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Abstract

The log-likelihood energy term in popular model-fitting

segmentation methods, e.g. [39, 8, 28, 10], is presented as a

generalized “probabilistic” K-means energy [16] for color

space clustering. This interpretation reveals some limita-

tions, e.g. over-fitting. We propose an alternative approach

to color clustering using kernel K-means energy with well-

known properties such as non-linear separation and scal-

ability to higher-dimensional feature spaces. Our bound

formulation for kernel K-means allows to combine general

pair-wise feature clustering methods with image grid reg-

ularization using graph cuts, similarly to standard color

model fitting techniques for segmentation. Unlike histogram

or GMM fitting [39, 28], our approach is closely related to

average association and normalized cut. But, in contrast

to previous pairwise clustering algorithms, our approach

can incorporate any standard geometric regularization in

the image domain. We analyze extreme cases for kernel

bandwidth (e.g. Gini bias) and demonstrate effectiveness

of KNN-based adaptive bandwidth strategies. Our kernel

K-means approach to segmentation benefits from higher-

dimensional features where standard model-fitting fails.

1. Introduction and Motivation

Many standard segmentation methods combine regular-

ization in the image domain with a likelihood term integrat-

ing color appearance models [2, 39, 8, 4, 28]. These ap-

pearance models are often treated as variables and estimated

jointly with segmentation by minimizing energies like

−
K
∑

i=1

∑

p∈Si

logP i(Ip) + λ||∂S|| (1)

where segmentation {Si} is defined by integer variables Sp

such that Si = {p : Sp = i}, models P = {P i} are prob-

ability distributions of a given class, and ||∂S|| is the seg-

mentation boundary length in Euclidean or some contrast

sensitive image-weighted metric. This popular approach to

Figure 1: GrabCut vs. kernel K-means for color clustering

(no smoothness or hard constraints). In contrast to kernel

K-means, descriptive GMMs overfit the data even in R3.

unsupervised [39, 8] or supervised [28] segmentation com-

bines smoothness or edge detection in the image domain

with the color space clustering by probabilistic K-means

[16], as explained later. The goal of this paper is to replace

standard likelihoods in regularization energies like (1) with

a new general term for clustering data points {Ip} in the

color (or other feature) space based on kernel K-means.

Our methodology is general and applies to multi-label

segmentation problems. For simplicity, our presentation is

limited to a binary case K = 2 where Sp ∈ {0, 1}. We use

S = S1 and S̄ = S0 to denote two segments.
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A. basic K-means1 (e.g. Chan-Vese [8])

∑

p∈S
∥Ip − µs∥

2 +
∑

p∈S
∥Ip − µs̄∥

2 Variance criterion

=
∑

pq∈S
∥Ip−Iq∥

2

2|S| +
∑

pq∈S
∥Ip−Iq∥

2

2|S̄|
= |S| · var(S) + |S̄| · var(S̄)

c
= −

∑

p∈S
lnN (Ip|µs)−

∑

p∈S̄
lnN (Ip|µs̄)

B. probabilistic K-means (e.g. [39, 31, 29, 28, 10]) C. kernel K-means (ours)

(i) equivalent energy formulations: (i) equivalent energy formulations:
∑

p∈S
∥Ip − θs∥d +

∑

p∈S
∥Ip − θs̄∥d

∑

p∈S
∥φ(Ip)− µs∥

2 +
∑

p∈S̄
∥φ(Ip)− µs̄∥

2

= −
∑

p∈S
lnP(Ip|θs)−

∑

p∈S̄
lnP(Ip|θs̄)

=
∑

pq∈S
||Ip−Iq||

2

k

2|S| +
∑

pq∈S̄
||Ip−Iq||

2

k

2|S̄|

c
= −

∑
pq∈S

k(Ip,Iq)

|S| −
∑

pq∈S̄
k(Ip,Iq)

|S̄|

(ii) example: descriptive models (histograms or GMM) (ii) example: normalized kernels (Gaussians)

yield high-order log-likelihood energy yield high-order Parzen density energy

−
∑

p∈S
lnPh(Ip|S)−

∑

p∈S̄
lnPh(Ip|S̄) −

∑

p∈S
Pk(Ip|S)−

∑

p∈S̄
Pk(Ip|S̄)

