
Listening With Your Eyes: Towards a Practical Visual Speech Recognition

System Using Deep Boltzmann Machines

Chao Sui, Mohammed Bennamoun

School of Computer Science and Software Engineering

University of Western Australia, Perth, Australia

chao.sui@csse.uwa.edu.au, mohammed.bennamoun@uwa.edu.au

Roberto Togneri

School of Electrical, Electronic and Computer Engineering

University of Western Australia, Perth, Australia

roberto.togneri@uwa.edu.au

Abstract

This paper presents a novel feature learning method for

visual speech recognition using Deep Boltzmann Machines

(DBM). Unlike all existing visual feature extraction tech-

niques which solely extract features from video sequences,

our method is able to explore both acoustic information

and visual information to learn a better visual feature rep-

resentation. During the test stage, instead of using both

audio and visual signals, only the videos are used to gen-

erate the missing audio features, and both the given visual

and audio features are used to produce a joint represen-

tation. We carried out experiments on a new large scale

audio-visual corpus, and experimental results show that our

proposed techniques outperform the performance of hand-

crafted features and previously learned features and can be

adopted by other deep learning systems.

1. Introduction

Continuous efforts have been made towards the devel-

opment of Automatic Speech Recognition (ASR) systems

in the recent years, and numerous ASR systems (e.g. Ap-

ple Siri and Microsoft Cortana) have come into use in our

daily life. Although ASR research has made remarkable

progress, practical ASR systems are still prone to environ-

mental noises. A possible solution to overcome the recog-

nition degradation in the presence of acoustic noises is to

take advantage of the visual stream which is able to provide

complementary information to the acoustic channel. De-

spite the promising application prospects of Audio-Visual

Speech Recognition (AVSR), the problem on how to extract

visual features from videos still remains a difficult one. In

Figure 1. Possible application scenarios of our proposed frame-

work. In an noisy environment, visual features are a promising

solution for automatic speech recognition.

order to improve visual feature representation techniques,

Visual Speech Recognition (VSR), also known as lipread-

ing, have emerged as an attractive research area in the recent

years [31].

features to boost speech accuracy, another promising as-

pect of VSR is in its wider potential real-life applications

compared to acoustic based ASR. As shown in Fig. 1, in

many practical applications, ASR systems are exposed to

noisy environments, and the acoustic signals are almost un-

usable for speech recognition. On the other hand, with the

availability of front and rear cameras on most mobile de-

vices, users can easily record facial movements to improve

speech accuracy. In these extremely noisy environments,

the visual information becomes basically the only source

that ASR systems can use for speech recognition.

Although lipreading techniques provide an effective po-

tential solution to overcome environmental noises for ASR

systems, there are still several challenges in this area. Un-

like the well-established audio features, such as the Mel

Frequency Cepstral Coefficients (MFCC), how to encode

the speech-related visual information into a compact feature
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vector is still a difficult problem, because the lip movements

are not easily distinguishable compared to audio signals be-

tween different utterances. Another challenge is that the fu-

sion of both audio and visual signals dramatically degrades

the speech recognition performance in the presence of the

noisy acoustic signals.

Given the aforementioned visual speech recognition

challenges, this paper provides a new perspective to solve

both of these challenges. For the first challenge, since the

audio features perform much better than the visual fea-

tures, we use both audio and visual information to learn

a more pertinent feature representation for speech recog-

nition. Moreover, the trained feature representation model

is also capable of inferring the audio features when visual

information is available. Hence, during the test stage, the

audio signals which may be severely corrupted by the envi-

ronmental noises are not required. Instead, the visual fea-

ture is used to reconstruct the audio information, and both

the given visual and inferred audio information are used to

yield a joint feature representation. Therefore, the second

aforementioned challenge can be solved.

The rest of this paper is arranged as follows: Section

2 introduces some related works, and based on the review

of relevant recent works, the contributions of this paper are

also given in this section. The feature learning scheme is

presented in Section 3. We extensively evaluate the perfor-

mances of different visual features in Section 4. Finally, we

summarize our paper in Section 5.

2. Related Works and Our Contributions

Compared with the well established audio features e.g.

MFCC, there is no universally accepted visual feature to

represent lipreading relevant information [31]. In this sec-

tion we first review the recent visual feature extraction

works. We then highlight the key contributions of our work

to this area.

Generally speaking, visual features can be divided into

four categories: appearance-based features and shape-based

features [17]. For appearance-based features, image trans-

formation techniques are performed on raw image pixels

to extract visual features, while the parameters of the lip

shape models are used to extract the shape-based features.

