuil,

T. Duckett, and M. Mejail. A practical multirobot localiza-

tion system. ”Journal of Intelligent Robotic Systems”, pages

1–24, 2014. 7

[15] T. Lindeberg. Principles for automatic scale selection. Hand-

book on Computer Vision and Applications, 1999. 2

[16] D. G. Lowe. Distinctive image features from scale-

invariant keypoints. International journal of computer vi-

sion, 60(2):91–110, 2004. 2

[17] D. Marr and E. Hildreth. Theory of edge detection. Proceed-

ings of the Royal Society of London B: Biological Sciences,

207(1167):187–217, 1980. 2

[18] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. Dtam:

Dense tracking and mapping in real-time. In Computer Vi-

sion (ICCV), 2011 IEEE International Conference on, pages

2320–2327. IEEE, 2011. 1

[19] M. Pizzoli, C. Forster, and D. Scaramuzza. Remode: Prob-

abilistic, monocular dense reconstruction in real time. In

Robotics and Automation (ICRA), 2014 IEEE International

Conference on, pages 2609–2616. IEEE, 2014. 1

[20] K. Rajpoot, V. Grau, and J. A. Noble. Local-phase based 3d

boundary detection using monogenic signal and its applica-

tion to real-time 3-d echocardiography images. In Biomed-

ical Imaging: From Nano to Macro, 2009. ISBI’09. IEEE

International Symposium on, pages 783–786. IEEE, 2009. 2

[21] H. Strasdat, J. Montiel, and A. J. Davison. Real-time monoc-

ular slam: Why filter? In Robotics and Automation (ICRA),

2010 IEEE International Conference on, pages 2657–2664.

IEEE, 2010. 1

[22] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cre-

mers. A benchmark for the evaluation of rgb-d slam systems.

In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ In-

ternational Conference on, pages 573–580. IEEE, 2012. 7

710