≈ |S| ·H(S) + |S̄| ·H(S̄) Entropy criterion
c
≈ |S| ·G(S) + |S̄| ·G(S̄) Gini criterion

this approximation is valid only for highly descriptive models this approximation is valid only for small-width normalized kernels2

Ph(S) ≡ Ph(·|S) - histogram (or GMM) for intensities in S Pk(S) ≡ Pk(·|S) - kernel (Parzen) density for intensities in S

H(S) - entropy for intensities in S G(S) - Gini impurity for intensities in S

(iii) bound optimization: auxiliary function at St (iii) bound optimization: auxiliary function at St

At(S) = −
∑

p∈S
lnPh(Ip|S

t)−
∑

p∈S̄
lnPh(Ip|S̄

t) At(S) ≈ −2
∑

p∈S
Pk(Ip|S

t)− 2
∑

p∈S̄
Pk(Ip|S̄

t)

= |S| ·H(S|St) + |S̄| ·H(S̄|S̄t) + |S| ·
[

G(S̄t)−G(St)
]

Table 1: K-means terms for color clustering combined with (MRF) regularization in segmentation. Basic K-means (A)

or Gaussian model fitting minimizes cluster variances. More complex model fitting (elliptic Gaussian, GMM, histograms)

corresponds to probabilistic K-means (B) [16]. We propose kernel K-means (C) using more complex data representation.

1.1. Probabilistic Kmeans (pKM)

The connection of the likelihood term in (1) to K-means

clustering is obvious in the context of Chan-Vese approach

[8] where probability models P are Gaussian with fixed

variances. In this case, the likelihoods in (1) reduce to

∑

p∈S

∥Ip − µs∥
2 +

∑

p∈S̄

∥Ip − µs̄∥
2 (2)

the sum of squared errors from each cluster mean. This is

the standard K-means objective also known as variance cri-

terion for clustering, Tab.1A. If both means and covariances

for Gaussians are treated as variables, then (1) corresponds

to the standard elliptic K-means energy [31, 29, 10].

1We use
c
= and

c

≈ for “up to additive constant” relations.
2Optimal bandwidth for accurate Parzen density estimation is near data

resolution [37]. Such kernel width is too small for good clustering, Sec.3.1.

Zhu-Yuille [39] and GrabCut [28] popularized even more

complex probability models (GMM or histograms) for seg-

mentation energies like (1). In this case the likelihood

term corresponds to a more general probabilistic K-means

(pKM) energy [16] for color clustering, see Table 1B

−
∑

p∈S

logP(Ip|θS)−
∑

p∈S̄

logP(Ip|θS̄) (3)

where variables θ are ML model parameters for each seg-

ment. Assuming P(·|θ) is a continuous density of a suffi-

ciently descriptive class (e.g. GMM), information theoretic

analysis in [16] shows that probabilistic K-means energy

reduces to the standard entropy criterion for clustering

≈ |S| ·H(S) + |S̄| ·H(S̄). (4)

Indeed, for any function f(x) Monte-Carlo estimation gives
∑

p∈S
f(Ip) ≈ |S| ·

∫

d(x)f(x)dx where d is a “true” den-

sity for points in S. For f(x) = − logP(x|θS) and d(x) ≈
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Figure 2: Histograms in color spaces. Entropy criterion (4)

with histograms can not tell a difference between A and B:

bin permutations do not change the histogram’s entropy.

P(x|θS) we get the clustering criterion above for the dif-

ferential entropy H(S) := H(P(·|θS)). For histograms

Ph(·|S) the entropy-based interpretation above is exact for

discrete entropy H(S) := −
∑

x Ph(x|S) · logPh(x|S).

Intuitively, minimization of the entropy criterion (4) fa-

vors clusters with tight or “peaked” distributions. This cri-

terion is widely used in categorical clustering [21] or de-

cision trees [7, 22] where the entropy evaluates histograms

over “naturally” discrete features. We show that the entropy

criterion with either histograms or GMM densities has lim-

itations in the context of continuous color spaces.

In case of histograms, the key problem for color space

clustering is illustrated in Fig.2. Once continuous color

space is broken into bins, the notion of proximity between

the colors in the nearby bins is lost. Since bin permutations

do not change the histogram entropy, criterion (4) can not

distinguish the quality of clusterings A and B in Fig.2; some

permutation of bins can make B very similar to A.