Although the shape-based visual features are able to explic-

itly capture the shape variations of the lips, an extremely

large number of lip landmarks need to be laboriously la-

belled, which is infeasible for large-scale speech recogni-

tion tasks. On the other hand, appearance-based visual fea-

tures are computationally efficient and do not require any

training process. Hence, appearance-based features have

been widely adopted in the recent years [31].

In terms of appearance-based visual features, Zhao et al.

[29] introduced a Local Binary Pattern (LBP) based spatial-

temporal visual feature, called LBP-TOP. This feature pro-

duced an impressive performance over other existing fea-

ture extraction techniques on various lipreading tasks. De-

spite the promising performance of LBP-TOP features, the

dimensionality of the raw LBP-TOP feature is very large,

which makes the system succumb to the curse of dimension-

ality. Hence, a number of other works have been presented

to encode the visual information of the LBP-TOP features

by more informative representations [32, 13, 1, 15, 22, 30].

However, these works focused only on isolated words and

phrase recognition. They did not consider connected words

or continuous speech recognition, which is highly in de-

mand by modern speech recognition systems using Hidden

Markov Models (HMMs) [2]. Given the rich speech rele-

vant visual information embedded in LBP-TOP visual fea-

tures, this paper presents a novel feature learning technique

which can explore the speech relevant information from the

raw LBP-TOP features.

Motivated by the great success achieved by deep learn-

ing techniques in the area of acoustic speech recognition

[3], this paper introduces a new visual feature learning tech-

nique to improve lipreading accuracy. In this paper, we

use Deep Boltzmann Machines (DBM) [18] to learn the vi-

sual features. Encouraging pioneering works, which em-

ployed deep learning techniques for visual speech recogni-

tion, have been carried out by Ngiam et al. [12] and Huang

et al. [8]. However, in [12], the visual features trained by

the deep Auto-Encoder (AE) were fed to a Support Vec-

tor Machine (SVM), which limited the work to mainly iso-

lated word recognition. Huang et al. [8] trained a Deep Be-

lief Network (DBN) to predict the posterior probability of

HMM states given the observations, which can be used for

continuous speech recognition. However, the performance

of their proposed visual feature learned by deep learning

techniques did not show marginal improvements over the

benchmark HMM/GMM model.

Meanwhile, Ngiam et al. [12] proposed a cross modal-

ity learning framework that used both audio and visual in-

formation to train a shared representation. However, this

framework failed to yield a better accuracy than the visual-

only learning framework. This cross modality learning

framework provides, however, a new perspective to over-

come the low lipreading accuracy problem. More specifi-

cally, although practical ASR systems are usually exposed

to acoustic noisy environments, it is always easy to col-

lect both clean audio and visual data in controlled lab en-

vironments. This means that we can train a feature learn-

ing model that uses both clean audio and visual signals to

learn a better shared representation. When this well trained

system is used under noisy environment, instead of relying

on the noisy acoustic signals, only the captured video sig-

nal are used to generate the joint feature representation for

visual speech recognition. The feature learning techniques

used in [12, 8] are not able to generate an adequate shared
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representation when one modality (i.e. audio) is missing.

Fortunately, Salakhutdinov and Hinton [18] proposed

a Deep Boltzmann Machine (DBM) which is a deep Re-

stricted Boltzmann Machine (RBM) based model with the

ability to infer a missing modality. Unlike DBN [7] which

is a directed model based on RBM, DBM is an undirected

graphical model with bipartite connections within adjacent

hidden layers. The undirected structure of the DBM allows

this model to infer a missing modality by a Gibbs sampler

[18]. Srivastava and Salakhutdinov firstly used DBM on

multimedia images and text tags multimodal classification

[20], and later demonstrated the superior performance of

DBM in the case of audio-visual speech recognition [21].

However, how to infer the missing audio from the video

was not considered in their paper.

In this paper we propose a novel formulation of the mul-

timodal DBM to the audio-visual connected word speech

recognition task and propose the following key contribu-

tions:

• Unlike previous works that only extract visual features

from video data, we propose a novel framework that

uses both the audio and visual signals to enrich the vi-

sual feature representation.

• Although both audio and visual features are required

in the training, we only use the visual features for the

testing since our feature learning framework is capable

of inferring the missing (i.e. degraded) audio modality.

Hence our proposed framework provides a promising so-

lution for practical automatic speech recognition systems.

It is deployed in very noisy environments and exploits the

more reliable visual modality instead of audio signals.

3. Proposed Feature Learning Scheme

The block diagram of proposed system is shown in Fig.