In case of continuous density models, the problem of en-

tropy criterion (4) is quite different since continuous (GMM

or Parzen) densities preserve the notion of continuity in the

color space. For example, optimal GMMs for clusterings

A and B in Figure 2 will have sufficiently different (dif-

ferential) entropy values. The main issue for pKM energy

(3,4) with GMM densities is optimization. In this case high-

order energy (3) requires joint optimization of variables Sp

and many additional GMM parameters θS yielding complex

objective function with many local minima. Typical block

coordinate descent methods [39, 28] iterating optimization

of S and θ are very sensitive to initialization and easily over-

fit the data, see Figs.1 and 3(d). Better solutions exist, see

Fig.3(e), but can not be found without good initialization.

These problems of probabilistic K-means with his-

tograms or GMM in color spaces may explain why descrip-

tive model fitting via pKM energy (3) is not a common clus-

tering method in the learning community. Instead of prob-

abilistic K-means they often use a different extension of K-

means, that is kernel K-means in Table 1C.

(a) initialization (b) histogram fitting

(c) elliptic K-means (d) GMM: local min

(e) GMM: from gr. truth (f) kernel k-means

Figure 3: Model fitting (3) vs kernel K-means (10): His-

togram fitting always converges in one step assigning ini-

tially dominant bin label (a) to all points in the bin (b): en-

ergy (3) is minimal at any volume balanced solution with

one label inside each bin [16]. Basic or elliptic K-means

(one mode GMM) under-fit the data (c). Six mode GMMs

over-fit (d) similarly to (b), but the problem is local minima

since ground-truth initialization (e) yields lower energy (3).

Kernel K-means energy (10) gives (f) even from (a).

1.2. Towards Kernel Kmeans (kKM)

We propose kernel K-means energy to replace the stan-

dard likelihood term (3) in common regularization func-

tionals for segmentation (1). In machine learning, kernel

K-means (kKM) is a well established data clustering tech-

nique [34, 25, 13, 11, 9, 15], which can identify complex

structures that are non-linearly separable in input space.

In contrast to probabilistic K-means using complex mod-

els, see Tab.1, this approach maps the data into a higher-

dimensional Hilbert space using a nonlinear mapping φ.

Then, the original non-linear problem often can be solved

by simple linear separators in the new space.

Given a set of data points {Ip|p ∈ Ω} kernel K-means

corresponds to the basic K-means in the embedding space.

In case of two clusters (segments) S and S this gives energy

Ek(S) :=
∑

p∈S

∥φ(Ip)− µs∥
2 +

∑

p∈S̄

∥φ(Ip)− µs̄∥
2. (5)

where ∥.∥ denotes the Euclidean norm, µs is the mean of
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segment S in the new space

µs =

∑

q∈S
φ(Iq)

|S|
(6)

and |S| denotes the cardinality of segment S. Plugging µs

and µs̄ into (5) gives equivalent formulations of this cri-

terion using solely pairwise distances ∥φ(Ip) − φ(Iq)∥ or

dot products ⟨φ(Ip), φ(Iq)⟩ in the embedding space. Such

equivalent pairwise energies are now discussed in detail.

It is a common practice to use kernel function k(x, y)
directly defining the dot product

⟨φ(x), φ(y)⟩ := k(x, y) (7)

and distance

∥φ(x)− φ(y)∥2 ≡ k(x, x) + k(y, y)− 2k(x, y)

≡ ∥x− y∥2k. (8)

in the embedding space. Mercer’s theorem [25] states that

any continuous positive semi-definite (p.s.d.) kernel k(x, y)
corresponds to a dot product in some high-dimensional

Hilbert space. The use of such kernels (a.k.a. kernel trick)

helps to avoid explicit high-dimensional embedding φ(x).
For example, rewriting K-means energy (5) with pair-

wise distances ∥φ(Ip)−φ(Iq)∥
2 in the embedding space im-

plies one of the equivalent kKM formulations in Tab.1C(i)

Ek(S) ≡

∑

pq∈S
∥Ip − Iq∥

2
k

2|S|
+

∑

pq∈S̄
∥Ip − Iq∥

2
k

2|S̄|
(9)

with isometric kernel distance ∥∥2k as in (8). This Hilber-

tian metric3 replaces Euclidean metric inside the basic K-

means formula in the middle of Tab.1A. Plugging (8) into

(9) yields another equivalent (up to a constant) energy for-

mulation for kKM directly using kernel k without any ex-

plicit reference to embedding φ(x)

Ek(S)
c
= −

∑

pq∈S
k(Ip, Iq)

|S|
−

∑

pq∈S̄
k(Ip, Iq)

|S̄|
. (10)

Kernel K-means energy (9) can explain the positive re-

sult for the standard Gaussian kernel k = exp
−(Ip−Iq)

2

2σ2 in

Fig.3(f). Gaussian kernel distance (red plot below)

∥Ip − Iq∥
2
k ∝ 1− k(Ip, Iq) = 1− exp

−(Ip − Iq)
2

2σ2
(11)

is a “robust” version of Euclidean

metric in basic K-means (green).

Thus, Gaussian kernel K-means

finds clusters with small local vari-

ances, Fig.3(f). In contrast, basic

3Such metrics can be isometrically embedded into a Hilbert space [14].

K-means (c) tries to find good clusters with small global

variances, which is impossible for non-compact clusters.

Link to pair-wise clustering: Dhillion et al. [11, 17]

first observed the equivalence between kernel k-means and

popular spectral clustering criteria. For example, (10) is ex-

actly the negative average association cost [11, 30] and (9)

is closely related to average distortion [27]. Furthermore,

[11] showed that weighted versions of energy (5) is equiva-

lent to the popular normalized cuts cost [30].

1.3. Summary of contributions

We propose kernel K-means as feature/color clustering

criteria in combination with standard regularizers in the

image domain. This combination is possible due to our

bound formulation for kKM allowing to incorporate stan-

dard regularization algorithms such as max-flow. Our gen-

eral framework applies to multi-label segmentation (super-

vised or non-supervised). Our approach is a new extension

of K-means for color-based segmentation [8] different from

probabilistic K-means [39, 28]. As special cases, our kKM

color clustering term includes normalized cuts and other

pairwise clustering criteria (see detailed discussion in [33]).

Our kKM approach to color clustering has several advan-

tages over standard probabilistic K-means methods [39, 28]

based on histograms or GMM. In contrast to histograms,

kernels preserve color space continuity without breaking it

into unrelated bins, see Fig.2. Unlike GMM, our use of non-

parametric kernel densities avoids mixed optimization over

a large number of additional model-fitting variables. This

reduces sensitivity to local minima, see Fig.3(d,f).

For high-dimensional data, kernel methods are a preva-

lent choice in the learning community as EM becomes in-

tractable. Unlike GrabCut, our method extends to higher

dimensional feature spaces, see Figure 9.

We analyze the extreme bandwidth cases (Sec.3). It is

known that for wide kernels (approaching data range) kKM

converges to basic K-means, which has bias to equal size

clusters [16, 3]. It has been observed empirically that small-

width kernels (approaching data resolution) show bias to

compact dense clusters [30]. We provide a theoretical ex-

planation for this bias by connecting kKM energy for small

bandwidth with the Gini criterion for clustering (19). We

analytically prove the bias to compact dense clusters for the

continuous case of Gini, see Theorem 2, extending the pre-

vious result for histograms by Breiman [7].

We focus on the standard Gaussian and 0-1 kernels

and evaluate locally adaptive bandwidth selection strate-

gies avoiding problems reveled by our analysis above. Our

tests show that fixed kernels are significantly outperformed

by the standard clustering practice [36, 38] choosing lo-

cal bandwidth from the distance to the K-th nearest neigh-

bor (KNN). Efficient parallel implementation for our frame-

work for general (e.g. adaptive) kernels is detailed in [33].
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2. Bound Optimization

In general, bound optimizers are iterative algorithms that

optimize auxiliary functions (upper bounds) for a given en-

ergy E(S) assuming that these auxiliary functions are more

tractable than the original difficult optimization problem

[18, 32]. At(S) is an auxiliary function of E(S) at current

solution St (t is the iteration number) if:

E(S) ≤ At(S) ∀S (12a)

E(St) = At(St) (12b)

To minimize E(S), we iteratively minimize an auxiliary

function at each iteration t: St+1 = argminS At(S). It

is easy to show that such an iterative procedure decreases

original function E(S) at each step:

E(St+1) ≤ At(St+1) ≤ At(St) = E(St).