2. The visual feature learned by the Deep Boltzmann Ma-

chine (DBM) is concatenated with Discrete Cosine Trans-

form (DCT) feature vector, followed by a Linear Discrim-

inant Analysis (LDA) to decorrelate the feature and reduce

the feature dimension. Then, the Gaussian Mixture Model-

Hidden Markov Model (GMM-HMM) is used as a classifier

for visual speech recognition. In the following section, the

DBM model is first introduced.

3.1. Multimodal Deep Boltzmann Machine

The DBM consists of a series of Restricted Boltzmann

Machine (RBM) stacked on top of each others. The energy

of the joint configuration of the visible units v and hidden

units h can be formulated as:

E(v,h; θ) = −v
⊤
W

(1)
h
(1) −

n∑

i=2

h
(i−1)⊤

W
(i−1)

h
(i),

(1)

where θ = {W (1),W (2), ...,W (n−1)} is the model param-

eter, which is the set of weights between the different layers.

The joint distribution of the model can be formulated as:

P (v; θ) =
∑

h(1),...,h(n)

P (v,h(1), ...,h(n); θ)

=
1

Z(θ)

∑

h(1),...,h(n)

exp(−E(v,h(1), ...,h(n); θ)),

(2)

where Z(θ) is the partition function. The training pro-

cess of DBM can be divided into two steps: pre-training

and fine-tuning, which will be introduced in the following.

3.2. DBM Pre-training

The pre-training of the DBM is carried out by training

RBMs in a greedy layer-wise manner. Since the inputs of

the DBM are real-valued and all the hidden units are binary,

the RBMs between the input layer and the hidden layer are

Gaussian RBMs, while the RBMs between the adjacent hid-

den layers are binary RBMs.

The DBM has two real-valued input streams: the visual

input vv and the audio input va, and a sequence of binary-

valued hidden layers. For the D-dimensional input vi ∈
{vv,va} of each stream, the energy of the D-dimensional

input v and the first layer h
(1)

, which consists of F hidden

units, can be modelled as follows:

E(v,h1; θ) =

D∑

i=1

(vi − bi)
2

σ2
i

−

D∑

i=1

F (1)∑

j=1

vi

σi

Wijh
(1)
j

−

F (1)∑

j=1

ajh
(1)
j , (3)

where θ = (W ,a, b) are the model parameters, W is the

weight between two adjacent layers, a is the bias of the

hidden layer, b is the bias of the visible layer, and σ is the

standard deviation of the input.

The energy between the k hidden layer and the k+1 hid-

den layer is defined by Eq. 4. This process is continued un-

til all RBMs layers are pre-trained using Contrastive Diver-

gence (CD) [7]. Once both the audio and visual streams are

pre-trained separately, an additional hidden layer is added

on top of audio and visual streams.

E(h(k),h(k+1); θ) = −
F (k)∑

i=1

F (k+1)∑

j=1

h
(k)
i Wijh

(k+1)
j

−
F (k)∑

i=1

h
(k)
i bi −

F (k+1)∑

j=1

ajh
(k+1)
j (4)
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Figure 2. Block diagram of our proposed system. The left side of the figure shows the training phase.The visual feature is learned from

both the audio and video stream using a multimodal DBM. The right side of the figure shows the testing phase, where the audio signal

is not used. In the testing phase, the audio is generated by clamping the video input and sampling the audio input from the conditional

distribution.

3.3. DBM Fine-tuning

Once the units in each layer are pre-trained, the joint dis-

tribution of the multimodal DBM, as shown in Fig. 2, is

formulated by applying the visual (1st) and visual-hidden

(2nd) terms in Eq. 3, and the hidden-hidden(1st) term from

Eq. 4, and using Eq. 2 to yield the joint distribution over

the audio and visual inputs:

P (v; θ) =
1

Z(θ)

∑

h(2),h(3)

exp(
∑

k∈(a,v)

(−

Dk∑

i=1

(vki − bki)
2

σ2
ki

+

Dk∑

i=1

F
(1)
k∑

j=1

vki

σi

Wkijh
(1)
kj +

F
(1)
k∑

i=1

F
(2)
k∑

j=1

h
(1)
ki Wkijh

(2)
kj

+

F
(2)
k∑

i=1

F
(3)
k∑

j=1

h
(2)
ki Wkijh

(3)
kj )), (5)

where k ∈ {a, v} represents the audio(a) and audio(v)

streams. The parameters of the model are fine-tuned by ap-

proximating the gradient of the log-likelihood of the prob-

ability that the model assigns to the visible vectors v, i.e.

L(P (v; θ)), with respect to the model parameters θ.

In [7], this process can be formulated as:

∂L(P (v; θ))

∂θ
= α(EPdata

[vh⊤]− EPmodel
[vh⊤]), (6)

where α is the learning rate. EPdata
[�] represents the

data-dependent expectation, which is the expectation of the

P (v; θ) with respect to the training data set. EPdata
[�] rep-

resents the model expectation, which is the expectation of

the P (v; θ) defined by the model (Eq. 5).

The model parameters approximation process can be di-

vided into two separate procedures. For the data-dependent

expectation estimation, the mean-field inference is used,

followed by a Markov Chain Monte Carlo (MCMC) based

stochastic approximation procedure to approximate the

model-dependent expectation. Further details of the train-

ing process can be found in [18].

3.4. Generating Missing Audio Modality

One highlight of this paper is the introduction of a new

perspective for visual feature extraction, wherein the visual

feature is learned from both the visual and audio modali-

ties. This technique provides a more practical solution for

many speech recognition scenarios where the audio signals

are almost unusable because of the environmental noises.

However, in order to make this system feasible, the miss-

ing audio signals need to be generated by the trained DBM

model during the classification. Fortunately, since the DBM

is an undirected generative model, audio signals can be in-

ferred from the visual modality. Then, the reconstructed

audio feature can be used as an augmented input to perform

visual speech recognition.

More specifically, given the observed visual features, the

audio feature is inferred by clamping the visual feature at

the input units, and applying a standard alternating Gibbs

sampler [18] to sample the hidden units from the conditional

distribution using the following equations:

P (hk
j = 1|hk−1,hk+1) = σ(

∑

i

W k
ijh

k−1
i

+
∑

m

W k+1
jm hk+1

m ), (7)

P (hn
m = 1|hn−1) = σ(

∑

j

Wn
jmhn−1

j ), (8)

P (vi = 1|h1) = σ(
∑

i

W i
ijh

1
j), (9)
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Figure 3. The generation of the missing audio signals can be di-

vided into two steps: 1. Infer the audio signal from the given

visual features. 2. Generate a joint representation using both the

reconstructed audio and the given visual features.

where i, j and m are the indices of the units in the corre-

sponding layers.

Once the audio feature is reconstructed, both the gener-

ated audio and the given visual features are used together to

generate a joint representation for speech recognition. This

process is illustrated in Fig. 3, and the details of this process

are also shown in Algorithm 1.

Algorithm 1 Porcess of generating the missing audio fea-

ture
Clamp the observed visual feature vv at the input.

for Each hidden layer k in visual stream. do

Gibbs Sample the hidden layer state in a bottom-up

manner, and estimate P (hk
i = 1|hk−1,hk+1) using

Eq. 7.

end for

Gibbs sample the joint layer state , and estimate P (hn
m =

1|hn−1) using Eq. 8.

for Each hidden layer k in audio stream do

Gibbs Sample the hidden layer state in a top-down

manner, and estimate P (hk
j = 1|hk−1,hk+1) using

Eq. 7.

end for

Infer the missing audio feature using Eq. 9.

Gibbs Sample the joint representation in a bottom-up

manner by feeding both the reconstructed audio and ob-

served visual features into the network.

3.5. Deterministic Fine-Tuning

Once the DBM model is fully trained, its weights are

used to initialise a deterministic multilayer neural network

as in [18]. For each input vector vi ∈ {vv,va}, the approx-

imate posterior distribution Q(hi|vi) is estimated by the

mean-field inference. The marginals of Q(hi|vi) are then

used with the input vector vi to form an augmented input

for the deterministic multilayer neural network, as shown in

Fig. 4. The standard backpropagation is used to discrimi-

natingly fine-tune the model.

Figure 4. Discriminative fine-tuning of our proposed DBM model.

3.6. Augmented Visual Feature Generation

In the last step of our proposed method, the visual feature

learned from the DBM model is then concatenated with the

DCT feature to form an augmented visual feature (as shown

in Fig. 2). The LDA is used to decorrelate the augmented

visual feature vector and to further reduce the feature di-

mension. Similar feature augmentation techniques have al-

ready been used in both acoustic speech recognition [28]

and visual speech recognition [23]. Finally, this augmented

visual feature is fed into an HMM recogniser.

4. Experiments

4.1. Data Corpus and Experimental Setup

Many high quality recent papers mainly focused on the

task of isolated word/letter recognition or phrase classifi-

cation [32, 13, 12, 1, 15, 22, 30, 21] . In contrast, we

propose a more practical lipreading system that can per-

form connected speech recognition. In this case, the pop-

ular benchmark corpora, such as AVLetters [9], CUAVE

[14] and OuluVS [29] or the combination of these corpora

(as used in [12, 21]) are not fully useful because they are

limited in both speaker number and speech content. In

addition, some large-scale data corpora such as AVTIMIT

AVTIMIT [6], IBMIH [8] are not publicly accessible. Al-
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(a)

(b)

Figure 5. Examples in the AusTalk Corpus. Fig. 5a: Original

recordings in the corpus. Fig. 5b: Corresponding mouth ROI ex-

amples extracted from the original examples in Fig. 5a.

though XM2VTSDB [10] (which is publicly available) has

200 speakers, the speech is limited to simple sequences of

isolated word and digit utterances. In order to evaluate our

VSR system on the more difficult connected speech recog-

nition problem, a new large-scale audio-visual data corpus

was established and used in our paper.