For example, iterative optimization in standard GrabCut

algorithm [28] was shown to be an optimizer of a cross-

entropy bound [32], see Table 1B(iii).

Theorem 1. The following is an auxiliary function for the

kKM energy in (10)

Ek(S) = −

∑

pq∈S
kpq

|S|
−

∑

pq∈S̄
kpq

|S̄|
≤ At(S) where

At(S) = −2
∑

p∈S

∑

q∈St
kpq

|St|
− 2

∑

p∈S̄

∑

q∈S̄t
kpq

|S̄t|

+ |S|

∑

pq∈St
kpq

|St|
2 + |S̄|

∑

pq∈S̄t
kpq

|S̄t|2
. (13)

Proof. See Appendix A in [33].

Our technical report [33] shows that the standard itera-

tive kernel K-means algorithm [12] is implicitly a bound op-

timizer with our auxiliary function (13). However, without

explicit use of our bound it is not clear how to combine kKM

with MRF image-domain regularization. For example, to

combine kKM with the Potts model [17] normalizes the cor-

responding pairwise constraints by cluster sizes. This al-

ters the Potts model to a form accommodating trace-based

formulation. In contrast, our bound-optimization interpre-

tation allows to combine kKM energy and equivalent pair-

wise clustering energies [33] with any standard (e.g. MRF)

or geometric regularization in XY domain.

Image segmentation functional: We propose to mini-

mize the following high-order functional for image segmen-

tation, which combines image-plane regularization with the

pairwise clustering energy Ek(S) in (10):

E(S) = Ek(S) + λR(S) (14)

where λ is a (positive) scalar and R(S) is any functional

with an efficient optimizer, e.g. a submodular boundary reg-

ularization term optimizable by max-flow methods

R(S) =
∑

{p,q}∈N

wpq[sp ̸= sq] ∼ ||∂S|| (15)

where [·] are Iverson brackets and N is the set of neighbor-

ing pixels. Pairwise weights wpq are evaluated by the spatial

distance and color contrast between pixels p and q as in [4].

Theorem 1 implies that At(S) + λR(S) is an auxil-

iary function of high-order segmentation functional E(S)
in (14). Furthermore, this auxiliary function is a combi-

nation of unary (modular) term At(S) and a sub-modular

term R(S). Therefore, at each iteration of our bound opti-

mization algorithm, the global optimum of the bound can be

efficiently obtained by max-flow algorithms [6]. Note that

estimation of the unary part (13) of the auxiliary function

At(S)+λR(S) has quadratic complexity O(N2). Efficient

implementation of this step is discussed in [33].

3. Parzen Analysis and Bandwidth Selection

This section discusses connections of kKM energy (10)

to Parzen densities providing probabilistic interpretations

for our pairwise clustering approach. In particular, this sec-

tion gives insights on bandwidth selection. We discuss ex-

treme cases and analyze adaptive strategies. For simplicity,

we mainly focus on Gaussian kernels, even though the anal-

ysis applies to other types of positive normalized kernels.

Note that standard Parzen density estimate for the dis-

tribution of data points within segment S can be expressed

using normalized Gaussian kernels [1, 13]

Pk(Ip|S) =

∑

q∈S
k(Ip, Iq)

|S|
. (16)

It is easy to see that kKM energy (10) is exactly the follow-

ing high-order Parzen density energy

Ek(S)
c
= −

∑

p∈S

Pk(Ip|S)−
∑

p∈S̄

Pk(Ip|S̄). (17)

3.1. Extreme bandwidth cases

Parzen energy (17) is also useful for analyzing two ex-

treme cases of kernel bandwidth: large kernels approaching

the data range and small kernels approaching the data reso-

lution. This section analyses these two extreme cases.

Large bandwidth and basic K-means: Consider Gaus-

sian kernels of large bandwidth σ approaching the data

range. In this case Gaussian kernels k in (16) can be approx-

imated (up to a scalar) by Taylor expansion 1 − ∥Ip−Iq∥
2

2σ2 .

Then, Parzen density energy (17) becomes (up to a constant)
∑

pq∈S
∥Ip − Iq∥

2

2|S|σ2
+

∑

pq∈S̄
∥Ip − Iq∥

2

2|S̄|σ2
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