The data corpus used in our paper was collected through

an Australia wide research project called AusTalk [26]. It

is a large-scale audio-visual database of spoken Australian

English, including isolated words, digit sequences, and sen-

tences, recorded at 15 different locations in all states and

territories of Australia. In the proposed work, only the digit

sequence data subset is used. In the digit data subset, 12

four-digit strings are provided for people to read. This set of

digit strings, which are organised in a random manner with-

out any unnatural pause to simulate the PIN recognition and

telephone dialling tasks. Moreover, the digit selection was

carefully designed to ensure that each digit (0-9) occurs at

least once in each serial position (see Table 1).

Table 1. Digit sequences in the AusTalk data corpus. For the digit

’0’, there are two possible pronunciations: ’zero’ (’z’) and ’oh’

(’o’).

No. Content No. Content No. Content

01 z123 02 942o 03 6785

04 123z 05 7856 06 2o94

07 23z1 08 49o2 09 8567

10 3z12 11 5678 12 0429

Some recording examples can be seen in Fig. 5a. To gen-

erate the required visual information, the mouth ROIs, as

illustrated in Fig. 5b, are cropped from the original videos

using the Harr features and Adaboost [25].

In order to increase the statistical significance of our re-

sults, we split all the 125 speakers’ digit session recording

data into three groups, i.e., the training set, the validation

set, and the test set. The speakers in the different groups

are not overlapped. A three-fold cross validation is then

used, and the average word accuracy of the three runs are

reported.

4.2. Audio and Visual Features

In terms of the audio feature, a 13 Mel Frequency Cep-

stral Coefficients (MFCC) with Cepstral Mean Normalisa-

tion (CMN) was extracted, and the zero-th coefficient ap-

pended. Then, each 13-dimensional MFCCs were stacked

across 11 consecutive frames which results in a total of 143

coefficients for each frame, as in [4].

The visual feature used in this study is the LBP extracted

from Three Orthogonal Planes or LBP-TOP [29]. Unlike

the basic LBP for static images, LBP-TOP extends fea-

ture extraction to the spatial-temporal domain, which makes

LBP an effective dynamic texture descriptor. More specifi-

cally, given a mouth ROI frame at a particular time, a 59-bin

histogram is generated to accumulate the presence of differ-

ent uniform binary patterns across the spatial and temporal

planes. Then, a 177-dimensional feature vector is generated

by concatenating the three histograms to represent both the

lip appearance and its motion. In order to get a promising

speech accuracy, the mouth region is further divided into

2 × 5 subregions, as elaborated in [29]. Since the visual

input units of our multimodal DBM are the LBP-TOP fea-

tures from 10 mouth subregions, the number of the visual

input units is 1770. Compared to the direct use of the pix-

els of raw images at the input of the network, the LBP-TOP

feature embeds both the spatial and temporal information

in a single feature vector, which enables the DBM to find a

feature representation that captures both appearance infor-

mation and lip movements.

4.3. Learning Model Architecture

The visual stream of the multimodal DBM consists of a

Gaussian RBM with 1770 visible units followed by 2 hid-

den layers with 2048 and 1024 units, respectively. The au-

dio stream consists of a Gaussian RBM with 143 visible

units followed by 2 hidden layers with 256 and 128 units,

respectively. On the top of the visual and audio streams,

there is a joint representation layer with 256 units. In order

to compare the proposed multimodal DBM with the uni-

modal counterpart, the unimodal DBM is also set up with

three hidden layers of 2048, 1024, 256 units respectively.

The deep learning techniques used in this paper were imple-

mented using DeepNet and CudaMat [11], and the learning

process was implemented by exploiting the parallel pipeline

architecture of NVIDIA GPU on PC desktop workstations.

Since training the DBM only requires unlabelled data, we

combined the data from both AusTalk and AVLetters for

the feature learning.

As for the classifiers of the AusTalk data, the HMMs
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were implemented using the HTK software [27]. With the

application of the HTK, we implemented 11 HMM word

models with 30 states to model 11 digit pronunciations.

Each HMM state was modelled by a 9-mixture GMM with a

diagonal covariance. In our experiments, the digit recogni-

tion task is treated as a connected word speech recognition

problem with a simple syntax, i.e., any combination of dig-

its and silence is allowed in any order to simulate the real

speech driven tasks, such as telephone number dialing and

telephone banking tasks. In order to obtain the class label of

each frame for the discriminative learning, a forced align-

ment was carried out on all utterances to obtain the word

boundary positions.

4.4. Performance Evaluation

In the following section, we evaluate the performance of

our proposed method, and compare our model with other

popular feature extraction and learning methods. We first

demonstrate the missing modality inference ability of our

model.

As explained in Section 3, one highlight of our proposed

method is the ability of our model to use the inferred au-

dio features to boost the visual speech accuracy. Hence, we

used the visual features together with three different audio

features, i.e., clean audio, inferred audio and zero paddings,

to generate the DBM learned feature. We then used this fea-

ture to train the HMM classifier, and listed our recognition

results in Table 2.

Table 2. Connected digit recognition performance with multi-

modal inputs.

Model Audio Input Accuracy

Deep Boltzmann Machine

Zero padding 34.2%

Clean audio 79.8%

Inferred audio 59.9%

Table 2 shows that the use of clean audio features is able

to generate a very promising result (79.8%). On the other

hand, using an all zeros vector to replace the audio fea-

tures fails to produce a good accuracy (34.2%), because the

DBM model was trained with both visual and audio features

and the use of fake audio signals (with all zeros) makes the

model fail to work properly. Hence, in order to generate

a useful joint feature representation from the DBM model,

both visual and audio signals need to be provided.

Once the audio features are inferred from the visual fea-

tures, we used them with the visual features to generate joint

representations. Table 2 shows that although the accuracy

produced by the inferred audio is not as good as its clean au-

dio counterpart (79.8% vs 59.9%), the accuracy is still very

promising compared to other VSR methods, because the in-

ferred audio is able to provide additional information that is

helpful to speech recognition. The ability of our method to

infer the missing audio provides a new potential solution for

AVSR systems. More specifically, previous AVSR mainly

focus on the dynamic assignment of different weights to the

audio and video streams according to the noise level of the

audio signals. These AVSR systems usually fail to achieve a

satisfactory accuracy because of their inaccurate estimation

of the noise level. In contrast, our proposed work recon-

structs the clean audio from the multimodal DBM, rather

than using the audio signal with unknown noise levels.

As shown in Fig. 2, once the feature is obtained from

the DBM model, it is concatenated with the correspond-

ing DCT feature to generate an augmented visual feature.

LDA is then used to reduce the feature dimension. Similar

frameworks were also used in both acoustic speech recog-

nition [28] and visual speech recognition [23]. In order to

show the necessity of the augmented DBM feature, a set of

experiments were carried out, and the results are listed in

Table 3. From this table, one can note that using LDA to re-

duce the dimensionality of the DBM learned features before

feeding them into the HMM is able to produce a higher ac-

curacy (64.4%) compared to using the DBM learned feature

directly on the HMM (59.9%). Furthermore, combining the

DBM learned feature with the DCT feature produces the

highest accuracy (69.1%), because our proposed augmented

visual feature combines different types of visual informa-

tion. More specifically, the DBM learns the feature from the

LBP-TOP feature which is a local information representa-

tion, while the DCT is a global feature representation [29].

Hence, our proposed feature learning method is able to rep-

resent the speech information at both the local and global

levels, thereby producing a superior accuracy.

Table 3. Performance comparison between the DBM learned fea-

ture with it variants proposed in this paper.

Visual Feature Reduction Accuracy

DBM learned feature None 59.9%

DBM learned feature LDA 64.4%

DBM learned feature + DCT LDA 69.1%

In order to demonstrate the superiority of the augmented

visual feature over the DBM learned feature, we used a

data visualisation technique called t-SNE [24] to produce

2D embeddings of the visual features. The points close in

the high dimensional feature space are also close in the 2D

space produced by t-SNE. Fig. 6 shows the 2D mapping

of the augmented visual feature and the DBM learned fea-

ture. The points in Fig. 6 represent video frames, while the

different colours correspond to different classes (i.e., differ-

ent states of the HMM models). For clarity, we only ran-

domly chose the fifth state of each digit HMM model for

visualisation. Fig. 6 shows that, compared to the DBM

learned feature, the augmented visual feature appears to be

more visually discriminative than the DBM learned feature

which exhibits more dispersion. This explains why the per-
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(a)

(b)

Figure 6. 2D t-SNE visualization of the DBM learned feature (Fig.

6a) and our proposed feature (Fig. 6b).

formance of the augmented visual feature is better than the

DBM learned feature.

We also compared our method with other VSR feature

learning and extraction techniques, and listed the recogni-

tion accuracies in Table 4. In our experiments, we reported

the speech accuracy obtained by the DCT visual features

with LDA (for feature dimension reduction) which is a well-

established framework and it has been used for decades for

visual speech recognition. In addition to LDA, we also re-

port the accuracy obtained by mutual information selectors

[5] (i.e., MMI, mRMR and CMI), which are used as feature

reduction techniques on both DCT and LBP-TOP features.

For the hand-crafted features with the conventional feature

reduction techniques, the best accuracy is achieved by the

DCT feature with LDA (54.7%).

Regarding deep learning techniques, we compare our re-

sults with the stacked denoising auto-encoder introduced in

Table 4. Performance comparison between our proposed method

with other feature learning and extraction techniques.

Feature Representation Accuracy

DCT + LDA 54.7%
DCT + MMI [5] 52.3%

DCT + mRMR [5] 52.2%
DCT + CMI [5] 51.1%

LBP-TOP [29] + MMI [19] 52.5%
LBP-TOP [29] + mRMR [16] 53.1%
Deep Bottleneck Feature [23] 57.3%

Augmented Deep Bottleneck Feature [23] 67.8%
Our proposed method 69.1%

[23]. From Table 4, one can observe that the deep learning

techniques generally perform better than the linear feature

transformation and feature selectors. Meanwhile, our pro-

posed method outperformed the augmented deep bottleneck

visual feature which is based on the stacked denoising auto-

encoder (69.1% vs 67.8%). Since the approximate infer-

ence of the DBM is performed in two directions (bottom-up

and top-down), it is more capable of handling ambiguous

inputs [18] compared to the stacked denoising auto-encoder.

5. Conclusion

In this paper, we propose a novel feature representation

framework for lipreading. Unlike all the previous works

which only use the visual information for both training and

testing procedures, our work uses the audio information to

augment the visual information and learn a better feature

representation during the training phase. During the testing

phase, the audio features can be inferred from the given vi-

sual information, and the inferred audio features can be fur-

ther used along with the visual features to generate joint fea-

ture representations for lipreading. Experiments show that

there is a significant accuracy improvement when using the

multimodal DBM to learn the joint representation, since the

missing audio information can be inferred to augment the

feature representation. To the best of our knowledge, this is

the first work that shows humans utterances can be recon-

structed from humans lip movements. This novel frame-

work provides a new solution to practical speech driven

tasks where audio signals are corrupted by environmental

noises.

References

[1] A. Bakry and A. Elgammal. Mkpls: Manifold kernel par-

tial least squares for lipreading and speaker identification.

In Computer Vision and Pattern Recognition (CVPR), 2013

IEEE Conference on, pages 684–691. IEEE, 2013.

[2] L. Deng and R. Togneri. Deep dynamic models for learning

hidden representations of speech features. In Speech and Au-

161



dio Processing for Coding, Enhancement and Recognition,

pages 153–196. Springer, 2015.

[3] L. Deng and D. Yu. Foundations and Trends in Signal Pro-

cessing: DEEP LEARNING — Methods and Applications.

Microsoft Research, 2014.

[4] J. Gehring, Y. Miao, F. Metze, and A. Waibel. Extracting

deep bottleneck features using stacked auto-encoders. In

Acoustics, Speech and Signal Processing (ICASSP), 2013

IEEE International Conference on, pages 3377–3381. IEEE,

2013.

[5] M. Gurban and J.-P. Thiran. Information theoretic feature

extraction for audio-visual speech recognition. IEEE Trans-

actions on Signal Processing, 57(12):4765–4776, 2009.

[6] T. J. Hazen, K. Saenko, C.-H. La, and J. R. Glass. A

segment-based audio-visual speech recognizer: Data collec-

tion, development, and initial experiments. In Proceedings

of the 6th international conference on Multimodal interfaces,

pages 235–242. ACM, 2004.

[7] G. E. Hinton and R. R. Salakhutdinov. Reducing the

dimensionality of data with neural networks. Science,

313(5786):504–507, 2006.

[8] J. Huang and B. Kingsbury. Audio-visual deep learning for

noise robust speech recognition. In Acoustics, Speech and

Signal Processing (ICASSP), 2013 IEEE International Con-

ference on, pages 7596–7599. IEEE, 2013.

[9] I. Matthews, T. F. Cootes, J. A. Bangham, S. Cox, and

R. Harvey. Extraction of visual features for lipreading. Pat-

tern Analysis and Machine Intelligence, IEEE Transactions

on, 24(2):198–213, 2002.

[10] K. Messer, J. Matas, J. Kittler, J. Lttin, and G. Maitre.

XM2VTSDB: The extended m2vts database. In In Second

International Conference on Audio and Video-based Biomet-

ric Person Authentication, pages 72–77, 1999.

[11] V. Mnih. Cudamat: a cuda-based matrix class for python.

Department of Computer Science, University of Toronto,

Tech. Rep. UTML TR, 4, 2009.

[12] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y.

Ng. Multimodal deep learning. In Proceedings of the 28th

International Conference on Machine Learning (ICML-11),

pages 689–696, 2011.

[13] E. Ong and R. Bowden. Learning sequential patterns for

lipreading. In Proceedings of the 22nd British Machine Vi-

sion Conference, 2011.

[14] E. K. Patterson, S. Gurbuz, Z. Tufekci, and J. Gowdy.

Cuave: A new audio-visual database for multimodal human-

computer interface research. In Acoustics, Speech, and Sig-

nal Processing (ICASSP), 2002 IEEE International Confer-

ence on, volume 2, pages II–2017. IEEE, 2002.

[15] Y. Pei, T.-K. Kim, and H. Zha. Unsupervised random for-

est manifold alignment for lipreading. In Computer Vision

(ICCV), 2013 IEEE International Conference on, pages 129–

136. IEEE, 2013.

[16] H. Peng, F. Long, and C. Ding. Feature selection based

on mutual information criteria of max-dependency, max-

relevance, and min-redundancy. Pattern Analysis and Ma-

chine Intelligence, IEEE Transactions on, 27(8):1226–1238,

2005.

[17] G. Potamianos, C. Neti, J. Luettin, and I. Matthews. Audio-

visual automatic speech recognition: An overview. Issues in

visual and audio-visual speech processing, 22:23, 2004.

[18] R. Salakhutdinov and G. E. Hinton. Deep boltzmann ma-

chines. In International Conference on Artificial Intelligence

and Statistics, pages 448–455, 2009.

[19] P. Scanlon and R. Reilly. Feature analysis for automatic

speechreading. In Multimedia Signal Processing, 2001 IEEE

Fourth Workshop on, pages 625–630. IEEE, 2001.

[20] N. Srivastava and R. Salakhutdinov. Multimodal learning

with deep boltzmann machines. In Advances in neural infor-

mation processing systems, pages 2222–2230, 2012.

[21] N. Srivastava and R. Salakhutdinov. Multimodal learning

with deep boltzmann machines. Journal of Machine Learn-

ing Research, 15:2949–2980, 2014.

[22] J. Su, A. Srivastava, F. D. de Souza, and S. Sarkar. Rate-

invariant analysis of trajectories on riemannian manifolds

with application in visual speech recognition. In Computer

Vision and Pattern Recognition (CVPR), 2014 IEEE Confer-

ence on. IEEE, 2014.

[23] C. Sui, R. Togneri, and M. Bennamoun. Extracting deep bot-

tleneck features for visual speech recognition. In Proceed-

ings of Acoustics, Speech, and Signal Processing (ICASSP),

2015 IEEE International Conference on. IEEE, 2015.

[24] L. Van der Maaten and G. Hinton. Visualizing data us-

ing t-sne. Journal of Machine Learning Research, 9(2579-

2605):85, 2008.

[25] P. Viola and M. J. Jones. Robust real-time face detection.

International journal of computer vision, 57(2):137–154,

2004.

[26] M. Wagner, D. Tran, R. Togneri, P. Rose, D. Powers, M. On-

slow, D. Loakes, T. Lewis, T. Kuratate, Y. Kinoshita, et al.

The big Australian speech corpus (the big ASC). In Pro-

ceedings of 13th Australasian International Conference on

Speech Science and Technology, pages 166–170, 2010.

[27] S. J. Young, G. Evermann, M. Gales, D. Kershaw, G. Moore,

J. Odell, D. Ollason, D. Povey, V. Valtchev, and P. Woodland.

The HTK book version 3.4. 2006.

[28] D. Yu and M. L. Seltzer. Improved bottleneck features using

pretrained deep neural networks. In Proceedings of INTER-

SPEECH, volume 237, page 240, 2011.

[29] G. Zhao, M. Barnard, and M. Pietikainen. Lipreading with

local spatiotemporal descriptors. Multimedia, IEEE Trans-

actions on, 11(7):1254–1265, 2009.

[30] Z. Zhou, X. Hong, G. Zhao, and M. Pietikainen. A compact

representation of visual speech data using latent variables.

Pattern Analysis and Machine Intelligence, IEEE Transac-

tions on, 36(1), Jan 2014.

[31] Z. Zhou, G. Zhao, X. Hong, and M. Pietikäinen. A review of
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